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Abstract in English

In the present PhD thesis dissertation three themes of viscous liquids dynamics are
treated: (1) the visco-elastic properties studied via mechanical measurements, (2) the
temperature dependence of the (dielectric) relaxation time, and (3) non-linear relax-
ation. The first part is based on own measurements of molecular liquids, in particular
5-phenyl-4-ether (PPE) and tetramethyl-tetraphenyl-trisiloxane (DC704), while part 2
and 3 are based on analyses of measurements by others.

The mechanical measurements in the first part consist of bulk and shear modulus mea-
surements with unique methods developed in the Glass & Time group at Roskilde Uni-
versity. The measurements were carried out under identical experimental conditions
in the same cryostat thus eliminating most uncertainties associated with comparing
different measured properties of viscous liquids, the temperature calibration being the
most problematic. We found that the spectral shape of the bulk and shear modulus
relaxation is identical within experimental uncertainty for PPE and DC704, respec-
tively, while the bulk modulus relaxes slower than the shear modulus. Bulk and shear
modulus relaxation times, as well as relaxation times of three other response functions,
are however proportional in the entire temperature interval studied.
Measurements on DC704 were combined with mechanical measurements at higher fre-
quencies carried out by our collaborators from Massachusetts Institute of Technology
in the USA to compile “the widest mechanical spectrum in the world”. A total of six
different techniques covers 14 orders of magnitude in frequency and 250 Kelvin in tem-
perature. The good agreement between the results from all these methods can be seen
as a mutual confirmation of the absolute values measured by the individual methods.

In the second part Adam-Gibbs entropy model is challenged. The model predicts a
phase transition to an “ideal glassy state” with infinite relaxation time. An analysis of
the temperature dependence of the dielectric relaxation time for 42 liquids show that
data do not favor this picture.

In the third part, a series of non-linear relaxation measurements on five different molec-
ular liquids. It is shown that the non-linear relaxation can be linearized via the Tool-
Narayanaswamy formalism. The high resolution of the measurements indicates that
the linearized relaxation at long times follow a simple exponential, while the relaxation
at short times is “stretched”. This discovery lead to a new single-parameter fitting
function for the relaxation of viscous liquids. The function was fitted to the (linear) di-
electric relaxation spectra for 53 liquids and it was found to fit as well as the “standard”
fitting function, the stretched exponential.
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Abstract in Danish

Denne Ph.D. afhandling behandler tre temaer inden for seje væskers dynamik: (1)
visko-elastiske egenskaber studeret via mekaniske målinger, (2) temperaturafhængighe-
den af (den dielektriske) relaxations tid og (3) ikke-lineær relaxation. Første del er
baseret på egne målinger af især to organiske væsker: PPE (5-phenyl-4-ether) og DC704
(tetramethyl tetraphenyl trisiloxane), mens anden og tredje del er analyser af andres
målinger.

De mekaniske målinger i første del består af shear- og bulkmodul målinger udført med
unikke metoder udviklet i Glas & Tid gruppen på Roskilde Universitet. Målingerne
er udført under samme eksperimentelle forhold i den samme cryostat, hvilket elim-
inerer de fleste usikkerheder der ellers er forbundet med sammenligning af forskellige
målte størrelser, hvoraf den mest problematiske er den absolutte temperaturkalibrering.
Overordnet set kan det konkluderes, at den spektrale form af bulk- og shearmodulets
relaxation er identisk inden for måleusikkerheden i de to undersøgte stoffer henholdsvis,
mens bulk modulet relaxerer langsommere end shear modulet. Relaxationstiderne for
bulk og shear modulet, samt 3 andre responsfunktioner følges ad i hele det undersøgte
temperaturområde.
Målinger på DC704 blev forbundet med mekaniske målinger ved højere frekvenser ud-
ført af vores samarbejdspartnere fra Massachusetts Institute of Technology i USA, for
at samle “verden længste mekaniske spektrum”. I alt seks forskellige måleteknikker
spænder over 14 størrelsesordener i frekvens og 250 Kelvin i temperatur. Den fine ov-
erensstemmelse mellem disse målinger kan ses som en gensidig bekræftelse af de enkelte
metoders absolutte niveauer.

I del 2 udfordres den populære entropi model for temperaturafhængigheden af viskosi-
teten i seje væsker. Modellen forudsiger en faseovergang til en “ideel glastilstand” med
uendelig relaxationstid. En analyse af temperaturafhængigheden af den dielektriske
relaxationstid for 42 væsker viser imidlertid, at data ikke specifikt understøtter denne
model.

Endelig analyseres i tredje del en række meget præcise dielektriske målinger af relax-
ationen i 5 væsker efter ikke-lineære temperaturstep. Det vises, at den ikke-lineære
relaxation kan lineariseres ved Tool-Narayanaswamy-formalismen. Den høje opløsning
af de eksperimentelle data indikerer, at den linariserede relaxationskurve afsluttes ex-
ponentielt, mens relaxationen til korte tider er “stretched”. Dette førte til fødslen af
en ny én-parameter relaxationsfunktion. Denne funktion blev efterfølgende testet på
dielektriske relaxationsspektre for 53 væsker ligesom 3 øvrige én-parameter fittefunk-
tioner for ikke-exponentielt henfald. Funktionen viser sig at fitte data lige så godt som
standard fittefuntionen, “stretched exponential”.
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List of commonly used notation

u displacement vector
δij Kronecker delta
εij strain tensor
σij stress tensor
cijkl elasticity tensor
K, K(ω) (complex) bulk modulus
G, G(ω) (complex) shear modulus
M , M(ω) (complex) longitudinal modulus
E, E(ω) (complex) Young’s modulus
ν, ν(ω) (complex) Poisson’s ratio
cl longitudinal sound velocity
ct transverse sound velocity
K∞, G∞, c∞ instantaneous (high frequency) moduli/sound velocities
K0, G0, c0 DC (low frequency) moduli/sound velocities
Z̃,Ỹ (generalized) impedence/admittance
q (qh, qc) heating/cooling rates, ∂T∂t
T temperature
Tg glass transition temperature
kB Boltzmann’s constant
∆E (free) energy of activation
τ relaxation time
η viscosity
k wave vector
ω angular frequency (s−1)
f frequency (Hz)
fmax (ωmax) loss peak (angular) frequency
(–)′ real part of (–)
(–)′′ imaginary part of (–)
˙(–) time derivative of (–)
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1 Introduction to the thesis

The topic in this thesis is the dynamics of viscous liquids and glasses. This research
field is very broad and interdisciplinary; it is just as likely to find a physicist as a
chemist, an engineer, or a materials scientist, and even biologists and food scientists are
frequently encountered. This is because the field of viscous liquids and glasses does not
only present significant fundamental challenges, it is also of great importance in many
practical applications. The optical and physical properties of glass make it suitable
for many engineering applications such as window glass, container glass, laboratory
equipment, fibers and optics. In addition to these familiar glass applications, most
plastic materials in our everyday lives are glassy polymers. The glassy state has also
proven to be important in more surprising areas [1] such as pharmaceuticals [2] and
storage and preservation of food [3]. The properties of metallic glasses make them
superior to classic metals materials especially for micro engineering purposes.

In this thesis the focus is on the fundamental aspects of the dynamics of viscous liquids
and glasses.

1.1 Reading guide and composition

The thesis consists of three parts with separate titles: Part I “Mechanical relaxation
spectra of viscous liquids”, Part II “Temperature dependence of the dielectric relaxation
time”, and Part III “Linear and non-linear relaxation” with separate reference lists. The
first and the last part include several chapters. I chose to do so, because there is very
little overlap between the three parts and there was no obvious link between the three
although of course they fall in the area the viscous liquid dynamics.

Before the three parts of the thesis there is a short general introduction to the field,
explaining what a glass is, the phenomenology of the viscous liquids and glasses, and
stating the “big questions” of the field, that ultimately we aim to answer. Then each
part of the thesis will have its own introduction to the specific subtopic that it is
concerned with. In the end I will give a summary and outlook, including an overview
of what I believe to be the most important outcome of my work.

Part I consists of a total of seven chapters. First an introductory chapter about me-
chanical measurements in general and an overview of the methods used and the liquids
studied. The following three chapters (chapter 4, 5, and 6) are devoted to presenting
the experimental techniques and the data. The first of the three concerns the bulks
modulus measurement and is by far the most extensive, reflecting that it is a relatively
unexplored technique – despite the fact that it was developed more than 15 years ago
– and only a short description exists. The chapter on the shear modulus measurement
is brief where the main new contribution to the discussion of the technique is thor-
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2 Introduction to the thesis

ough investigation of the reproducibility of the measurement, and the third chapter
on the new measurement is merely a proof of concept. Then three chapters follows
that will utilize these data in different ways. In chapter 7 various characteristic prop-
erties are derived from the different measurements and compared. Chapter 8 connects
the measurements on DC704 with high-frequency mechanical measurements to compile
a broadband mechanical spectrum, and in chapter 9 the so-called Cauchy relation is
examined.

Part II is just one chapter, which in essence presents the content of Paper I (enclosed on
page 259). Paper I presented a systematic investigation of the temperature dependence
of the (dielectric) relaxation time arguing against the existence of a dynamic divergence
at a finite temperature. The chapter features many details not included in the paper,
in particular an analysis of the stability of the fitting routines that the analysis is based
on, as well as new observations.

Part III consists of three chapters. The first chapter (chapter 11) is an introduction
to relaxation in the glass, i.e. when the liquid is quenched out of equilibrium. This
chapter also introduces the traditional formulation of Tool-Narayanaswamy model for
non-linear relaxation. Second chapter (chapter 12) is an analysis of a series of non-
linear temperature step experiments, formulating a test of the inner clock hypothesis.
Chapter 13 concludes – much in the spirit of part II – this part by comparison various
single parameter functions for non-exponential relaxation.

Five papers are enclosed in chronological order. Some parts of the thesis are based
heavily on Paper I (p. 259) and Paper III (p. 269), while Paper II (p. 265), IV (p.
283), and V (p. 289) are only peripherally covered.

Throughout the thesis writing process it was my intension that the written output
should be a useful tool for the next PhD student. Consequently, the thesis ended
up being quite detailed (and long!). On the other hand, I have split each part into
relatively self-contained chapters to ease the reading. And I have not been shy about
using illustrations; whenever I felt a point would benefit from some kind of illustration
it was included. So the thesis may almost be read as a cartoon.

1.1.1 Prerequisites and notation

In several of the chapters a familiarity with the theory of elasticity is required. Landau
& Lifshitz [4] is a standard reference and can be recommended. Notation used here
(adopted from Landau & Lifshitz [4]) is the Einstein notation, i.e. summation over
repeated indices (unless otherwise explicitly stated). For instance σii should be read
as sum of the diagonal elements.

Knowledge of linear response theory in the time and frequency domain and equivalent
diagrams as a modelling tool is also assumed. In appendix A a short summary of this
can be found.

I have aimed at being consistent in the use of symbols. The list of symbols included
on page vi should be valid unless something else is explicitly stated. Symbols will be
explained (at least) the first time they are used.



1.2 General reflections on the thesis 3

1.2 General reflections on the thesis

While there is little overlap between the different parts of the thesis in phenomenology,
I think that they do have a macroscopic and phenomenological approach in common.
Probably, this approach is natural for an experimentalist, because what we measure are
typically macroscopic quantities. Thus much of the work in the present thesis consists
of relating and comparing measurable macroscopic quantities to each other.

The methods in this thesis change between the in-depth investigation of few (repre-
sentative) examples and the very broad study of many data sets. Both approaches are
useful and necessary.

A underlying point in the thesis is that careful and precise measurements are a necessity
for testing existing models, but also for generating new ideas or for new discoveries.
Measurements with much scatter are not well-suited to distinguish between models.
And if we are not careful with experiments, spurious effects may be misinterpreted as
physical features.

The broad studies of many data sets can be used to test models and new ideas generated
from the more focussed studies, to see how general some observation is or how well a
model in general describes data.
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2 Phenomenology of Glasses and
Glass-Forming Liquids

What is a glass? In the everyday understanding, glass is the material that for instance
windows or bottles are made of. As a scientific research topic, glass has a much broader
meaning: glass is state of matter (almost) on par with gaseous, liquid, and crystalline
phases of matter [1], in the sense that apparently all liquids can form glasses [1, 5–7].
Some liquids (like glycerol or silica) are actually difficult to crystallize, while others are
very difficult to vitrify (like water or metals).

A glass macroscopically behaves like a crystalline solid, but microscopically lacks the
order of the crystal – the structure of a glass is disordered like the (super-cooled)
liquid. Glass or glassy usually refers to structural disorder, but sometimes also other
kinds of disorder, for instance models with spatial order but energetic disorder (lattice-
gas models) or spin disorder (spin-glass models) or plastic crystals (with disordered
dipoles). We will only use the term in the first sense.

2.1 Producing a glass

The most common way to produce a glass is by cooling. Figure 2.1 is a schematic
illustration of some thermodynamic property (for instance volume or enthalpy) of the
liquid of the liquid as a function of temperature when cooled at some constant cooling
rate q := dT

dt . Starting above the melting point the liquid contracts and volume de-
creases when the temperature is lowered. At the melting temperature TM the liquid
can crystallize in which case this property will undergo a discontinuous change and
then – upon further cooling – contract at slightly slower rate, reflecting the fact the
expansion coefficient of a crystal normally is lower than that of the liquid. This is
illustrated with the blue curve.

If instead the liquid is cooled fast enough to prevent crystallization, it continues to
contract at the same rate as the liquid. The liquid is now super-cooled and the state is
a meta-stable equilibrium state – the crystal of course being the true equilibrium state.
The viscosity η and relaxation time τ now increases dramatically, and eventually the
liquid will not have time to relax fully to equilibrium and it forms a glass. In the
(T, V )-plot this will show up as a gradual deviation from the equilibrium liquid line
eventually settling to a line roughly parallel to the crystal line.

The glass-transition temperature Tg is defined as the temperature where the glass and
liquid line intersect. This temperature is however not a material constant like the
melting temperature, but a “dynamic” temperature that will depend on the cooling
rate: a fast cooling rate will give a high Tg and a slow cooling rate will result in a lower

5
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Figure 2.1 The canonical schematic illustration of some measured property of liquid, for
instance volume or enthalpy, as a function of temperature when cooled at some constant
cooling rate q.

Tg. The cooling rate is defined by q = dT/dt. If the cooling process is viewed as a
series of temperature steps, then the cooling rate expresses how much time is spent at
each new temperature ∆t = ∆T/q. Thus the liquid falls out of equilibrium when ∆t
is smaller than the relaxation time τ

∆t� τ → (supercooled) liquid
∆t ≈ τ → glasstransition
∆t� τ → glass

Evidently, the glass is not a unique state but a state that depends on the temperature
(and also pressure) history.

That the glass transition is a dynamic temperature that depends on the cooling rate
has been showed clearly by experiments (e.g. by Kovacs [8] and Moynihan et al [9]),
however if the cooling rates are not varied wildly the different Tg’s will fall within a
narrow range of temperatures. So, as long as the cooling rate is in the range 0.1-
100K/min it is thus still meaningful and relatively well-defined to talk about the glass
transition temperature. Since the viscosity of the liquid is roughly 1012 when falling out
of equilibrium at these moderate cooling rates, Tg is sometimes pragmatically defined
through the viscosity

η(Tg) = 1012Pas. (2.1)

If we were very patient and cooled the liquid at an increasingly slower rate we could
in principle stay on the equilibrium liquid line. At some finite temperature (called
the Kauzmann temperature TK) this line – since it is steeper – will cross the crystal
line, see Fig. 2.1. This is the Kauzmann paradox: the volume (and also entropy)
of the liquid will be lower than that of the crystal which is the true thermodynamic
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equilibrium state. In practice this point has never been reached and is always avoided
by the kinetic glass transition. Still, a lot of theoretical work in this field has been
dedicated to solving this paradox [10–12].

2.1.1 Not really liquid – not really solid

The properties of a viscous liquid are visco-elastic, i.e. they are time or frequency
dependent. If the liquid is perturbed, the short time or high frequency response will
be elastic (solid-like), while the long time or low frequency response will be viscous
(liquid-like). The viscosity of a Newtonian liquid is defined by σ = ηε̇N , while Hooke’s
law for an elastic solid states σ = G∞εH

The Maxwell model [13, 14] extrapolates between the liquid and solid behavior by
assuming

ε̇ = ε̇N + ε̇H =
σ

η
+

σ̇

G∞
(2.2)

The constitutive equation of the Maxwell model can thus be written ηε̇ = σ+ η/G∞σ̇,
where the ratio η/G∞ has the dimensions of time and is called the Maxwell relaxation
time

τM =
η

G∞
. (2.3)

This relation that tells us that the relaxation time of the liquid is roughly proportional
to the viscosity, since the temperature dependence of G∞ is much less dramatic than
that of the viscosity. Visco-elastic effects can in principle be observed in a liquid at any
temperature, but at high temperatures this is an experimentally quite challenging task
that requires an extremely good time resolution. At lower temperatures the relaxation
takes place over minutes or hours.

The Maxwell model can be illustrated by a electrical circuit with a resistor and a
capacitance in parallel, see Fig. 2.2. The resistor models the dissipative property of

C ∼ 1/G∞

R ∼ η

Figure 2.2 Maxwell model of visco-elastic behavior in terms of an electrical network.

the liquid and the capacitor the elastic (energy storing) property. This model has
the correct limiting behavior: at high frequencies only the capacitor is seen while at
low frequencies the capacitor blocks the current and only the resistor is seen. The
mechanical equivalent of voltage and current are the (shear) stress and the (shear)
strain rate. The impedance of the network is given by

Z̃M =
1

ỸM
=

1

ỸR + ỸC
=

1
1
R + iωC

=
R

1 + iωRC
(2.4)
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and we recover the Maxwell relaxation time as the time constant of electrical circuit
τM = RC = η

G∞
.

A more detailed and technical introduction to visco-elasticity is given in chapter 3 as
an introduction to the mechanical measurements presented subsequently.

2.2 Universal properties of viscous liquids

The ultra-viscous liquid phase preceding glass formation has universal physical proper-
ties, independent of the nature of the chemical bonds involved. These universal features
[1, 15–19] may be summarized into three non’s: Non-Arrhenius temperature depen-
dence of the average relaxation time, non-exponential relaxations, and non-linearity of
relaxations upon even small temperature jumps (e.g., 1 %).

2.2.1 Non-Arrhenius

One of the hallmark features of the supercooled liquid is the dramatic increase in re-
laxation time and viscosity. In Fig. 2.3 the dielectric relaxation time data for some
liquids is plotted as a function of temperature. As the temperature is lowered the re-
laxation times increase rapidly. Even when plotted on a logarithmic scale, the increase
in relaxation time is dramatic increasing many orders of magnitude with a 10% change
in temperature that is shown here.

The Arrhenius equation gives the temperature dependence of activated processes such
as instance chemical reaction rates, and gives rise to similar dramatic temperature
dependences.

Already in the 1930’s Eyring [20] showed that many physical processes in condensed
phases involve passages over free energy barriers. Among these processes are plastic
flow, molecular diffusion, and dielectric relaxation. Kauzmann [21] therefore argued,
that we must expect metastable states to occur supported by the free energy barriers
involved in these processes [21].

If we adopt the view that the viscous flow in a supercooled liquid is an activated process,
then the increase in viscosity should be described by the Arrhenius equation

η = η0 exp

{
∆E

kBT

}
(2.5)

where ∆E is the free energy of activation, the prefactor η0 is the high temperature
limit of the viscosity (usually taken to be ∼ 10−4Pas), kB is Boltzmanns constant, and
T is temperature. Usually, what is observed is that the free energy of activation is an
increasing function of temperature ∆E = ∆E(T ). This is illustrated in Fig. 2.4, where
log viscosity of several glass-forming liquids is plotted against the inverse temperature
scaled with Tg. In this plot all curves have two common points: the glass transition
(η = 1012Pas) and the high temperature limit (η0 = 10−4Pas). In between there are a
variety of different behaviors from nearly Arrhenius (i.e. a straight line in this plot) to
extremely non-Arrhenius.

Based on this representation, Angell [22] suggested a classification of the liquids based
on the steepness of their curve at Tg in the Arrhenius plot. Near Arrhenius liquids are
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Figure 2.3 Dielectric relaxation times of eight liquids plotted as a function of temperature.
Top panel shows simply the relaxation time versus temperature, while bottom panel show the
logarithmic relaxation time versus temperature. Obviously, the relaxation time is extremely
sensitive to temperature in these supercooled liquids – even plotted on a logarithmic scale
the increase upon cooling appears quite dramatic increasing 6-8 orders of magnitude in a
relatively small temperature interval. (See table 10.1, p. 157, for further informations on the
liquids.)

termed strong liquids and super-Arrhenius liquids fragile. The fragility index is defined
by

mA =
d log η

d(Tg/T )

∣∣∣∣
T=Tg

. (2.6)

If log η0 = −4 and log η(Tg) = 12, Arrhenius behavior corresponds to mA = 16. The
prototypical glassformer glycerol has a fragility index of ∼ 50. The highest measured
fragility is of decahydro isoquinoline [23], which has a fragility index of 158 [24].

The Arrhenius model has more or less become the standard model and quest of explain-
ing the dramatic increase in relaxation time and viscosity has to a high degree become
a search of what controls the temperature dependence of the activations energy (at
least in the more phenomenological models). There are a number of different models
and purely empirical functions for the non-Arrhenius temperature dependence of the
viscosity, some of which we introduce in part II (chapter 10).

2.2.2 Non-exponential

In a viscous liquid the relaxation towards equilibrium following a step-like perturba-
tion is almost always non-exponential [25–27]. Theoretically it is not well-understood
why this is. There are two possible scenarios to explain: either the relaxation is in-
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Figure 2.4 Arrhenius plot of the viscosity of various glass forming liquids with the temperature
axis scaled with Tg. Liquids range from a near Arrhenius behavior represented by a straight
line in this plot (termed “strong” liquids) to an extremely non-Arrhenius behavior giving a
high curvature traces between the two fixed points (termed “fragile” liquids). The inset show
the specific heat jumps at the glass transition. From [22]

herently non-exponential (the “homogeneous” picture) or the macroscopically observed
non-exponentiality is a superposition of microscopic domains with exponential relax-
ation of different relaxation times (the “heterogeneous” picture). These scenarios were
illustrated by Richert [28], which we show in Fig. 2.5. Experiments primarily provide
support for the heterogeneous picture [29].

The standard fitting functions in the time domain is the stretched exponential [30, 31]

r(t) = exp
(
− (t/τ)

βSE

)
(2.7)

where the stretching parameter, βSE varies between 0 and 1. For βSE = 1 this gives a
simple exponential relaxation. r(t) represents a response in time after a step input.

Many linear experiments are conducted in the frequency domain, where the perturba-
tion is periodic. In the frequency domain the “stretching” of the relaxation shows up
as a characteristic asymmetric loss peak, where the low frequency side of the alpha re-
laxation peak is Debye like with ε′′ ∝ ω1, while on the high frequency side we typically
have ε′′ ∝ ω−n where 0 < n < 1. A popular fitting function in the frequency domain
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(a) From [28]

(b) From [27]

Figure 2.5 An illustration of the difference between the “homogeneous” and the “hetero-
geneous” explanation for the non-exponential relaxation observed in most viscous liquids.
In the heterogeneous picture the source of non-exponentiality is a superposition (ensemble
average) of individual Debye processes with different relaxation times. (a) Illustration by
Richert [28] in the time domain. Φ represents a the measured time domain response function.
(b) Illustration by Chamberlin [27] in the frequency domain. This illustration also suggests
the outcome of an ’hole-burning’ experiment in the two cases: If a pump field is applied
at selected frequency (here Ω), then in (A) energy is absorbed homogeneously yielding a
uniform shift in the spectrum of response. In (B) domains with significant absorption at R
are selectively modified, and a spectral hole develops

is the Cole-Davidson fitting function [32, 33]

χ(ω) =
1

(1 + iωτ)βCD
(2.8)

where χ denotes any normalized response function in the frequency domain. This
function has the required behavior for 0 < βCD < 1.

In Fig. 2.6 the exponential and stretched exponential relaxation functions is schemat-
ically depicted in the time domain and in the frequency domain the Cole-Davidson
fitting function is shown in addition to the (Laplace transform of the) two first.

Often, it is observed that the stretching increases with decreasing temperature, from
a Debye like relaxation at high temperatures to a broader relaxation shape at low
temperatures [18]. Close to the glass transition however, many liquids obey the time-
temperature-superposition principle (TTS), i.e. the relaxation shape is temperature
independent in some temperature interval. It was suggested by Olsen et al [35] that a
high-frequency ω−1/2 dielectric loss spectrum is valid whenever TTS is obeyed. This



12 Phenomenology of Glasses and Glass-Forming Liquids

Figure 2.6 Stretched relaxation in the time and frequency domain. In the time domain
the relaxation stretched compared to a simple exponential. In the frequency domain the
“stretching” shows up as an asymmetric shape of the imaginary part of the dielectric constant.
The imaginary part of a Debye (exponential) relaxation, a stretched exponential (KWW) and
a Cole-Davidson function (CD) with the same relaxation time τ is shown. From [34]

was further supported by Nielsen et al [36], who for a large number of liquids showed
that a slope of −1/2 may be generic.

If (and in that case how) the non-Arrhenius temperature dependence of the relaxation
time and the non-exponential relaxation is connected is not known, although a strong
correlation between the fragility index mA and the stretching parameter βSE of the
stretched exponential has been reported [26, 27].

The topic of non-exponential relaxation enters in several parts of the thesis. In part
III (chapter 13) Eq. (2.7) and (2.8) and other single-parameter relaxation functions
are compared for a large set of dielectric data (collected by Albena Nielsen). And
indirectly in the characterization of the mechanical relaxation spectra in part I.

2.2.3 Non-linearity

Non-linearity refers to the fact the relaxation in the liquid near (and below) Tg following
even quite small temperature jumps is highly non-linear in the sense that the response
to a step in temperature depends both on the sign and the magnitude of the jump.

In Fig. 2.7(a) a schematic representation of a typical protocol for a nonlinear relaxation
measurement is illustrated by a temperature up-jump and a temperature down-jump
to the same temperature. In both up- and down-jumps the liquids responds by an
instantaneous (solid) change – as in the Maxwell model – followed by a slow relaxation
toward the (metastable) equilibrium line. Fig. 2.7(b) shows Kovacs data on glucose
[37] following such a protocol. The up and down jump are clearly not symmetric in
their approach to equilibrium.

This topic is explored in part III, where chapter 11 gives a much more detailed in-
troduction to the out-of-equilibrium dynamics. In chapter 12 is testing a standard
formalism for addressing non-linear relaxation (the Tool-Narayanaswamy formalism).
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(a) Schematic representation of a temperature
jump experiment

(b) Data obtained by following such protocol

Figure 2.7 A temperature jump experiment. (a) A schematic representation of two tem-
perature jumps to a target temperature (T0) from initial temperatures above (T1) and
below (T2). (b) The data of Kovacs [37] on glucose following such a protocol. The volume
change in the system is measured after a 5K up-jump (corresponding to ∼ 1.6%) and a
10K down-jump (corresponding to ∼ 3.3%) to 30◦C. Obviously, the temperature down-jump
reaches equilibrium faster and is much flatter (or stretched) than the temperature up-jump.
From [37]

2.3 Concluding remarks

The ability to form a glass is universal and the properties of the viscous phase preceding
the glass formation are universal and non-trivial. The universality and the general lack
of basic understanding continue to make this research field attractive to physicists. The
hope is of course that behind this universality, a theory exists for viscous liquid that
explains these main questions, here posed in form of the three non’s.

Several phenomenological models and more fundamental theories have been proposed
that allegedly solves the problem of non-Arrhenius behavior of the relaxation time, as
well as some first principles approaches. But no consensus has been reached so far.

The lack of order in some respects make things simpler. The lack of crystalline order
for instance has the consequence that viscous liquids and glasses are isotropic, which
for instance simplifies their mechanical properties compared to crystalline solids. And
since the glass transition phenomena are universal, i.e. insensitive to the microscopic
details of the molecules and the chemical bonds involved, it has been proposed that
cause of the universality is the lack of long-range order [38].
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Part I

Mechanical relaxation spectra of
viscous liquids
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3 Introduction

This part of the thesis has roots back in my master thesis work, which was carried
out in the Nelson group at the Department of Chemistry at Massachusetts Institute
of Technology (MIT). In this group several techniques for measuring the ultra-fast
properties of (disordered) matter through the interaction with laser light. A subset of
the techniques are focussed on measuring the mechanical properties of especially (but
not restricted to) glass-forming liquids.

The idea in my master thesis was to combine these high frequency techniques with the
techniques developed here at Roskilde University to compile a mechanical counterpart
of the broadband spectra that is accessible with dielectric spectroscopy. That turned
out to be a too ambitious goal for the time-frame of a master thesis work and it seemed
obvious to finish this project as a part of my PHD work. Among the challenges for
this has been to get reproducible results and estimate the error on the absolute values
of the measured mechanical moduli in order to be able to compare with results from
other labs and different techniques – a discipline that has not been explored too much
in the literature.

This initial idea has given rise to a number of other activities. In particular, one spin-
off from this was the development of a new mechanical spectroscopy technique. This
new technique is really rather a modification of one the existing techniques, which was
an old idea of Tage Christensen and Niels Boye Olsen. A set of high quality data can
also be used in other contexts than what they were originally intended for. As a result
this part of the thesis kept growing in size to the point where it actually became the
main part of the thesis.

In the present chapter we give a short introduction to mechanical spectroscopy in
general and a brief review of existing techniques. Then an overview of the experimental
work done in connection with this thesis follows including a presentation of the liquids
studied.

3.1 Mechanical spectroscopy in general

If we want to observe the visco-elastic effects (mechanical relaxation) in a liquid, the
frequency or time window of the technique needs to be carefully matched with the
relaxation time of the liquid. The relaxation time of the liquid is strongly temperature
dependent and since viscosity is roughly proportional to the relaxation time, a specific
technique will typically select out a certain interval of viscosities and should be sensitive
to these viscosities. Low frequencies correspond to long relaxation times and high
viscosities, and high frequencies to short relaxation times and low viscosities.
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The frequency or time window in combination with the temperature at which the
technique can be operated limits the liquids that can be studied by a specific technique.

Mechanical measurements on viscous liquids are not easy, because – if kept above the
glass transition temperature – they eventually flow. Thus they must contained and are
not easily “pulled”, “bent”, or “squeezed”.

We restrict our review of the existing techniques for measuring the shear and bulk
mechanical properties of viscous liquids to the methods that operate roughly in the
frequency range of our own methods, the Piezo-electric Shear Gauge (PSG) [1] and
the Piezo-electric Bulk Gauge (PBG) [2] developed by Niels Boye Olsen and Tage
Christensen. For slightly higher frequencies we refer to Harrison [3, Ch. 6] reviewing
mechanical spectroscopy techniques at frequencies > 10kHz and in chapter 8 of this
thesis a few optical techniques for measuring sound velocity and sound attenuation at
high frequencies (10MHz-100GHz) are described.

Ferry [4] and chapter 1 of [5] by Read, Dean & Duncan very thoroughly covers most
of the low frequency techniques (< 5kHz). The following is largely based on these
references supplemented with some newer developments.

3.1.1 Relaxation, creep, modulus, or compliance?

Mechanical measurements in general relates components of the stress tensor, σ, to
components of the strain tensor, ε. The experimental geometry determines the relevant
components.

The linear stress-strain relation is a generalized Hooke’s law

σij = cijklεkl (3.1)

where cijkl and every index i, j, k, l runs through the x, y, z directions. The elasticity
tensor c thus contains 81 entries. Through symmetry relations this number is however
dramatically decreased and for isotropic solids there are only two independent elastic
constants. These can be expressed as a combination of any two moduli (bulk modulus
K, Young’s modulus E, Poisson’s ratio ν, shear modulus G, and longitudinal modulus
M), but we like to think of the two fundamental elastic moduli as the bulk K and
shear G moduli, which relates the diagonal and deviatoric parts of the stress and
strain tensors respectively [6]

σii = 3Kεii, σij = 2G(εij −
1

3
δijεll) (3.2)

where δij is the Kronecker delta. This means that the bulk modulusK is the response to
a shape preserving volume deformation (homogeneous compression), while the shear
modulus is the response to a volume preserving deformation. Since the hydrostatic
pressure is given by δp = 1/3σii and for small displacements the trace of the strain
tensor gives the relative volume change δV/V = εii, we have

K = V
δp

δV
. (3.3)

There are two different boundary conditions under which the bulk modulus may be
measured, namely isothermal and adiabatic. Whether KT or KS is measured depends
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Figure 3.1 Schematic representation of the different input/output relations of mechanical
measurements of visco-elastic materials. Left: applying a step in stress and measuring
the time dependence of the strain (creep compliance). Middle: applying a step in strain
and measuring the stress relaxation (modulus relaxation). Right: applying a harmonic
stress/strain input and measuring the phase δ and amplitude of the strain/stress giving the
complex compliance/modulus. All of these quantities are of course mathematically equivalent
and what is measured in an experiment depends on what geometry is convenient.

on experimental details, more specifically on sample dimensions L compared to heat
diffusion lengths lD at the measured frequencies. If L < lD then the isothermal bulk
modulus is measured, and if L > lD then the adiabatic bulk modulus is measured.

For visco-elastic/relaxing systems the response to some input is time-dependent. The
full linear stress response is to an arbitrary deformation for an isotropic material is
defined by

σij(t) =

∫ t

−∞

(
2G(t′ − t)

[
ε̇ij(t

′)− 1

3
δij ε̇ll(t

′)

]
+ 3K(t′ − t)ε̇ijδij

)
dt′ , (3.4)

which in most realized experimental geometries will look much simpler. A similar
expression can be written for the stress input.

In Fig. 3.1 we sketch different possibilities of inputs and corresponding responses, when
we measure the mechanical properties of visco-elastic materials. For simplicity we have
assumed that only component of the stress and strain tensors are involved. The most
common modes of operation are step inputs or harmonic inputs. The response to a
step input in strain is termed creep compliance, the response to a strain step input is
called stress relaxation or modulus relaxation. Response to a harmonic input is called
complex modulus (if the input is strain) and complex compliance (if the input is stress).

For a certain pair of stress and strain components all of these quantities are of course
mathematically equivalent. The frequency domain response functions are Fourier trans-
forms of the derivative of the equivalent time domain response functions. In the fre-
quency domain the complex compliance is simply the inverse of the complex modulus

J̃ =
1

M̃
(3.5)

where M̃ here should be interpreted as a generalized complex modulus and J̃ as a
generalized complex compliance.



22 Introduction

3.1.2 Shearing techniques

Figure 3.2 (from [4]) shows six geometries for probing shear mechanical properties of
viscous liquids. The first one (a) is a simple parallel plate (our own in-house developed
technique belongs to this category), then there are two torsional geometries (d and e),
and three techniques that are based a coaxial cylinder geometry, (b, c, and f).

All of these geometries give equivalent information of the stress-strain relation in the liq-
uid, and all of them can (in principle at least) be operated in a compliance/creep mode
(the stress or torque is controlled and displacement or angle relaxation is measured) or
a modulus/stress relaxation mode (where the displacement or angle is controlled and
the time dependent stress is measured).

Several of these geometries are available as commercial instruments, where probably the
two torsional geometries are the most common for measuring on viscous liquids. The
vast majority of published shear data, are data on polymeric systems. The frequency
span of data on molecular liquids reported in the literature are typically 3-5 decades, for
instance 10−3 − 101Hz measured on a Rheometrics RMS 800 mechanical spectrometer
by Deegan et al [7] and ARES Rheometric Scientific mechanical spectrometer in the
frequency range 10−3 − 30Hz by Mandanici et al [8] (both are realization of geometry
(e) of Fig. 3.2).

Most of these techniques are limited to frequencies less than ∼100-1000Hz due to
resonances in the apparatus.

One problem with many of the realizations of these geometries when measuring the
mechanical properties of glass forming liquids close to the glass transition, is that
the rigidity of the liquid becomes comparable to that of the rheometer, leading to a
deformation of the rheometer itself. This can be corrected through proper modelling
of the apparatus compliance as shown by McKenna and coworkers [9, 10], but it is a
nuisance.

Harrison [3, p. 90] mentions a resonance technique covering the 20-100kHz range. The
shear impedance of a liquid can be determined by measuring the loading effect on a
transducer immersed in the liquid. The resonant frequency of a cylindrical quartz rod
vibrating in torsion is determined first in vacuum and then immersed in the liquid.
The changes in resonance frequency and resistance can be converted into components
of the shear modulus. This technique however only work for low viscosities (< 20Pas)
[3].

3.1.3 Compression techniques

When it comes to the dynamic bulk modulus, bulk compliance, bulk relaxation or bulk
creep, the methods and data are very scarce. The bulk modulus has in several cases
been determined through a combination of other measured moduli, see for instance Yee
and Takemori [11] and references therein. Yee and Takemori [11] themselves developed
a method for measuring Young’s modulus and Poisson’s ratio simultaneously, and used
that to calculate the bulk and shear moduli at frequencies 0.01−10Hz. Most other works
combine ultrasonic acoustic measurements of longitudinal and shear sound velocities
and sound attenuation to obtain the bulk modulus in the MHz region, see for instance
[12–14].
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Figure 3.2 Illustration from [4] showing possible experimental geometries for measuring
shear properties of viscous liquids. (a) parallel plate simple shear (b) annular pumping (c)
rotation between coaxial cylinders (d) torsion between cone and plate (e) torsion between
parallel plates (f) axial motion between coaxial cylinders.
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Figure 3.3 Data of Goldbach & Rehage [15] on polystyrol. Top figure show the data collapse
of volume relaxation following several pressure jumps of different magnitude, thus confirming
that the response is linear. Bottom figure shows the corresponding compressibility (bulk
compliance) calculated at different temperatures for t = 5s.

Direct measurements of the bulk properties are rare. Experimentally it is a difficult
task to create a pure volume deformation and at the same time measure the pressure
relaxation or create a pure hydrostatic compression and at the same time measure the
volume relaxation.

We have found only two principles of operation for measuring visco-elastic bulk prop-
erties (besides our own): one that we will call the dilatometric method [15, 16] and
one we will call the acoustic method which was pioneered by McKinney et al [17] and
later refined by Knauss and coworkers [18, 19].

Dilatometric method

The dilatometric method is a time domain technique. A dilatometer measures volume
changes very precisely by the height of a fluid in a capillary that is connected to the
sample chamber, analogously to a mercury thermometer. If a sample is placed in
contact with (or inside) the liquid, volume changes of the sample can be measured
quite accurately. Normally this technique is used for measuring the volume response
following a temperature step or simply the volume as a function temperature. But used
in conjunction with a pressure generating unit, it can be used to monitor the volume
change after a step in pressure.

Goldbach & Rehage [15] published bulk creep results on polystyrene using this method
already in 1967. We show some of their results in Fig. 3.3. They demonstrated that
their measurement was linear by a perfect superposition of the normalized volume
relaxation curves following different pressure jumps (top figure in Fig. 3.3).
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Figure 3.4 Data of Meng & Simon [20]. Left figure shows the time dependent pressure for
different temperatures. Right figure show the same data now shifted by some factor aT with
respect to a reference temperature to compile a master curve.

More recently, Meng et al [16, 20] published results using a similar technique which
is capable of controlling the static pressure up to 250MPa in addition to temperature.
They added a pressure gauge with a feedback mechanism to the working principle
described above and thus they were able to monitor the pressure relaxation following
a volume jump in polystyrene [20], i.e. bulk modulus relaxation instead of bulk creep
compliance. We show an example of their data in Fig. 3.4.

These techniques measures isothermal bulk modulus/compliance, because they measure
at fairly long times: the time interval reported by Meng & Simon is ∼ 300− 106s, and
slightly shorter for Goldbach & Rehage, ∼ 6 − 105s. Meng & Simon report bulk
relaxation in the MPa range.

Acoustic method

Variations in pressure are imposed on a sample contained in a small cavity by a com-
pression wave can be regarded hydrostatic in the cavity if the wavelength of the com-
pression wave is large compared to the size of the cavity (the quasi static limit). Such
a pressure wave can be generated by a piezo-electric plate.

Figure 3.5 illustrated the principle of a such an experimental geometry by Sane &
Knauss [19]. The sample is suspended in a liquid (an oil) inside a small cavity. Two
piezo electric plates on either side of the sample act as transmitter and receiver. An
oscillating field is applied to the transmitter creating pressure variations, and the re-
ceiver transducer detects the volume variations. The compliance of the suspension
liquid and the apparatus is calibrated without sample. The bulk compliance is subse-
quently determined through the ratio of the complex voltages of the two piezo-electric
discs.

Figure 3.6 shows the data of Sane & Knauss [19] on PVAc and PMMA, and we notice
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Figure 3.5 Principle of the “acoutic method” for measuring bulk compliance. A sample is
suspended in liquid inside a small cavity between two piezo-electric plates. One of the plates
acts as a transmitter generating a compression wave when a voltage is applied, and the other
as a receiver recording the induced volume variations. From [19].

Figure 3.6 Bulk compliance data of PVAc (left) and PMMA (right) obtained with the
“acoustic method”. From [19].
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Figure 3.7 Overview of the techniques discussed in the previous subsections. Where the
techniques operates in the time domain the time interval have been converted to a frequency
interval through the relation f = 1

2πt
. We have shown two representative examples of shear

measurements on molecular liquids found in the literature, Deegan et al [7] who measured
on tricresyl phosphate and squalane and Mandanici et al [8] who measured on m-toluidine.
Most shear measurements are carried out on commercial rheometers that typically cover 3-5
decades in frequency below 1kHz. Our own method (PSG) covers 7 decades from 1mHz
to 10kHz. There are three different types of bulk measurements with very little overlap in
frequency or temperature span. The PBG has a very broad dynamical range extending well
into the kHz region for the resonance mode (more details on the technique can be found in
chapter 4). The two other techniques are able to go to much higher temperatures than the
PBG and they can measure at elevated static pressures.

that the method is sensitive to inverse GPa which means that it is applicable to quite
hard materials. This method measures the adiabatic bulk compliance (compressibility).

3.1.4 Summary

Figure 3.7 gives an overview of the techniques for measuring bulk and shear properties
of viscous liquids and the range of frequencies that each technique covers. Where the
techniques operates in the time domain the time interval have been converted to a
frequency interval through the relation f = 1

2πt .

There are several different working principles for measuring shear properties of liquids
in the sub kHz region. Not many techniques can measure in the kHz region. Our
method (PSG) has a broad dynamical window covering seven decades in frequency
from 1mHz to 10kHz, i.e. into the kHz region. This is due to the small size of the
device pushing the natural resonance of the device to higher frequencies.

The greatest advantage of the PSG measurements over conventional rheological mea-
surements is that in the PSG the deformation of the measuring gauge is an integrated
part of the method. Other advantages include very small strains (approximately 10−6),
thus ensuring linearity in the measurements [1].
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In contrast to the abundance of shear mechanical methods we found only two differ-
ent methods of measuring the bulk mechanical properties, working at quite different
timescales. All reported data using these methods were on polymers, and it is ques-
tionable whether these two methods would be applicable to liquids that are fluid at
room temperature, where the loading of the sample is normally carried out.

Our method (the PBG) was developed to measure liquids with low Tg and is not suited
for measuring at temperature much above room temperature. Thus there is very little
overlap in the working range and applicability range of the existing bulk techniques.

3.2 Experimental overview of the thesis

3.2.1 Techniques and measurements

Low-frequency (i.e. from 1mHz to 10kHz-1MHz) measurements presented in this part
are performed at the experimental set-ups at IMFUFA described in detail by Igarashi
et al. [21, 22]. These set-ups include home-build cryostats with very good temperature
control; the temperature is stable within 10mK with a calibration error of ±0.1K in
the working range of the cryostat (∼ 95-300K) [21].

Mechanical measurements were performed with the piezo-electric shear gauge (PSG) [1]
and the piezo-electric bulk gauge (PBG) [2] developed by Tage Christensen and Niels
Boye Olsen in our group as well as a newly developed device which is a modification of
the PSG. The transducers were designed for measuring high moduli relaxation in glass-
forming liquids near Tg and both rely on the piezo-electric effect, i.e. the conversion of
a electric input to a mechanical output (and vice versa).

Dielectric measurements were performed with a multi-layer, gold coated disc capacitor
with a capacitance of approximately 20pF (also made in-house), that fits in the same
cryostats as the mechanical measuring cells.

In table 3.2 we have listed the measurements that exist on the chosen liquids. In this
table an ’X’ means that the measurement were performed for this study, ’o’ means
the measurement has been carried out in another connection, ’%’ means data for this
measurement do not exist, and the superscripts mark in which cryostat(s) the measure-
ment was taken (’c’ stands for cryostat and the digit refers to our internal numbering
of set-ups). When this is not provided the information is not available.

This last point is important because there are minor differences in the absolute tem-
perature calibration and the data acquisition equipment between the set-ups. This
means that a measurement may be completely reproducible in one cryostat, but minor
deviations occur when the measurement is moved to a different cryostat. The data
produced for this work were obtained in two different cryostats: CRYO 3 which is ni-
trogen cooled cryostat and CRYO 5 which is a closed cycle pump cryostat. Appendix
B for documents the temperature stability of the two set-ups and a discusses of how
to compare measurements from the two.
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Name Abbreviation Tg mA

Tetraphenyltetramethyltrisiloxane DC704 210K 82
5-phenyl-4-ether PPE 245K 81
Dibuthylphtalate DBP 177K 68
Pentaphenyltrimethyltrisiloxane DC705 230K 77
Diethylphtalate DEP 185K 70
1,2-propanediol PG 165K 40

Table 3.1 The table shows some relevant information on the liquids used in this study.
The glass transition temperatures in this table is determined as the temperature where
the dielectric loss peak is at 1mHz (corresponding roughly to the standard definition of Tg
through the equation τ(Tg) = 100s). mA is the fragility index (see Eq. (2.6)). The value
reported here is also based on the dielectric loss peak frequencies.

Bulk Shear Longitudinal Dielectric Heat-capacity Expansion
DC704 Xc5 Xc5 Xc3 oc5 oc5 oc8
PPE Xc5 Xc3,c5 Xc3 Xc3,c5 oc5 %
DEP % Xc5 Xc3 o % %
DBP o o Xc3 o % %
DC705 o o Xc3 o % %
PG o o Xc5 o % %

Table 3.2 In the table we have listed which measurements were performed on which liquids
(more information about the liquids can be found in table 3.1 and Fig. 3.8). X means the
measurement was carried out for this thesis, o means that measurements exists (but made by
others in the group), and % means that this measurement has not been carried out yet. The
superscript indicates which cryostat(s), the measurements were performed: c3 for cryostat 3
(CRYO 3), c5 for cryostat 5 (CRYO 5). Where nothing is indicated the information was lost.

3.2.2 Liquids

All the liquids in this study are organic molecular liquids with relatively low glass
transition temperatures. This type of liquid is well-suited for our experimental set-
ups. Table 3.1 lists the liquids used in this study, the abbreviations used, and some
characteristic quantities. Figure 3.8 gives the molecular structures, chemical formulas
and molecular weights.

The choice of liquids is mostly a choice of convenience. For the bulk measurement it is
crucial that the liquid never crystallizes during the measurement since a crystallization
will destroy the measuring cell. Thus we had to choose some liquids that were extremely
good glass-formers. Since I had already started measuring on DC704 during my stay
with the Nelson group it was natural to continue with this liquid for the collaborative
project of compiling a broadband mechanical spectrum. DEP and PPE were both
chosen based on the signal strength of the high frequency (ISS) shear signal, and the
rest of the list is chosen based on availability of other in-house measurements (shear
and bulk modulus, dielectric, heat-capacity or preferably all).
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Si

Si

SiO

O

1,3,3,5-tetramethyl-1,1,5,5-tetraphenyltrisiloxane

Chemical Formula: C28H32O2Si3

Molecular Weight: 484,81

(a) DC704

Si

O

Si

O

Si

1,3,5-trimethyl-1,1,3,5,5-pentaphenyltrisiloxane

Chemical Formula: C33H34O2Si3

Molecular Weight: 546,88

(b) DC705

O

O O

O

1,3-bis(4-phenoxyphenoxy)benzene

Chemical Formula: C30H22O4

Molecular Weight: 446,49

(c) PPE

O

O

O

O

diethyl phthalate

Chemical Formula: C12H14O4

Molecular Weight: 222,24

(d) DEP

O

O

O

O

dibutyl phthalate

Chemical Formula: C16H22O4

Molecular Weight: 278,34

(e) DBP

OH

OH

propane-1,2-diol

Chemical Formula: C3H8O2

Molecular Weight: 76,09

(f) PG

Figure 3.8 Molecular structures of the liquids used as well as IUPAC names, chemical formulas
and molecular weights. In the case of DC704 and DC705 different isoforms of the molecule
exists.

Obviously, the chosen liquids do not represent a very broad range of Tg’s or fragilities.
But this study was not intended to be a broad study of mechanical relaxation behavior
of liquids, but an in-depth and thorough investigation of a few liquids, the main focus
being primarily on DC704 and PPE due to the collaboration with the Nelson group.
We do thus not see this as a problem. For future measurements and investigations,
however, a more systematic approach for choosing liquids would probably be desirable.
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The bulk modulus measurement is in some regards the simplest of the three mechanical
measurements. The geometry of the measuring cell makes the modeling relatively
simple and the results are easy to interpret. At the same time this measurement is
extremely cumbersome, lengthy, and sometimes frustrating.

In this chapter we will go over the method in detail from the measurement protocol
over the conversion from a measured capacitance to a bulk modulus to results and error
estimates. This is mainly because although only little documentation of the method
exists. In particular, there no analysis of errors and reproducibilities have been given
before.

4.1 The bulk transducer

A schematic drawing of the bulk transducer is shown in Fig. 4.1. It consists of a
spherical shell of a piezo electric ceramic material polarized in the radial direction. The
shell is covered by an electrode material both on the inside and the outside. Applying
an electric field to the capacitor that these electrodes constitute will deform (expand
or contract depending on the direction of the field) the ceramic and effectively change
the inner volume of the sphere. A liquid inside the shell will oppose this deformation

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Piezo-electric ceramic

Electrodes

Liquid

Figure 4.1 Schematic drawing of the bulk transducer. When an electric field is applied the
ceramic material between the electrodes contract or expand, which effectively changes the
internal volume.

and thus change the measured capacitance. The difference in capacitance between the
empty (and freely moving) shell and the partially clamped shell can be related to the
bulk modulus of the liquid. The geometry is exactly what makes it a bulk modulus
gauge; the deformation is radial and thus a pure volume change with no shearing of
the liquid. However, as the analysis of forced vibrations in a visco-elastic sphere below
shows, this is only true in the low frequency region of the measurement.

31
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Figure 4.2 A photograph of the bulk-transducer. It is mounted on a special foot and attached
to the holder. The holder is 2.5cm in diameter, and the piezo-ceramic shell is 1.9cm in
diameter.

In order to be able to fill the PSG with liquid a hole is drilled in the shell. The hole
breaks the symmetry and can of course not be too big. A pipe is attached over the hole
drilled in the shell. Filling this pipe as well as the shell allows the liquid to “suck” in
extra liquid when liquid contracts during cooling. Thus the liquid volume is assumed
to be constant in this experiment.

In Fig. 4.2 we show a photo of the bulk-transducer mounted on a foot that fits in the
cryostat holder.

4.2 Measurement protocol

The properties of the ceramic that constitute the measuring cells are both temperature
dependent and dependent on the thermal history; the ceramic is “aging”. It is thus
necessary to do all measurements twice: once with liquid in the cell, and once without
liquid (the “reference”). This means repeating the entire measurement, i.e. the com-
plete thermal cycle including waiting times for equilibration of the liquid. In addition
we found that starting the measurement by heating the cell slightly for ∼10-20 hours
to “erase” the memory of the ceramic, increased the reproducibility. In the case of the
bulk measurement the initial heat treatment was at 315K, which about the limit of
what the cryostat can do.

With the PBG we are also hindered by the flow-time through the drilled hole. This has
several implications that we will return to below. For now it suffices to say that it is
necessary to make the temperature cycle symmetric (at least up to a certain viscosity),
i.e. give the liquid the same time to flow out of the sphere when heating as it spent
flowing in during cooling. Otherwise we ultimately risk a cracking of the cell due to
rapid (compared to flow-time) thermal expansion of the liquid inside. As a result,
bulk modulus measurements are quite lengthy if we want to measure close to the glass
transition (which is what we normally want).
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It is also important to be careful when choosing which temperatures to measure. We
can not go too close to the glass transition, as we risk that cooling too much will cause
the liquid to “crack” and destroy the cell in the process. If the sample is not too well
known it is recommended to do a heating rate analysis to determine glass transition
temperature and also to see how the liquid handles the thermal cycling, if it cracks too
easily or crystallizes it should probably not be used in the bulk modulus measurement.

Even extending the waiting times and measuring times may not be a solution, because
if we heat the sample too slowly, we risk crystallization of the liquid during the heating.

In table 4.1 we show an example of a measurement cycle for DC704 (the one used
for the latest measurement). At all temperatures a logarithmic scan in frequency is
performed from between 0.001Hz and 0.1Hz (depending on temperature and thus where
the interesting dynamics is taking place) through 1MHz is performed, as well as a scan
that is linear in frequency starting at 0.5-1kHz. Column one gives the temperature,
column two the waiting time at that temperature, column three states the approximate
time the measurement takes, column four gives the number of times the measurement
was repeated, and the last column gives the total time spent at each temperature. In
the bottom the total time of the entire cycle.

Here we have repeated the measurements at the lowest temperatures to check if the
liquid had reached equilibrium. If equilibrium was not established before the first
measurement, the repeated measurement will not reproduce the first. In principle
this is always a good idea, and should perhaps be included in future protocols for all
temperatures.

While this is certainly time consuming in terms of measuring time, it does not require
constant monitoring, since the temperature control, the switching between different
voltmeters, the saving of data, etc., is completely automated and controlled via MatLab
routines.

4.2.1 Filling the cell

The cell was filled via a syringe with a needle long enough to go through the tube and
half way down in the cell. The filling has to be done very slowly; how slowly depends
on the viscosity of the liquid at ambient temperature.

In practice this was always done in a low-tech automated way: the syringe was fixed
in position in the PBG and weights were added on top to force the piston down. This
way the filling speed could be controlled by the amount of weight added to the piston.

If the cell is filled too quickly, air bubbles can form inside and sometimes get stuck
inside the cell (especially if the liquid is viscous at ambient conditions). These air
bubbles will show up in the spectrum as small extra resonances. If a bubble gets stuck
inside (this is only revealed through a measurement) it is sometimes necessary to empty
the cell and start over, but sometimes it can be “gassed out” by heating the cell over
a period of time (usually a couple of days).
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Temp (K) twait (hrs) tmeasure (hrs) repeat ttotal (hrs)
315 10 10. 1x 20.
310 2 0.1 1x 2.1
305 2 0.1 1x 2.1
300 2 0.1 1x 2.1
295 2 0.1 1x 2.1
290 2 0.1 1x 2.1
285 2 0.1 1x 2.1
280 2 0.1 1x 2.1
275 2 0.1 1x 2.1
270 2 0.1 1x 2.1
265 2 0.1 1x 2.1
260 2 0.1 1x 2.1
255 2 0.1 1x 2.1
250 2 0.1 1x 2.1
245 2 0.1 1x 2.1
242 2 0.1 1x 2.1
240 2 0.1 1x 2.1
238 2 1. 1x 3.
236 2 1. 1x 3.
234 2 1. 1x 3.
232 2 1. 1x 3.
230 2 1. 1x 3.
228 2 1. 1x 3.
226 2 1. 1x 3.
224 2 1. 1x 3.
222 2 10. 1x 12.
220 2 10. 1x 12.
218 2 10. 2x 22.
216 2 10. 2x 22.
214 2 10. 2x 22.
216 2 10. 2x 22.
218 2 10. 2x 22.
220 2 10. 1x 12.
222 2 10. 1x 12.
224 2 1. 1x 3.
226 2 1. 1x 3.
228 2 1. 1x 3.
230 2 1. 1x 3.
232 2 1. 1x 3.
240 2 0.1 1x 2.1
295 2 0.1 1x 2.1

Total . 254.8

Table 4.1 Example of a measurement protocol (for the latest measurement on DC704). In
total this protocol takes approximately 255 hours ' 10.6 days. This cycle must be performed
for the liquid-filled cell as well as the empty cell.
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Figure 4.3 Example of (the real part of) raw data of an empty (left) and a liquid filled bulk
transducer (right). In the spectrum of the empty transducer we see the first resonance of the
shell. The “thickness” resonances are out of the frequency window of this technique. In the
liquid-filled spectrum (right) we have a few more features: the first “resonance” is due to
liquid flowing though the hole drilled in the shell, second (big) resonance is the first resonance
of the combined shell+liquid system, the higher resonances correspond to standing waves in
the liquid.

4.3 Raw data

In Fig. 4.3 we show an example of a logarithmic scan of an empty as well as liquid-filled
bulk transducer at room temperature.

In the figure we have plotted the real part of the measured capacitance. The spectrum
of the empty transducer contains one resonance at (around 100kHz); the overtones are
out of the frequency window of this technique. The first resonance in the liquid-filled
spectrum (around 5kHz) is due to the liquid flowing in the hole, the second (slightly
below 100kHz) is a mixture of the first mechanical resonance of the transducer and the
liquid. The additional resonances above this are standing waves in the liquid.

It is these features that we should capture when we model the system.

4.4 Model of the PBG

If the thickness of the ceramic shell is assumed to be vanishing we can model the bulk
transducer by an electrical circuit. The model presented here is completely equivalent
to the model derived by Christensen and Olsen [2], even though they did not explicitly
state the electrical circuit model for the PBG.

Fig. 4.4 shows the electrical circuit equivalent diagram of the piezo ceramic shell that
illustrates how we model the bulk transducer. The model has an electrical side (left)
that models the electrical input, the capacitor models the electrodes of the shell. On
the right side the mechanical properties of the ceramic is modelled and the conversion
from electrical to mechanical energy happens through the transducer element. On
the mechanical side the capacitor models the elastic properties of the ceramic, the
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Figure 4.4 Model of the bulktransducer. The electrical part (the capacitor) models the
electrodes on the piezo-ceramic shell, the transformer models the conversion from electric
displacement (charge) to deformation (volume change) in the ceramic. The RCL series models
the mechanical properties of the pz shell itself. For the empty tranducer the mechanical part
is short-circuited (i.e. free to move), while a filled transducer will add an extra element (black
box) in series with the RCL series.

inductance models the mass (or inertance), and the resistor models the friction (loss
due to heating of the ceramic). Seen from the electrical side, the mechanical and
electrical side are connected in parallel. This results from a consideration of limits:
at high frequencies where the ceramic is mechanically clamped there is still charge on
electrodes, thus the electrical capacitor can not be in series with the mechanical side.
The mechanical elements are connected in series because they are all subjected to the
same volume change (the mechanical equivalent of charge).

With this electrical circuit established it is easy to construct the mathematical ex-
pression that gives the measured capacitance (admittance in parallel are added, while
impedances in series are added) for the empty transducer

Cemp
m (ω) = C1 + T 2 1

1
C2

+ iωR− ω2L
. (4.1)

In the high frequency limit (ω →∞) of this model the resistor and inductor terms will
grow effectively blocking the current. This correspond to a mechanical clamping of the
ceramic shell and thus we define

Ccl = C1. (4.2)

In the low frequency limit (ω → 0) these two terms vanish. Mechanically this corre-
sponds to the ceramic shell moving freely (without resistance). We define

Cfr = C1 + T 2C2. (4.3)

We will rewrite this Eq. 4.1 with some more familiar and recognizable quantities,

Cemp
m (ω) = Ccl +

Cfr − Ccl

1 + i ωω0

1
Q −

(
ω
ω0

)2 (4.4)

where ω0 =
√

1
LC2

is the resonance frequency, and Q = 1
R

√
L
C2

is the quality factor.
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Figure 4.5 Spectrum of the empty transducer at 315K (circles) and the fitted model (full
line). The model fits the data well. The “jitter” on the high frequency side of the resonance
is probably some extra resonance modes due to a slightly imperfect spherical geometry.

From fitting this expression to the spectrum of the empty capacitor we can determine
the 4 quantities: Cfr, Ccl, Q, and ω0. An example of the fit is shown in Fig. 4.5 and
the model (full line) fits the data (circles) very well.

According to our model, the measured capacitance for the liquid-filled transducer is

C liq
m (ω) = Ccl +

Cfr − Ccl

1 + i ωω0

1
Q −

(
ω
ω0

)2

+ C2

Cliq

(4.5)

i.e. in order to de-convolve the stiffness of the liquid we need to determine C2. With
only four fitted parameters and five in the model we need to determine the fifth by
another method. Luckily, the inductance L can be determined by measuring dimension
and weight of the transducer. For simplicity we will define the dimensionless measured
capacitance

F =
C liq
m (ω)− Ccl

Cfr − Ccl
, (4.6)

And finally the stiffness of the liquid (inverse of the capacitance) can be expressed in
terms of the four fitted parameters and L

Sliq(ω) =
1

Cliq(ω)
= Lω2

0

{
1

F
− 1− i ω

ω0

1

Q
+

(
ω

ω0

)2
}
. (4.7)

4.4.1 Dispersion in the ceramics

As we can see in the logarithmic scan shown in Fig. 4.6 the measured “free” capacitance
is not a constant, it increases with decreasing frequency. This is due to dispersion in
the dielectric constant of the ceramics, and for the modelling this represents a problems
because we do not know the functional form of the dispersion. This will also influence
the “clamped” capacitance. Two assumptions can compensate for that.
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Figure 4.6 Measured capacitance of liquid-filled the bulk transducer (symbols) and the empty
reference (lines). Different colors correspond to different temperatures. There is almost
perfect overlap at low frequencies of the empty and liquid-filled spectrum, which is one of the
central requirements for the method to work.

We have that
Cfr = Cfr(ω), Ccl = Ccl(ω). (4.8)

If we now assume that the frequency-dependence of Cfr and Ccl is the same, i.e.

Cfr(ω) = C∗frf(ω), Ccl(ω) = C∗clf(ω) (4.9)

then the ratio of the two is constant. This results in the following

F (ω) =
C liq
m (ω)/Cfr(ω)− C∗cl/C∗fr

1− C∗cl/C∗fr
(4.10)

This assumption may seem somewhat ad hoc, but will be considered justified if it leads
to frequency independent plateau values of the bulk modulus.

But we still do not know what the frequency dependence of Cfr is and thus we need the
second assumption, namely that the frequency dependence of Cfr is the same in the
empty Cemp

m and the liquid-filled measurement C liq
m . In contrast to the first assumption,

this assumption is easily justified by inspecting the plots in Fig. 4.6. Indeed the two
curves overlap in the low frequency region at all temperatures.

Omitting the ∗-superscripts, we end up with the following expression for the stiffness
of the liquid

Sliq(ω) = Lω2
0

{
1− Ccl/Cfr

C liq
m (ω)/Cemp

m (ω)− Ccl/Cfr
− 1− i ω

ω0

1

Q
+

(
ω

ω0

)}
(4.11)
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4.4.2 Determining inertance L

L is the constant of proportionality between the (generalized) voltage and charge accel-
eration, which expressed in mechanical variables is pressure difference δp and volume
acceleration δV̈

δp = LδV̈ . (4.12)

L is a constant connected to the specific bulk transducer and should be temperature
independent. This means we only need to determine this number once for each bulk
transducer.

Expressing δp as a force pr. unit area, this force will be given by mass times accelera-
tion, i.e. δp = mür/A. Since the displacement is small we can approximate the change
in volume by δV ≈ Aur. In total we get the following

L =
δp

δV̈
≈ üm/A

Aü
=

m

A2
. (4.13)

An estimate of the mass of the piezo ceramic shell can be found by weighting the bulk
transducer and subtracting the mass of the attached pipe. For the surface area we need
to be a little more careful: the model of the PBG assumes vanishing thickness of pz
shell, but this is of course just an approximation. Thus we should find an “effective”
surface area which will be between the outer and inner surface of the shell. Assuming
an average of the two will provide us with a good estimate of L.

We can however see from Eq. (4.11) that ultimately the numerical value of this number
is quite crucial for the absolute values of the liquid stiffness determined through this
model.

Fitting the resonances (see section 4.7.1) at a high temperature (where we can assume
the a vanishing shear modulus, G = 0) varying L and the bulk modulus, K, we can
optimize the estimate of L. Repeating the procedure for different liquids in the same
bulk transducer provides us with an estimate of the error on the fitted values. The
fitted values of L for the transducers used here can be found in table 4.2.

PBG P1 P3 14
L
[
103 kg

m4

]
3.8±0.15 3.5±0.1 4.2±+0.1

Table 4.2 Values of L for the bulk transducers used.

4.4.3 Modelling flow through the hole

At high frequencies the hole is essentially closed because the liquid does not have time
to flow in and out during one frequency cycle. In that case we can consider the liquid
inside a perfect spherical “ball”.

At high temperatures (far above Tg) the liquid flowing in the hole is a real resonance,
but as the temperature is lowered this resonance gets damped due to the increase in
viscosity. When the resonance gets critically damped it will move down in frequency
upon further cooling. In Fig. 4.7 this is shown for DC704.
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Figure 4.7 The measured capacitance of DC704. At high temperatures the liquid flowing in
and out of the drilled hole gives rise to a resonance. When the temperature is lowered this
resonance gets damped because the viscosity of the liquid increases.

At low enough frequencies (the definition of low of course depends on the temperature
and viscosity of the liquid) the liquid will be able to flow out of the hole drilled in the
ceramic shell. This flow can be assumed inertia free since it is extremely slow and can
thus be modelled as a Poiseuille flow. A Poiseuille flow describes the laminar flow of
fluid in a pipe with radius a and length l (l > a) with a no-slip boundary condition at
the walls of the pipe.

For a Poiseuille flow the volume flow is given by the following expression (for a deriva-
tion see e.g. [23])

V̇ =
πa4δp

8ηl
(4.14)

where η the (shear) viscosity, V̇ is the volume flow-rate, δp is the pressure difference
across the “pipe”.

In the framework of the electrical network model this flow can be added as a resistor in
parallel with the liquid, since it is subjected to the same pressure difference. (Here we
will ignore the mass since the flow is so slow that inertial effects are vanishing). This
is illustrated in Fig. 4.8.

From equation (4.14) we obtain an expression for this resistor which is basically the
shear viscosity times a geometric factor

Rh =
δp

V̇
=

8l

πa4
ηshear. (4.15)

which we will use later (in chapter 7).
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Figure 4.8 The electrical network model of the PBG with an extra element added (compare
Fig. 4.4) to model the flow through the hole.

We determine Rh through the mechanical impedance of the measured signal (Z̃ =
1/iωJ̃ = 1/iωCm). The impedance of the signal coming from the liquid is given by

Z̃ =
1

1/Rh + iωCliq
= Rh

1

1 + iωτ
(4.16)

where τ = RhCliq. The flow through the hole is thus described by a pure exponential,
and plotting the imaginary part versus the real part will describe a semi-circle with R
as the high frequency foot point. An example of this is shown in Fig. 4.9, where the
red circles are data points and the black dashed line shows the exponential fit. Because
the data trace out a semi-circle, Rh can also be found as twice the value of Z ′ at the
top point

Rh = 2Z ′(ωmax) (4.17)

which is easy to determine.
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Figure 4.9 Determining the flow resistance (Rh) from the “breathing mode”. The mechanical
impedance of DC704 at 232K is shown in red symbols, the black dashed line shows a Debye
process, and the arrows show how R can be determined.

Now we can subtract this contribution from the signal to extend the frequency range
of signal from the liquid. The final expression for the stiffness of the liquid measured
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is

Sliq(ω) =





[
Lω2

0

(
1

F
− 1− i ω

ω0

1

Q
+

(
ω

ω0

)2
)]−1

− 1

iωRh





−1

. (4.18)

based on the model in Fig. 4.8.

4.5 Stiffness of a visco-elastic sphere

What remains to be determined is an expression for the stiffness of isotropic sphere of
liquid that we can insert in the model developed above. The stiffness in the mechanical
variables is given by change in pressure divided by the change in volume

S =
δp

δV
. (4.19)

The change in pressure in our case where the displacement is purely radial, is the
radial stress at the surface σrr(r0) and the change in volume for small displacement
amplitudes u0 is simply the surface of the sphere times the displacement

δV = 4πr2
0u0 . (4.20)

Thus to determine the stiffness we must solve the equations of motion for the sphere
to determine the displacement and the stress. Below we will sketch the crucial steps in
this derivation. The reader who is not interested in the details of the derivation may
skip this and go directly to the solution (which is also given by Christensen & Olsen
in [24]) in Eq. (4.31).

The general equation of motion for an isotropic medium is given by Landau & Lifshitz
[6, p. 87]

(K + 4/3G)∇(∇ · u)−G∇×∇× u = ρü (4.21)
where u is the displacement field, ρ is the density, and K and G are the bulk and shear
moduli. In our case, the K is the adiabatic Ks as long as the heat diffusion length
lD ≡

√
D
iω is larger than the sample dimension (i.e. the radius of the sphere). For

liquids D is on the order of 10−7 m2

s . The frequency window in the measurement is
10−3 − 104Hz which gives 2.8mm < lD < 9.0 · 10−4mm. The inner radius of the pz
shell is 9mm and thus we are in the adiabatic region for all frequencies.

Assuming a harmonically varying input and using the fact that in our case the dis-
placement is purely radial the displacement field can simply be written

u = ure
iωt (4.22)

and Eq. (4.21) reduces to

∂

∂r

(
1

r2

∂

∂r

(
r2ur

))
= −ω

2ρ

Ms
ur , (4.23)

where Ms = Ks + 4/3G is the (adiabatic) longitudinal modulus.

The boundary conditions of is zero displacement at the center of the sphere and a fixed
amplitude at the surface

ur(0) = 0, ur(r0) = u0. (4.24)
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If we define k2 = ω2ρ
M the general solution to Eq. 4.23 is given by

ur(r) = c1
∂

∂r

eikr

r
+ c2

∂

∂r

e−ikr

r
(4.25)

where the first boundary condition gives c1 = −c2 =: c. Thus we can write the solution
in the following way

ur(r) = c
∂

∂r

(
eikr − e−ikr

r

)
= c

∂

∂r

(
2i sin(kr)

r

)

= 2ick2 kr cos(kr)− sin(kr)

(kr)2

(4.26)

The second boundary condition gives c = u0

2ik2
(kr0)2

2(r0 cos(kr0)−sin(kr0)) .

The stiffness of is given by
S =

δpr
δV

=
−σrr(r0)

4πr2
0u0

. (4.27)

where σrr is the radial stress. The radial stress can be expressed in terms of the
displacement field through the stress-strain relations for an isotropic medium [6, p. 11]

σij −
1

3
σkkδij = 2G

(
εij −

1

3
εkkδij

)
,

σii = 3Kεii

(4.28)

Since the displacement is purely radial we have the diagonal elements of the strain
tensor in spherical coordinates are simple

εrr =
∂ur
∂r

, εθθ = εφφ =
ur
r

(4.29)

Combining Eq. (4.28) and (4.29) it can be shown that

σrr = −Ms
∂ur
∂r
− (3Ks −Ms)

ur
r
. (4.30)

Substituting the expression for the radial displacement field (Eq. (4.26)) in Eq. (4.30),
then by the definition of stiffness (Eq. (4.27)) we finally arrive at the following expres-
sion for the stiffness of an isotropic viscoelastic sphere

Sliq(ω) =
1

V

[
Ks −Ms

(
1 +

1

3

(kr0)2 sin(kr0)

(kr0) cos(kr0)− sin(kr0)

)]
. (4.31)

4.5.1 Quasi-static region

At low frequencies, ω −→ 0, we obtain by using the l’Hôpital rule (for simplicity we
define x =

√
ρ/Msωr and then x→ 0 is equivalent to ω −→ 0)

lim
x→0

x2 sinx

x cosx− sinx
= lim
x→0

2 sinx+ 4x cosx− x2 sinx

− sinx− x cosx

= lim
x→0

6 cosx+ 6x sinx− x2 cosx

−2 cosx+ x sinx

=
6

−2
= −3

(4.32)
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which means that eq. 4.31 reduces to

S(ω) =
1

V
K (4.33)

at sufficiently low frequencies. This we will called the quasi-static region. At these
frequencies the stiffness element in the model is directly proportional to the bulk mod-
ulus.

A correction for moderately high frequencies, i.e. towards the end of the quasi-static re-
gion just before the first resonance of the system can be obtained by a Taylor-expansion
to the first order of the

x2 sinx

x cosx− sinx
≈ 1

5
x2 − 3 (4.34)

which
Sliq(ω) =

1

V

{
Ks −

1

15
ρω2r2

0

}
(4.35)

This correction was implemented in the inversion procedure, but it makes very little
difference, thus confirming that quasi-static assumption is indeed valid.

4.5.2 Resonance region

At higher frequencies the stiffness becomes a mixture of the bulk modulus and the
longitudinal modulus (Ms). Equation (4.31) can be used to determine the mixed
modulus at the discrete resonance frequencies.

At high temperatures and low viscosities G = 0 and Ms = Ms0 = Ks0 eq. 4.31 reduces
to

S(ω) = −K0

3V

(kr0)2 sin(kr0)

(kr0) cos(kr0)− sin(kr0)
(4.36)

i.e. there is essentially no loss (imaginary part of the modulus is vanishing).

At lower temperatures these approximations are not valid in general and we have used
the full expression from Eq. (4.31) where both Ks and Ms are now complex and
frequency dependent.

4.6 Data obtained with the quasi-static method

In Fig. 4.10 we show real and imaginary part of the bulk modulus of DC704 and PPE
for a range of temperatures close to Tg determined by the quasi-static method.

It is evident that we encounter noise problems in the low-temperature and low-frequency
end of the spectrum; more obvious in the imaginary part because the absolute levels are
lower than the real part and worse for PPE than for DC704. We do currently not have
a good explanation for this, but it seems to be connected to this particular method
and is not seen in other measurements that are performed with the same experimen-
tal set-up (except maybe the longitudinal measurement, see chapter 6). We are thus
guessing that it may have some mechanical origin that has to do with the particular
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shape and size of the PBG. The noise around 50-100Hz is the electrical power network
coupling into the electronics.

In general the noise level in this measurement is quite high compared to i.e. dielectric
measurements and the shear measurement made in-house, but not compared to other
mechanical measurements in the literature. In general the noise level in all our ca-
pacitance measurements is roughly the same, but the signal compared to background
varies. In chapter 6 (section 6.3) we compare the raw signal (the measured capacitance)
in the three mechanical measurements.

In the PPE the Ks0 and K∞ levels are slightly slanted instead of completely flat. This
is an artifact of the data treatment and reflects the fact that the liquid measurement
and the reference measurement may not have had a perfect low-frequency overlap, i.e.
the assumption C liq

fr (ω → 0) = Cemp
fr (ω → 0) was not entirely obeyed in this case. But

it is very small effect.

The slight up-turn at towards the highest frequencies in the window is also an artifact
of the data treatment. The presence of liquid shifts the position of the first mechan-
ical resonance slightly down in frequency and thus C liq

m (ω) starts to curve when the
resonance frequency is approached while Cemp

m (ω) is still relatively flat. We should in
principle be able to correct for that, which will be part of an ongoing refinement of the
data treatment procedure.

4.7 Data obtained with the resonance method

In section 4.5.2 it was sketched how we can determine M0 = K0 at high temperatures
from the resonances using Eq. (4.36). To extend the temperature region of this method
some, we can introduce the complex modulus

Ks = K ′ + iωηK (4.37)

where K and ηK are real constants. ηK is the bulk viscosity (in some texts it is
referred to as the volume viscosity e.g. in [3]) and is different from the more familiar
shear viscosity. This will then work for temperatures where the imaginary part is non-
zero, but η constant, i.e. as long as we are on the low frequency side of the alpha
relaxation at the given temperature. We will refer to this as Model 1.

When the temperature is lowered we should in principle use the full expression in Eq.
(4.31), since the shear modulus will start to be of significance. The resonance spectrum
does however not hold enough information to extract the full frequency dependence of
the both bulk and longitudinal moduli. If we still assume to be on the low frequency
side of the alpha relaxation, we can write

Ms = M ′ + iωηM (4.38)

in analogy with Eq. (4.37). If we in addition assume that the relaxation of the shear
modulus is faster, i.e. occurs at higher frequencies compared to the bulk modulus at
the same temperature (at least for the liquids studied here this is definitely the case
which is shown in chapter 7) we have

Ks = K0. (4.39)
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Figure 4.10 Real and imaginary part of the bulk modulus of DC704 and PPE for a range
of temperatures close to Tg. It is evident that we encounter noise problems in the low-
temperature and low-frequency end of the spectrum (clearly seen in the imaginary part
because the absolute levels are lower than the real part), but we do currently not have a good
explanation for this. The noise around 50-100Hz is probably the electrical power network
coupling into the electronics of the set-up.
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Figure 4.11 Examples of fits to the resonances of PPE with Eq. (4.31) and model assumptions,
see section 4.7 for details. The data is shown as blue dots and the model fit in green dashed
line (Model 1) and red dashed line (Model 2). Lowest curve is at actual measured values for
the capacitance, other curves are shifted for clarity. The models give very good fits to the
data, although sometimes overestimating the viscosity.

This gives 3 fitting (real) parameters: K0, M ′(= K0 + 4/3G′) and ηM . We refer to
this as Model 2.

It should be noted that the interpretation of the viscosity in Model 1 and 2 is not quite
the same. In Model 1 the viscosity must be interpreted as a bulk viscosity, while in
Model 2 the longitudinal viscosity, ηM = ηK + 4/3ηK , enters.

Figure 4.11 shows examples of fits of data to Model 1 (in green) and Model 2 (in red).
We observe that the resonances move a little bit up in frequency as the temperature is
lowered and at the same time they get more and more damped. There is near perfect
overlap of the model curve and data points, which gives credibility to the assumptions in
the model. Fits of data using Model 1 gives nearly identical curves for the temperatures
shown here, at lower temperatures the models give visibly different fits.

The low frequency limiting modulus obtained in the quasi-static method can be com-
pared to the values obtained by the resonance method. The two methods are indepen-
dent ways of determining the temperature dependence of K0. In figure 4.12 the bulk
modulus at fixed frequencies determined through the quasi static method is plotted
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Figure 4.12 Combining results from quasi-static method with result from the resonance
method. The bulk modulus data obtained with the quasi static method are plotted as a
function of temperature for selected frequencies (colored triangles, each color correspond to
a different frequency), the fitted K′ of Model 1 (black circles) and the fitted K0 (red circles)
and M ′ (red crosses) of Model 2. All results agree well for PPE. In DC704 there is excellent
agreement between the quasi static results and the fitted results of Model 1, while Model 2
gives a less perfect match.

as a function of temperature (each color correspond to a frequency) as well as K ′ of
Model 1 andM ′ and K0 of Model 2. The result from the two methods match up almost
perfectly (see however section 4.8 and Fig. 4.14).

4.7.1 Resonance method - the simple way

In [2] a somewhat simpler way of using the resonances to determine M is mentioned.
We include this here for comparison.

The resonances of a viscoelastic sphere occurs when the denominator in Eq. 4.31 is
zero, i.e. whenever

tanx = x (4.40)

where again x =
√
ρ/Msωr.

These resonances are moved due to the mechanical coupling to the PBG but this is only
for important for the lowest lying resonances. If Eq. 4.40 is solved graphically we see
that for sufficiently high x, the solution is simply where cosx = 0, i.e. for x = π

2 ,
3π
2 ,

5π
2

ect. We have
tanx = x⇒ x =

1 + 2n

2
π, for n high (4.41)

where n is an integer. Thus for the resonance frequency ωn, where n ≥ 3, the longitu-
dinal modulus is to a good approximation given by

M ≈
(

2

π(2n− 1)

)2

ρω2
nr

2 =
16

(2n− 1)2
ρν2
nr

2 (4.42)

where νn = 2πωn is the nth resonance frequency in Hz.
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4.8 Reproducibility

The reproducibility of these measurements is a matter of some debate. In the master
thesis of Jakobsen & Niss [25] the issue was discussed for the shear modulus measure-
ment, and they concluded that the shapes and peak positions reproduced very well,
but their very conservative estimate on the errorbars on the absolute numbers based
on repeated measurements was as large as ±50%.

4.8.1 Reproducibility of the quasi-static measurement

To arrive at “perfect conditions” for the quasi-static measurement we have repeated the
measurement several times, and the results presented in Fig. 4.10 represents the final
iteration. Some measurements have been discarded even before the data treatment
procedure started, because it was simply impossible to get a liquid and a reference
measurement to match.

Figure 4.13 show three different measurement series on each of the liquids. In the case
of PPE, two of the measurements were carried out in the same transducer and the same
cryostat (black and red curves) while the last measurement (in blue) was taken with a
different transducer in a different cryostat. For DC704, the red and black curves are
measurements in the same cryostat, but with different transducers, and the blue curves
are an old measurement (by Niels Boye Olsen) with a shorter frequency range. In all
cases there is reasonable agreement between the different measurements, although the
reproduction is not near perfect.

A few comment should be made in this connection:

In the case of PPE, we have measured on two different bottles of the chemical, which
actually makes small difference in peak positions and shape of the relaxation. The
newest measurement (presented in Fig. 4.10) is the same bottle that was used for
measuring heat capacity (see chapter 7). The actual reproducibility for the same bottle
of chemical may thus be slightly better than what is inferred from Fig. 4.13(b).

The reproducibility increased enormously with the fabrication of new bulk transducers
(by our very competent workshop). The first many tries with measuring bulk modulus
on DC704 with old transducers amounted to only one usable match of reference and
liquid measurement (the black curves of Fig. 4.13(a)). It is likely that a repeated
measurement with one of the new transducers would reproduce better.

4.8.2 Reproducibility of the resonance method

The problems with low frequency dispersion of the ceramics and determination of
inertance L have very little influence on the resonance results, which can be inspected
in Fig. 4.14. Here we have plotted the fitted values of K ′, G′, and η for several different
measurements. The fitted values for K ′ for both Model 1 and 2 (section 4.7) are very
stable – even for measurements that were discarded for the quasi-static method. It
shows that the resonance method is less influenced by reproducibility problems.

This is very encouraging, because it means that the resonance results can be used to
determine how correct the results from the quasi-static measurement are. The results
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(b) Three different quasi-static bulk modulus measurements on
PPE. Black and red curves are taken with the P3 transducer four
month apart in CRYO 5, and the blue curves with P1 transducer
in CRYO 3.

Figure 4.13 Reproducibility of the bulk modulus measurement. The red curves are the data
presented in Fig. 4.10 and represent the final iteration of measurements.
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Figure 4.14 Fit parameters of Model 1 and 2 (see section 4.7) fitted to the resonances at high
frequencies. Each color represents a different measurement. The fitted values of K′ all agree
reasonably, while the fitted values of G′ (only Model 2) in some cases becomes unphysical
(negative). The values of η are not in all cases monotonic which we would expect, but they
agree more or less. By inspecting the fits directly it seems that the fitting algorithm tends to
overestimate the viscosity. We do not currently have a good explanation for that.

of the resonance method can be used as a guidance for the K0 level of the quasi static
measurement.

The fitted values for G′ are in some cases negative, which is of course unphysical.
Probably, the K and M parameters (in Model 2) are too correlated to always make a
meaningful fit: a low value forM can be balanced in the fit by a correspondingly higher
value of K. This notion is further supported by the fact that apparently a negative
value of G is preferred at high temperatures.

4.9 Uncertainty of the measurement

One way of examining the sensitivity of the of the determined bulk modulus to the
parameters of the model is looking at the logarithmic derivatives of Eq. (4.31). The
logarithmic derivative of a function f(x) is given by

d ln f

d lnx
=
df/f

dx/x
(4.43)

and thus it directly tells us what the relative change in f is given a relative change in
x.

The bulk modulus in the quasi-static limit is given by Eq. (4.11) combined with Eq.
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(4.33). In this function we have 5 variables: L, ω0, Q, Ccl, and Cfr. For the quasi
static range ω � ω0 and terms with ω/ω0 vanish. Consequently, the quasi static
measurement is insensitive to the value of Q. For this analysis we will ignore the
dispersion. The function we are looking at is thus the following

K = V · S = V Lω0

(
Cfr − Ccl
Cm − Ccl

− 1

)
, (4.44)

where Cm is the measured capacitance of the liquid filled transducer.

The derivatives of Eq. (4.31) is given by

∂K

∂Ccl
= V Lω2

0

Cfr − Cm
(Cm − Ccl)2

,
∂K

∂L
= V ω2

0

(
Cfr − Cm
Cm − Ccl

− 1

)

∂K

∂Cfr
= V Lω2

0

1

Cm − Ccl
,

∂K

∂ω0
= 2V Lω0

(
Cfr − Ccl
Cm − Ccl

− 1

) (4.45)

which gives the following logarithmic derivatives

∂ lnK

∂ lnCcl
=

Ccl
Cfr − Ccl

Cfr − Cm
Cm − Ccl

,
∂ lnK

∂ lnL
= 1

∂ lnK

∂ lnCfr
=

Cfr
Cfr − Ccl

,
∂ lnK

∂ lnω0
= 2

(4.46)

Thus we can see that if we change L or ω0 by 1% it will change the resulting bulk
modulus by 1%, respectively 2%. The sensitivity to changes in Cfr and Ccl is more
involved and depends both on the actual values of Cfr and Ccl, as well as their difference
and the difference between them and the measured Cm.

The difference between Cfr and Ccl is determined by the coupling constant of the piezo
ceramic material and is temperature dependent since both Cfr and Ccl are temperature
dependent. Both are however decreasing with decreasing temperature so it is reasonable
to assume that their difference is roughly temperature independent. Typical values Cfr
and Ccl of Cfr = 22nF and Ccl = 17nF. Thus at this temperature a 1% change in Cfr
leads to a 4.4% change in K.

The difference between Cm and Cfr and Ccl depends on the stiffness of the sample:
a very hard material will lead to Cm ≈ Ccl while a very soft material will lead to
Cm ≈ Cfr. Thus a soft material leads to a small uncertainty in Ccl (but then we have
little signal) while a hard material will give a large uncertainty in Ccl1. In our case a
typical value of Cm is 19nF. A 1% change in Ccl thus leads to a 5.1% change in K.

The result of the quasi-static bulk modulus measurement thus quite sensitive to values
of Cfr and Ccl and their difference (i.e. the properties of the transducer) and how large
the bulk modulus of the measured sample is.

The absolute level of the reference measurement is also critical for the outcome of the
quasi static measurement. Even a small scaling (in the per mille range) of the reference
can shift the results. Preferably, it should not be necessary with any corrections or

1 strictly speaking there is also a frequency dependence of Cm but this will only be of significance if
the relaxation strength of the sample is very large
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scaling of the reference measurement. So if the conditions are less than perfect it is
easy get erroneous results.

No scaling of the reference measurement was used for the data presented in Fig. 4.10.

4.9.1 Estimate of the error based on propagation of uncertainties

The propagation of errors and uncertainties for uncorrelated errors of a function of
many variables, f(x1, x2, x3, ...) is given by

∆f2 =

∣∣∣∣
∂f

∂x1

∣∣∣∣
2

∆x2
1 +

∣∣∣∣
∂f

∂x2

∣∣∣∣
2

∆x2
2 +

∣∣∣∣
∂f

∂x3

∣∣∣∣
2

∆x2
3 + . . . (4.47)

Using the derivatives from Eq. (4.45) we just need to plug in numbers and uncertainties
to give an estimate of the error. Strictly speaking many of the quantities depend both
in temperature and frequency, but that will be minor corrections.

The resonance frequency is roughly 100kHz, thus ω0 = 2π100s−1. The uncertainty on
the resonance frequency is very small, since this is a very well defined quantity. f0

is determined with roughly 1kHz accuracy which gives an error of approximately 1%.
The estimated uncertainty of the inertance L was stated in table 4.2. Here we will use
the value of the p3 transducer (which was used for the measurements presented in Fig.
4.10), i.e. ∼2.8% with L = 3500.

Using Fig. 4.7 (lowest curve) we can give some typical values of Cfr = 22nF and
Cm = 19nF . The value for Ccl = is roughly Ccl = 17nF. A conservative estimate on
the error of these quantities is between 1 and 2%.

Finally we arrive at an estimate of the bulk modulus

0.2GPa < ∆K < 0.4GPa . (4.48)

4.9.2 Estimate of the error based on repeated measurements

Combining the quality and reproducibility of the fitted K0 of the resonance method
with the quasi-static measurements, we are relatively certain of the K0 level of the
quasi static measurement. The K0 and K∞ are linked, which means that if one of
them determined within some error then the other will be determined within the same
error.

Based on the discrepancy between repeated measurements, our estimate of the error
on the absolute levels is ±5-7% for both DC704 and PPE. Using an average value of
the bulk modulus of 4GPa, we thus arrive at

0.2GPa < ∆K < 0.3GPa , (4.49)

which is in agreement with the estimate above.
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4.10 Summary and concluding remarks

We have shown how we by modelling and subtraction of features of the bulk transducer
can obtain almost seven decades – from a couple of mHz to roughly 10 kHz – of bulk
modulus data.

Overall the error estimate is much smaller than what was suggested by Jakobsen &
Niss [25], which in part is due to the possibility of comparing two independent methods
in the same measurement (the quasi static and the resonance).

To give an idea of the effort of arriving at the datasets presented in Fig. 4.10, we
have added up the measuring times of the total number of measurements. The total
measuring time for bulk modulus measurements in connection with this work was ∼240
days or roughly 5760 hours of effective measuring time. Hopefully, some of work here
will make it a little easier to arrive at reproducible and trustworthy results in future
measurements.

Having said that, there is definitely still room for improvements and there are problems,
that we have not yet understood. For instance, it would improve the quality of the
data significantly if we could find and eliminate the source the low frequency noise in
1 − 10mHz range. Also, the reproducibility is still not fantastic and it would be nice
to improve that in the future.

Unfortunately, there is not much hope to expand the lower temperature limit of the
method. In this work we have really pushed the limit of the capability of the bulk
transducer. When the bulk modulus relaxation time is around 1Hz we start to effects
of the liquid not being able flow in through the hole, and from the signature of the
“breathing mode” there are some indications that cavities inside the bulk transducer
start building up.



5 Shear modulus measurements

The shear modulus measurement is closest to working routinely and several publications
have been based on this measurement, e.g. [24, 26–29]. Among the advantages of this
measurement (over the bulk modulus measurement) are a much better signal-to-noise
ratio, a shorter measurement protocol, and easier handling.

Since this measurement has been used more routinely some standardized software for
the data treatment has been developed (by Bo Jakobsen), which has also eased this
work considerably. A detailed description of the technique was given by Christensen
and Olsen [1] and a thorough analysis of the possible errors of the measurement was
given by Jakobsen & Niss [25] and thus only a brief description of the technique will
be given here. We discuss the reproducibility of the measurement and give a estimate
of error on the absolute levels of the measured shear modulus.

5.1 The shear transducer

The piezo-electric shear modulus gauge (PSG) is constructed of three electrode covered
piezo-electric ceramic discs mounted in a layer construction. There is a gap of 0.5mm
between the discs, where the liquid is loaded.

When an electric field is applied to the discs they will expand or contract in the radial
direction, depending on the polarity of the discs compared to the direction of the
electric field.

Electrically the middle disc is connected in parallel with the two outer discs in series as
is shown in Fig. 5.1. In the figure small dots indicate the polarity of the piezo-electric
discs, and thus when an electric field is applied, the middle disc will move opposite
the two outer discs. With this construction the gap between the discs will then be
field-free, and the liquid will be subjected to a purely mechanical perturbation.

There will also be a small deformation in the polar direction, but since the plates are
in counter phase this will only cause a small translation of the liquid layer. In addition
to that the aluminum casing is mechanically soft and will deform easily compared to
the liquid.

The partially clamping of the plates due to the liquid is measured as a decrease in the
capacitance which can then be related to the shear modulus of the liquid.

55
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(a) Schematic drawing of the shear transducer. (b) Photo of the shear transducer

Figure 5.1 The shear transducer. (a) The pz discs are electrically connected so the middle
disc is in parallel with the two outer discs in series. Physically the three plates are positioned
as shown, which has the consequence that the gaps between the discs (where the liquid is
loaded) is field-free. The polarity of the disc is marked by a dot on one side of each disc.
With this configuration, the middle disc will move opposite to the two outer discs when a
field is applied. (b) Photo of the shear transducer. Small holes drilled in the center of the
two outer discs allow for the electrical connection to the inner disc. The three discs and hubs
are fixed inside a aluminum casing attached to a foot that fits in the cryostat holder.

5.1.1 Raw data

Fig. 5.2 shows the measured capacitance of the liquid filled and the empty cell at
room temperature and a temperature in vicinity of the glass transition temperature.
At 300K the spectrum of the empty and filled transducer are identical (note that the
resonances are actual (radial) resonances of pz discs and not due to the liquid).

As the temperature is lowered the shear modulus of the liquid increase and will cause a
partial clamping of the pz discs. This is seen as the drop in capacitance in the low end
of the spectrum. The rigidity of the liquid will also change the resonance spectrum,
moving the resonances to higher frequencies.

5.1.2 Modelling the PSG

For the PSG the equations of motions for the discs have to solved. We go over the
equations and their solutions carefully in appendix C based on the formulation by (but
somewhat more detailed than) Christensen & Olsen [1]. Here we give a short summary
of the crucial steps and assumptions in the modelling process.

In the three disc construction the middle disc will be subjected to twice the mechanical
stress of the outer disc when the cell loaded, due to the presence of the liquid. The
middle disc is also subjected twice the electrical field due to the electrical connection of
the plates. Together these conditions ensure that the middle disc will always move twice
the distance of the outer discs (when the inertia of the liquid can be ignored). Thus
there will be a neutral plane in the liquid that remains unaffected by the movement of
the discs. This plane could be regarded an infinitely rigid support, and thus the three
disc construction can mapped to a one disc construction with infinitely rigid support
with 1/3 of the liquid layer thickness and a capacitance corresponding to that of the
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Figure 5.2 Raw data of the empty (full lines) and filled (black dots) PSG at two temperatures.
At ambient temperature (300K) the spectrum of the empty and filled transducer are identical.
As the temperature is lowered the shear modulus of the liquid increase and will cause a
partial clamping of the pz discs. This is seen as the drop in capacitance in the low end of
the spectrum. The rigidity of the liquid will also change the resonance spectrum, moving the
resonances to higher frequencies.

three disc system, i.e. 3/2 of the capacitance of a single pz disc.

We define F to be the dimensionless measured quantity

F =
Cm − Ccl
Cfr − Ccl

(5.1)

where Cm is the measured capacitance and Ccl = Cm(ω →∞) is the clamped limit of
Cm and Cfr = Cm(ω → 0) is the free capacitance.

The measured capacitance Cm is the ratio of charge on the electrodes, Q, and the
applied voltage, V . The charge is found by integration if the charge density of the
electrodes which is given by the elasto-electric compliance matrix (see appendix C or
[1] for more details) of the piezo ceramic, and depends on both dielectric end mechanical
properties. This results in the dimensionless measured function being determined solely
by the radial displacement ur of the edge of the disc

F = aur(r0) (5.2)

where a is a constant and r0 is the radius of the disc.

The displacement, ur, as a function of the stress that the liquid exerts on the surface
of the disc is found by solving the radial equation of motion for a the disc

c11

(
r2 (u′′r ) + ru′r − ur

)
− σl

r2

ξ
= −ω2r2ρur (5.3)

where c11 is an elastic constant and ρ is the density of the ceramics. In arriving at this
equation it is assumed that the tangential stress on the free side is zero and σl on side
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in contact with the liquid and that the stress gradient across the disc is simply σl/ξ,
which is reasonable because the disc is thin.

The key assumption now is that the displacement of disc gives a pure shear deformation
of the liquid. Then we can write

σl = G(ω)
ur(r)

d
(5.4)

where d is thickness of the liquid layer (which in this case 1/3 of the separation between
the discs). The volume change of the liquid is on the order of u/r0, while the shear
deformation is u/d, hence the ratio between volume change and shear deformation is
on the order of d/r0 � 1. We have r0 = 1cm while d = 0.5/3mm, and hence the ratio
of volume change to shear deformation is less than 2%.

Define the characteristic quantities of the pz discs inertance Mc = ρdξ, modulus
Gc = c11dξ/r0, and the characteristic frequency ωc =

√
Gc

Mc
, as well as the follow-

ing dimensionless quantities

V =
G(ω)

Gc
, S =

(
ω

ωc

)2

(5.5)

where G(ω) is the shear modulus of the liquid. Then Eq. (5.3) can be reduced to
a Bessel differential equation, which is solved with the boundary conditions of zero
displacement at the center and zero stress at the edge.

Partial filling of the discs

A complication arises when the liquid does not fill out the entire space between the
discs, which is inevitable because the liquid contracts when it is cooled. This can be
corrected by solving the above equation with some slightly different boundary condi-
tions (see [1]), which is largely unproblematic. But it does introduce some uncertainty,
since the outcome is quite sensitive to the actual radius of the liquid rl since the largest
shear deformation takes place at the edge and the charge collecting area is large at the
edge.

We define the filling degree by
xl =

rl
r0

(5.6)

then F will be a function of the dimensionless quantities S and V (defined in Eq. (5.5))
as well as the filling degree, F (S, V, xl).

Dispersion of the ceramics

The weak dispersion of the dielectric constant of the ceramics is accounted for in the
same way as in the bulk modulus measurement, namely by assuming that Cfr(ω)/Ccl(ω)
is constant and that the dispersion in the liquid measurement is the same as in the
reference measurement of the empty transducer. Defining a new function Φ as the ratio
of F for the liquid filled measurement and for the reference measurement on the empty
transducer we have

Φ =
F (S, V, xl)

F (S, 0, 1)
=

C liq
m − Ccl

Cemp
m − Ccl

. (5.7)

Φ is determined experimentally.
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Inversion of the data

Φ can be approximated by an algebraic expression, and in the end the shear modulus
is given by the following expression

G(ω) = Gc
a− bΦ +

√
(a− bΦ)2 − 4Φc(Φ− 1)

2Φc
(5.8)

where a, b, and c are constants.

5.2 The shear modulus data

The shear modulus data obtained for DC704 and PPE are shown in Fig. 5.3. The
measurements presented here are carried out in the same experimental setup and cryo-
stat (CRYO 5) as the bulk modulus data presented in Fig. 4.10 and the temperatures
are selected to overlap with the temperatures in the bulk modulus measurement. The
temperature range of the shear measurement is less restricted so the shear modulus
data sets go to lower temperature than the bulk modulus data sets do.

The signal-to-noise ratio is evidently much higher in this measurement compared to
the bulk modulus measurement.

5.3 Discussion of reproducibility and errors

Compared to the bulk modulus measurement, it was in general easy to get the empty
reference measurement to match the liquid measurement.

We do not in the shear modulus measurement have an independent check of the abso-
lute levels, as we did in the bulk modulus measurement where the resonance method
provided such a check1. However, we do know that the shear modulus should vanish
for ω → 0. This knowledge can be used to fine tune the liquid-reference match by a
small scaling of the measured capacitance of the reference by a single factor, usually
on the order of 1.005, i.e. a correction in the per mille range.

5.3.1 Filling degree

In the bulk measurement the volume of the sphere does not change with temperature,
only density. In the shear measurement, the two liquid layers contract when cooled
thus making the effective radius smaller. This has been accounted for in the inversion
algorithm by assuming a constant thermal expansion coefficient and an initial filling
degree of 100%, i.e. xinitiall = 1.

The filling is done by hand and the filling degree is determined by eye, so there could
be variations in the initial filling. In addition to that, the ceramics may absorb some
liquid, which means that at the end of the measurement the filling profile can be
changed slightly. Jakobsen & Niss [25] carried out a careful analysis of the influence

1 in priciple it should also be possible to obtain a value for the shear modulus by the shift in
resonances (in Fig. 5.2) [1], but we have not pursued this possibility here
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Figure 5.3 Real and imaginary part of the shear modulus of DC704 and 5-PPE for a range
of temperatures close to Tg.
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an initial filling degree less than 100% (xinitiall < 1) in which they estimated that this
could cause a change peak position of up to 0.2 decades and a broadening of the shape.

Christensen [30] has shown that the geometry of the liquid layer (radius � thickness)
introduces a geometric hindrance of the radial flow when the viscosity of the liquid
increases upon cooling. This effectively stops the radial contraction at a fairly high
temperature. Thus the assumption of a constant thermal contraction may not hold.

Repeating the data inversion algorithm with different values of fixed radii or small
variations in value of the thermal expansion coefficient, did not have a big effect on the
absolute levels of the final data, while it may have a some effect on the temperature
dependence of the high frequency shear modulus as well the shapes and peak positions.

5.3.2 Repeated measurements

The measurements were repeated several times with different transducers and on dif-
ferent experimental set ups.

In figure 5.4 we show data from numerous measurements on both DC704 and 5PPE
(each in different colors). All data sets were produced for this work except for one,
which is an old measurement by Niels Boye Olsen (shown in black dashed lines). The
temperature steps of his measurement were 2.5K instead of 2K which we used, and
consequently the temperatures match only every 10K.

Each dataset is scaled by a single factor to make the absolute levels agree. It is obvious
that the shapes of relaxation is almost identical for all measurements. The shape
preservation was also noted by Jakobsen & Niss [25], where the difference in absolute
levels was ascribed to different degrees of filling.

In table 5.1 we list the measurements shown in Fig. 5.4, relevant information about
the measurement, and the factor by which the results of this particular measurements
have been scaled to make them agree with the chosen reference. The measurements
in CRYO 3 have been shifted according to the procedure described in Appendix B.
The measurement by Niels Boye Olsen (black dashed lines) were not shifted on the
frequency axis.

For DC704 the scaling factors are within ±6%, which we will then take as an estimate
of the error on the absolute values of the measurement.

For PPE the measurements seem to separate into two categories: data obtained with
the S9 transducer and data obtained with the S7 transducer with almost 10% difference
in the absolute levels between the two groups of measurements. This could indicate
some systematic error connected with the specific shear transducer used in the mea-
surement (for instance a slightly different disc separation), although the DC704 results
do not generally support this picture.

However, a reservation should be made here regarding the reproducibility plot of PPE
data. As was the case in the bulk modulus measurement, most of the measurements
(those marked with ∗ in table 5.1) are taken with a different bottle of the chemical than
the final data presented in Fig. 5.3. The initial measurements all showed problems
with something that looked like DC conductivity for temperatures below 0◦C. In Fig.
5.4 this shows up as a deviation in the imaginary part at low temperature, where the
loss starts to grow.
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Color Set-up Transducer Scaling-factor
DC704 black CRYO 3 S9 1

red CRYO 5 S9 1.06
cyan CRYO 3 S4 0.98
magenta CRYO 5 S7 0.95
green CRYO 5 S7 0.97
black dashed x x 0.97

5PPE black CRYO 5 S9 1
cyan∗ CRYO 3 S9 1
red∗ CRYO 3 S7 0.89
blue∗ CRYO 5 S9 1.01
green∗ CRYO 5 S7 0.87

Table 5.1 Table listing all the measurements shown in Fig. 5.4. All measurements were
carried out for this work, except for the black dashed of DC704 which is an old measurement
by Niels Boye Olsen.

5.4 Final remarks

We have presented numerous data sets for the liquids DC704 and PPE. All of the
measurements agree very well regarding the shape and position of loss peaks. The
absolute levels agree within ±10%. It is very encouraging that the shapes of relaxation
and the relative change in absolute levels with temperature is preserved to such a high
degree that scaling by one factor makes all data sets collapse. The scaling factors in
the case of DC704 were not too dramatic, indicating an error of the measurement of
approximately 6%.

The approach to the error estimates has been experimental and “brute force”: making
a lot of measurements using different measuring cells over a fairly extended period of
time to see what variations we get. This has had the advantage of enabling a critical
review of the effects of for instance uncertainties of filling degree predicted by Jakobsen
& Niss [25], and we show that in general the measurement reproduces better than what
their conservative estimates suggests.

A clear improvement of the method would be to include an analysis of the resonances
at high frequencies to get an independent measure of the shear modulus. This would
provide us with better estimate of the correct absolute levels of the data.
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Figure 5.4 Reproducibility of the shear measurement. The measurements (each data set
with a different color) are taken with several different transducers and cryostats and each
measurement has been scaled by a factor to make the absolute levels agree (details are listed
in Table 5.1), and shifted whenever the temperature calibrations were not identical using
CRYO 5 as a reference (see Appendix B). The data sets were cut at increasing frequencies to
make it visible that these are actually different data sets.
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6 Longitudinal modulus measurement: a
proof of concept

This final of the three “technical” chapters concerns a new measurement technique
that is based on the same principles as the two previous ones. In fact, it requires no
new devices just a simple modification of the PSG: flipping the middle disc of the 3
disc construction will cause all three plates to move in the same direction when an
electrical field is applied. It will thus not be a pure shear deformation of the liquid
between because the liquid will be subjected to a volume change. With this method
we will consequently measure some combination of shear and bulk modulus.

Now, the reader may ask: why would we want to do that? We already have methods
to measure the bulk and shear moduli, why do we need a third measure of the same
two quantities? In fact, there are many good reasons to do that. One good reason is
that such a method supplies us with an independent measurement that can be used
to check the validity of the first two (especially with respect to absolute levels of the
moduli). Another very good reason is that the bulk measurement is a very difficult
measurement with a limited temperature range. If we succeed in matching all three
measurements, we could in the future skip the tedious and cumbersome bulk modulus
measurement and just do the other two and deduce the bulk modulus from that. This
would furthermore have the consequence that we would be able to measure the bulk
modulus at lower temperatures than now since the new transducer does not suffer from
the same limitations as the PBG, plus it is a much faster measurement.

So in principle there are a lot of advantages to this measurement.

The downside is that the modeling and interpretation of data becomes more involved
than with the PSG, because some of the simplifying assumptions that were valid for
the PSG no longer holds. Unfortunately, this is also the reason why data from this
measurement has not been inverted. The process of modelling is simply not quite
finalized yet; there are still uncertainties as to what boundary conditions actually hold
for this measurement.

In the following we will present raw data from the measurement, confirming that there
is a signal, and point out some general observations that might be important for the
modelling. The signal strength is compared to that of the two other mechanical mea-
surements, and we conclude by some considerations regarding the modeling.

65
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6.1 The “longitudinal” transducer

Naming this device was not an easy task because it is probably not a “pure” modulus
that we measure. For now we will call it the piezo-electric longitudinal modulus gauge
(PLG) in analogy with the PSG and PBG, even though the device is probably not
measuring a pure longitudinal modulus.

The PLG is almost identical to the shear transducer: we are operating three discs in
a layer construction, electrically connected so the voltage over the middle disc is twice
the voltage over the two outer discs. The difference between the PSG and the PLG
is simply the polarity of the middle disc, which in the PLG has been flipped. This
flip will cause the three discs to move in the same direction when an electrical field is
applied. Consequently, the volume is now changed under the deformation and it can
no longer be assumed a pure shear deformation.
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Figure 6.1 Schematic drawing of the piezo electric “longitudinal” gauge.

In Fig. 6.1 we show a schematic drawing of the PLG, where the only difference com-
pared to Fig. 5.1 is the polarity of the middle disc has been flipped. The polarity is
marked with a dot at the top or bottom of each disc.

6.2 Raw data

In Fig. 6.2 we show the raw data of six different liquids. All measurements except for
PG, is carried out in the same measuring cell and the same cryostat (CRYO 3). The
PG measurement was carried out in CRYO 5 using a different shear transducer.

Clearly, there is a signal from the liquid, although it is (expectedly) smaller than that
of the shear measurement.

The scales on the axes for all plots are the same, so it is possible to compare the
measurements. It can thus be seen that the real part of the capacitance for the liquids
with the lowest Tg’s is shifted to lower values. This is not surprising since we know
that the properties of piezo ceramic are highly temperature dependent. It may however
not have been recognized before that this actually influences the signal quality. This is
evident when instead we look at the imaginary parts, where the frequency dependence
of the ceramic material is quite dramatic at higher temperatures (in our frequency
window) while less dramatic at the low temperatures (compare for instance the DEP
curves to the PPE data).
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Figure 6.2 Raw data for 6 different molecular glass-formers. We clearly see the partial
clamping of the discs due to the liquid, so we conclude that there is signal.
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Figure 6.3 Comparing the liquid filled measurement with that of an empty reference. Quite
clearly the reference measurement lies below the liquid measurement – a feature that is
completely reproducible and general for all the measurements.

There is considerable noise at the lowest frequencies from 1mHz to 10mHz, a quite
marked shift from very low noise to very high noise seen very clearly in the imaginary
parts of the response, for all measurements in CRYO 3. The single measurement in
CRYO 5 (PG) does not suffer quite as bad from this low frequency noise. This is a
problem that appears periodically in the bulk modulus measurements as well, but so
far has not been encountered in the dielectric or shear modulus measurement.

6.2.1 Liquid-reference match

As was the case with bulk and shear modulus measurements, we need to make a
reference measurement with the empty PLG, repeating the same thermal cycle as that
of the liquid measurement. Figure 6.3 shows an example of a match between a liquid
and a reference measurement.

First of all it should be noticed that the curves of the liquid measurement seem to
(almost) line up with the reference at the low frequencies. This tells us that the
pz-discs at low frequencies are not clamped, thus there is no signal from the liquid.
Since we expect the response of this measurement to be a mixture of bulk and shear
modulus, this is perhaps a little bit surprising because the bulk modulus does not go to
zero at low frequencies. Thus there has to be some kind of flowing mechanism at low
frequencies (as is the case with the PBG where the liquid can flow out of the hole at
sufficiently low frequencies). We speculate that the liquid at the edge is able to bend
inwards and outwards when the discs oscillate at low frequencies; the PLG may have
its own “breathing mode”.
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Secondly, we notice that the liquid and reference do not match perfectly at low temper-
atures – in fact the reference curves seem to lie systematically below the liquid curves.
This is observed in all the measurements and is completely reproducible. With our
usual algorithm of eliminating the low frequency dispersion of the piezo ceramics by
the reference measurement, this will result in the moduli becoming negative at low
frequencies, if used uncorrected.

One possible explanation for this was pointed out already by Christensen and Olsen
[1]. The piezo ceramic material is not only sensitive to the temperature and thermal
history, but also to the stress history. When we lower the temperature the liquid
contracts thereby creating surface tensions on the pz discs, and thus the stress history
of the reference and the liquid spectrum can not be the same. Perhaps this effect is
more severe in the case of PLG than the PSG.

6.2.2 Reproducibility

For some of the liquids the measurement was repeated (using the same measuring cell).
The measurement is very reproducible, as can be seen in Fig. 6.4 where we show two
sets of measurements on DC704 (in red and blue) that are nearly identical. In principle
we should be able to reduce noise in the measurement by just taking the average of
two (or more) sets of measurements. This would be especially valuable to reduce the
low frequency noise.

A more thorough evaluation of the reproducibility can not be carried out before we are
able to invert the data and can compare the determined moduli.

6.3 Comparing signal strengths of the mechanical measurements

We can define the signal strength as the relaxation strength in the liquid seen in the
capacitance compared to the capacitance of the empty cell. The “free” capacitance of
the PSG and PLG is ∼ 10nF, while it is ∼ 25nF in the PBG.

Thus when we look at the imaginary part of the raw “longitudinal” data and compare
that to the raw signals of the bulk and shear modulus measurements will give us an
idea of the quality of the signal in this new measurement. In Fig. 6.5 this is shown for
two temperatures (216K and 224K) for DC704. For the higher temperature we see that
the relaxation strength in the shear modulus measurement is approximately six times
larger than that of the “longitudinal” measurement. The relaxation strength seen in
the bulk measurement appears to be comparable with that of the “longitudinal”, but
compared with the free capacitance of the empty cell then the “longitudinal” signal is
approximately 2.5 times greater. This is probably also why the noise is visibly larger
in the bulk modulus.

When we then turn to the lower temperatures the signal of the “longitudinal” measure-
ment is significantly improved over the bulk measurement, mostly due to complications
in the PBG at low temperatures.
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Figure 6.4 The reproducibility of the measurement. Blue and red curves are two different
measurement series with identical thermal cycles. The two sets of measurements are close
to identical thus establishing that the measurement is reproducible (at least in the same
measuring cell).

6.4 Final remarks and outlook

We have shown that there is signal in the PLG. The signal is decent, and thus it makes
sense to continue with development and modelling of the technique.

The modeling of the PLG and PSG is parallel for the derivation of the equations of
motion of the discs (see appendix C). The measured capacitance of the empty cell
should for instance be the same and largely depends on the displacement of the edge of
the pz disc. The difference enters when we need to specify the stress on the pz discs due
to the presence of the liquid. Here it is less obvious what should be assumed. Perhaps
the combination of bulk and shear modulus determined is frequency independent, and
most likely it is a function of the radius.

In the modeling of the PLG we can not map the three disc construction to a one disc
device in the case of the PLG, which means that we have to solve three equations of
motion (one for each disc) instead of just one.

Liquid and reference curves (almost) collapse at low frequencies, which suggest a
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Figure 6.5 Imaginary part of the measured capacitance of the liquid filled PSG (H), PBG (B),
and PLG (•). The signal in the PLG is roughly 1/6 of that in PSG, but at low temperatures
a vast improvement over the signal in the PBG. At higher temperature the signal in the PLG
is comparable to that in the PBG, but with less noise.

“breathing mode” that probably needs to be included in the model. Another – less
attractive – possible reason for this observation could be the that the signal is largely
dominated by the shear modulus.

In the end the modeling of the PLG will be more complicated than the modelling of
the PSG, but if successful the PLG could be added as valuable independent check of
our existing techniques.
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7 Times, shapes, and decoupling in DC704
and PPE

In this chapter we will have a closer look at the data presented in chapter 4 and
5. In section 7.1 we cross-check the measurements with each other, extracting as
much information as possible from the measurements. Unfortunately, the “longitudinal
modulus” data are not in a finalized form, and thus cannot be used as a check of absolute
levels of the shear and bulk modulus measurements.

In sections 7.2 and 7.3 we characterize the present data in terms of time-temperature-
superposition, time scales of the alpha relaxation and the spectral shapes, and in section
7.4 we compare the temperature dependence of the time scale of the alpha relaxation
found for the bulk and shear modulus relaxation to those of other response functions
that can be measured in the same set-ups with methods developed in our group as well
as the dielectric response.

The possibility of comparing of five different response functions all measured under
identical conditions – the same cryostat and the same measuring equipment – is really
unique. This kind of comparative analysis is scarce in the literature. Below we will
give an overview of related studies.

A large subset of these are aimed at studying the (breakdown of the) Stokes-Einstein
(SE) and Debye-Stokes-Einstein (DSE) relations. The SE relation connect the trans-
lational diffusion of large (macroscopic) objects in a fluid to the viscosity of the fluid
[31]. The SE and DSE relations state that

D ∝ T

η
(7.1)

where D is the diffusion constant, T is the temperature, and η the viscosity. The
constant of proportionality involves Boltzmanns constant and a geometric factor that
depends on the shape of the diffusing object and whether the translational or rotational
diffusion is studied.

Strictly speaking these relations were derived for a macroscopic sphere suspended in a
fluid, but it has been shown to hold even for the self-diffusion of particles in the liquid
at high temperatures both in simulations (e.g. by Bordat et al [32]) and in experiments,
e.g. by Chang & Sillescu [33]. In figure 7.1 we show the results of Chang & Sillescu
for six different liquids, where the Dη/T is shown as a function of temperature scaled
with Tg. Clearly, the SE relation is constant at temperatures above 1.2Tg, but starts
to deviate from this below. Similar results have been found by other groups [34–42].
Cicerone & Ediger [36] and later Rajian & Quitevis [42] and Heuberger & Sillescu [43]
showed that the SE relation breaks down for small tracer molecules, while it is still
valid at low temperatures for large tracer molecules.
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Figure 7.1 Breakdown of the Stokes-Einstein relation. Results of Chang & Sillescu [33]
showing Dη/T as a function of temperature. The SE relation breaks down around 1.2Tg in
six different liquids: (a) OTP, (b) salol, (c) PDE, (d) CDE, (e) m-TCP, (f) glycerol. From
[33]

In other studies time scales of different probes are compared, often through a decoupling
index X of relaxation times (τ) or peak (angular) frequencies fmax

X(χ1, χ2, T ) =
τχ1

(T )

τχ2
(T )

or fχ1
max(T )

fχ2
max(T )

(7.2)

where χ1 and χ2 are two different probes and T is the temperature. If X 6= 1 the time
scales of the two probes are decoupled. Contrary to investigations of the SE relation,
there seems to be no really clear conclusion regarding the temperature dependence of
X, which apparently depends on the liquid under investigation and/or the probes used.
There are reports of constant decoupling index in measurements, e.g. [7, 44–46], as
well as some of a temperature dependent decoupling index, e.g. [47–49].

Sometimes the relaxation time (or peak frequencies) of different probes are simply
compared in an Arrhenius plot (log τ or logωmax as a function of inverse temperature
scaled by Tg) of different probes without explicitly evaluating the decoupling index.
We show an example in Fig. 7.2 due to Schröter & Donth [50], who collected data
from dielectric, heat capacity, shear retardation and NMR measurements on glycerol.

Fairly often, dielectric measurements and dynamic shear measurements are compared
[26, 27, 44, 47, 55–62], which is probably due to two things: (1) this set of probes is
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Figure 7.2 Arrhenius plot for glycerol using ωmax from different probes: dielectric ((◦) [51]),
heat capacity ((+) [52] and (∗)[53]), maximum in G′ ((O) [50]) , maximum in the retardation
contribution to J ′′ ((M) [50]), and NMR ((N) [54]). Figure and data sources are from [50].

particularly interesting because they are believed to be closely connected, and (2) these
measurements are relatively easy to perform. The Dermant-DiMarzio-Bishop model
[63] connects dielectric and shear modulus and was studied, e.g. by Zorn et al [44] and
Niss et al [60].

A smaller subset of comparative studies is involves purely mechanical responses. Chris-
tensen & Olsen [24] compared bulk and shear moduli for 1,2,6-hexanetriol with the
same methods as in the present thesis, and concluded that bulk modulus relaxation
was slower than the shear modulus relaxation, while the spectral shapes were identical
within the noise. They also pointed out that different relaxation times of bulk and
shear relaxation in consistent with a simple network model where the viscosity in bulk
and shear viscosity stem from the same element.

Meng & Simon [20] presented pressure relaxation measurements, and compared the
bulk results to shear creep compliance curves (measured by others) in polystyrene.
They found that the bulk relaxation occurs in the short time region of the shear re-
sponse, contrary to the conclusion of Christensen & Olsen.

Bulk and shear modulus relaxation have been compared by several authors using ultra-
sonic measurements of longitudinal and shear sound waves [14, 64–66]. Based on this
procedure Morita et al [14] found that the bulk relaxation was roughly 5 times slower
than shear relaxation, and Dexter & Matheson [64] reported similar observation. Alig
and coworkers [65–67] have derived a theoretical expression for the relation between
bulk and shear viscosities of polymers, ηK/ηG = 2/3, but found experimentally that
this number was too small.

Yee & Takemori [11] developed a method by which Youngs modulus and Poissons ratio
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could be measured on simultaneously on a sample. Combining the measured quantities
they could calculate bulk and shear modulus. They did not explicitly state anything
about the time scales of shear and bulk relaxation, but their results suggest that they
are very similar.

Out of all these studies only a few compared response functions measured in the same
experimental setups, and none of those involved more than two different probes.

7.1 Viscosity determined through bulk and shear moduli

We can determine the shear viscosity from the measurement of the shear modulus.
Recall that the complex shear modulus may be written as [3]

G̃(iω) = G′ + iG′′ = G′ + iωηG (7.3)

where both the G′ and η are frequency-dependent. This means that we can determine
the DC shear viscosity as

ηG0 = η(ω → 0) = lim
ω→0

G′′(ω)

ω
. (7.4)

The (DC) shear viscosity is proportional to the relaxation time in the temperature
dependence according to the Maxwell relation τ = η/G∞ (see chapter 2, section 2.1.1),
since the temperature dependence of G∞ is small compared to that of the shear vis-
cosity. This procedure was also used in [8].

In Fig. 7.3 we show the log (G′′(ω)/ω) as a function of frequency. Approaching the
low frequencies (compared to the alpha relaxation time), the curves bend over and
eventually settle at a plateau. The limiting value, η(ω → 0), was taken to be the
lowest data point of the curves shown in Fig. 7.3. For the lowest temperature of
DC704 and the two lowest temperatures of PPE we do not really see the plateau and
this procedure (simply taking the last data point) may thus be underestimating the
DC shear viscosity for the lowest temperatures.

We have also a measure of the shear viscosity from the bulk transducer measurements.
Recall, that at low frequencies the liquid flows in and out of the hole drilled in the
piezo-ceramic shell, and that this Pouseuille flow is governed by the shear viscosity
of the liquid (see chapter 4, section 4.4.3). Thus if the dimension of this “tube” (the
drilled hole) is known, we should in principle be able to determine a shear viscosity
from the “breathing mode” in the bulk modulus measurements.

From Eq. 4.15 we know that the shear viscosity is proportional to the mechanical flow
resistance, Rh

ηG = ARh (7.5)

where A = πa4

8l is purely geometric factor, a and l being the radius and length of the
“tube”. Specifications from the workshop that produces the measuring cell, the values
of these quantities are a = 0.9 and l = 3.75 (all in mm). This gives A = 6.9×10−11m3,
which is the value we used. But even if we do not know the specifications exactly, the
geometric factor is a number that is specific to certain measuring cell (bulk transducer),
and thus could be calibrated with one set of measurements and tested with another.
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Figure 7.3 Determining the shear viscosity from shear modulus measurements. The figures
show G′′/ω plotted logarithmically against the frequency. Clearly, this quantity approaches
a constant value for ω → 0. This level is the static shear viscosity.

Rh as a funtion of temperature is determined by the method described in chapter 4,
i.e. through the the mechanical impedence, Z̃ = S/iω, where S is the stiffness found
in the bulk transducer measurement (see Eq. (4.31) in chapter 4). Rh can be found as
the high frequency foot point of a Nyquist representation (imaginary part versus real
part) of the mechanical impedance, or as through the peak position, Z ′′max = 1/2Rh
(because the “breathing” mode is described by a purely exponential the trace of the
impedance in a Nyquist is a semi-circle).

In Fig. 7.4 we show the mechanical impedances in a Nyquist representation with
logarithmic axes to fit all data in one window. The peak value is marked with an ’X’
for each temperature. Identifying the peak position of course requires the peak to be
in the measured frequency window, thus this method is restricted to relatively high
temperatures.

Finally, we have a value for the viscosity from the fits of a model to the standing waves
(see chapter 4, section 4.5.2, p. 44). These fitted viscosities are somewhat less reliable
since they result from a multiparameter fit which was not well reproduced in different
measurements; the values for viscosity are for instance not monotonic. In addition, the
fitted viscosities are bulk or longitudinal viscosities, must thus be expected to higher
than a shear viscosity. We will nevertheless include them for comparison.

All of the shear viscosities determined from the methods mentioned above are plotted
together in Fig. 7.5. There is excellent agreement between the values obtained from
the shear measurement and those determined from the “breathing” mode of the bulk
measurement. The fitted values of the resonance method are – as expected – less than
perfect, but also not entirely wrong. In a sense this confirms the validity of the model
used for fitting the resonances in the bulk modulus measurement.

It is very encouraging that the methods agree this well with each other. It also means
that combining the shear and bulk modulus measurements, we are able to reliably
cover the temperature dependence of the shear viscosity over 10 orders of magnitude.
Perhaps if we are able to adjust the fitting procedure, we will be able to extend this
into the high temperature regions as well, thus making it possible to extract shear
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Figure 7.4 Determining the shear viscosity from the “breathing” mode. The flow resistance
R can be determined by the high-frequency limit of the mechanical impedence, Z̃ = V S̃/iω.
But since the “breathing” mode is Debye like, the Z̃ traces out a semi-circle (see Fig. 7.4)
and we only need to know the peak position to determine R. Here we used a doublelog plot
to fit all data in the same window, which of course will distort the circular shape.
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Figure 7.5 Comparing the shear viscosities obtained with different methods. Crosses are
determined from the low-frequency limit of the shear modulus Eq. (7.4), full triangles are
determined through “breathing” mode of the bulk modulus measurement, and open circles
are the fitted values from the resonances of the bulk measurement (see chapter 4, section
4.5.2). These fitted values are obviously less precise than the two other methods. It is on the
other hand encouraging to see that the fitted viscosities are not completely wrong either. In
general it seems they are a bit too high.
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Figure 7.6 Determining the bulk viscosity from bulk modulus measurements. The figures show
log(K′′/ω) plotted logarithmically against the frequency. Clearly, this quantity approaches
a constant value for ω → 0. For comparison we have plotted also the shear viscosity curve
(grey lines). In DC704 and we see that the bulk and shear viscosity curves collapse, but for
different temperatures. PPE show a similar pattern although the quality of the bulk viscosity
curves is less convincing.

viscosities over 12-13 decades, in the same experimental set-up.

The bulk viscosity is defined in the same way as the shear viscosity

K̃(iω) = K ′ + iK ′′ = K ′ + iωηK (7.6)

and in principle, we can determine the DC limit in analogue with Eq. 7.4, ηK0 =
limω→0K

′′/ω. In Fig. 7.6 the low frequency limit of the bulk viscosity is shown
(colored circles) and the shear viscosity as black lines. The bulk viscosity curves are
quite noisy and thus the procedure of taken the last data point for each temperature as
the DC limit would result in very noisy curves. To extract a meaningful number from
these curves a more advanced approach or some modelling is needed, which we have
not done. Interestingly, the bulk and shear viscosity curves apparently collapse but not
for the same temperatures. For instance the bulk viscosity curve for 220K for DC704
falls on top of the shear viscosity curve for 218K. The quality of the PPE data are
not quite as good, but the trend is the same: the bulk and shear viscosity curves are
similar but at different temperatures. So bulk and shear viscosities are apparently very
similar though not identical. And by coincidence we have chosen the temperature steps
in the two experiments with coincide with the difference in viscosity. This observation
presents a challenge to theory.
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7.2 Time-temperature-superposition

Time-temperature-superposition (TTS) refers to the observation that for many liquids
the shape of the relaxation remains unchanged when the temperature is varied, while
the position on the time/frequency axis is shifted. It has been suggested that TTS (for
the alpha relaxation) applies whenever the alpha relaxation is not influenced by other
processes [68].

A standard way of checking for TTS in (frequency domain) data is to make a dimen-
sionless plot of the imaginary part of the response function (the “loss”), i.e. scaling the
frequency axis with the relaxation time (or the peak position) and the y-axis by the
peak height

(ω/ωmax, χ
′′/χ′′max) (7.7)

where χ here represents a any measured complex response.

If this scaling makes the data collapse then TTS is obeyed. Normally this is a qual-
itative statement, but a quantitative TTS-measure based on this procedure has been
proposed by Nielsen et al. [69]. This however required extremely precise (noise-free)
data and would not be useful to characterize our mechanical data.

Another less well-known way of checking for TTS is the normalized Cole-Cole plot. A
Cole-Cole plot is a parameterized plot (χ′(ω), χ′′(ω)) of the complex response. The
normalized Cole-Cole plot is then a parameterized plot of relaxation data subtracting
the long-time limit and normalized to the relaxation strength. Defining the normalized
relaxation function

F̃ (ω) =
χ̃(ω)− χ0

χ∞ − χ0
, (7.8)

the normalized Cole-Cole plot is thus (F ′(ω), F ′′(ω)). The advantage of the normalized
Cole-Cole plot is that it includes both the real and imaginary part and thus is a more
“complete” representation of the data. Also, in the Cole-Cole plots the entire trace of
the data from ω → 0 to ω →∞ is contained in one plot.

In Fig 7.7 we show both of these TTS plots for both shear and bulk modulus relaxation
of DC704 and PPE. Left column is bulk modulus data and the right column is the shear
modulus data in the different representations. TTS is obeyed in the bulk modulus data
for both DC704 and PPE within the noise. In the less noisy shear modulus data it
is obvious that while the DC704 data show perfect data collapse the PPE data have
small deviations on the high-frequency side of the alpha relaxation peak. There is
apparently a wing in the spectrum, which could be due to a small amplitude beta
relaxation according to the conjecture of Olsen et al [68].

Overall, both bulk and shear relaxation shapes for both DC704 and PPE are very
similar. In the shear data we do see a small difference between the two substances: PPE
is a bit narrower than the DC704, which in the Cole-Cole representation correspond
to a slightly higher peak position. But could the bulk and shear relaxation for each
in fact be identical? In Fig. 7.8 we combined the TTS curves of bulk and shear
modulus relaxation (bulk data in black symbols and shear data in cyan), and at least
for DC704 it looks like the less noisy shear modulus data traces out the curve that the
bulk modulus data are scattered around. For the PPE data there are some deviations
from this picture around the peak area of the spectrum, but shear and bulk data have
the same height in the Cole-Cole representation. The similarity of the bulk and shear
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(a) Standard TTS plot for DC704 (bulk).
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(b) Standard TTS plot for PPE (bulk).
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(c) Normalized Cole-Cole plot of DC704 (bulk).
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(d) Normalized Cole-Cole plot of PPE (bulk).

log(f/fmax)

G
′′ /
G

′′ m
a
x

DC704212K-226K

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Standard TTS plot for DC704 (shear).
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(f) Standard TTS plot for PPE (shear).
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(g) Normalized Cole-Cole plot of DC704 (shear).
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(h) Normalized Cole-Cole plot of PPE (shear).

Figure 7.7 Various TTS plots of the bulk and shear modulus data presented in chapters 4 and
5. Bulk modulus data are quite noisy, but within the noise TTS is obeyed in both DC704 and
PPE. With less noise in the shear data, we can see that TTS is perfectly obeyed in DC704,
while there is a wing in the PPE (shear) data, but the data seem to converge to a master
curve when T is lowered.
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Figure 7.8 Same plots as in Fig. 7.7, but now with bulk and shear data plotted together, bulk
data in black symbols and shear data in blue symbols. It seems like the shape of the bulk
and shear relaxation is the same, most convincingly in DC704. This could be due to some
connection between the shear and bulk moduli, but it could also be because all relaxation are
similar for a given substance.

modulus relaxation was already noted by Morita et al [14] (in a polymer) and later by
Christensen & Olsen [24] (for the alcohol 1,2,6-hexanetriol).

Normally when we present and analyze bulk modulus data we make a low frequency
cut off of the data to get rid of the signal due to liquid flowing out of the PZ shell
at low frequencies (the “breathing mode”, since this feature is unrelated to the bulk
modulus relaxation. But as we already explored in the previous section the position
of this “breathing” mode is determined by the shear viscosity and a geometric factor.
Including this feature in the TTS plot could reveal something about the coupling
between shear and bulk viscosities. We scaled the bulk modulus curves to the peak
position of the “breathing” mode. In order to do so, the peak must of course be in the
frequency window of the measurement. This limits the range of temperatures that can
be included in the analysis to the higher temperatures.

In Fig. 7.9 we show the imaginary part of the bulk modulus as a function of frequency,
including also the “breathing” mode of the liquid flowing in and out of the hole drilled
in the ceramics, as well as all of these curves scaled with the peak position of the
“breathing” mode. Being Debye like in nature the “breathing” mode obviously scales,
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Figure 7.9 Left side shows the imaginary part of the bulk modulus as a function of frequency
at different temperatures, including also the “breathing” mode of the liquid flowing in and out
of the hole drilled in the ceramics. Right side shows the same spectra scaled to the position
of the “breathing” mode. For DC704 there is clearly TTS over the entire region, while PPE
shows small deviations from this picture for the lowest temperatures. The red dashed line is
a pure Debye curve.

but perhaps more surprising is the fact that this scaling at the same time seem to scale
the bulk modulus relaxation. The entire signal collapses to one curve. For DC704 the
collapse is close to perfect, both the minimum between the two peaks and the height
and position of the bulk modulus relaxation collapse within the noise. For PPE the
minimum decreases slightly and the maximum of the bulk modulus relaxation increases
with decreasing temperature thus destroying the data collapse. The peak position of
the bulk relaxation however seem to be unchanged.
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Figure 7.10 Bulk modulus (circles) and shear modulus (squares) loss peak frequencies of
DC704 (open symbols) and PPE (full symbols). The shear modulus relaxes 2.5 times (0.4
decades) faster than the bulk modulus.

Time-temperature-superposition for the entire curve suggests that the bulk and shear
viscosities follow each other, i.e. their decoupling index in constant over the tempera-
ture range included here. Below we will look more into the question of decoupling of
time scales.

7.3 Relaxation times and shape parameters

For all measurements it is possible to determine the time scale of the relaxation from
the loss peak frequency, fmax. If TTS is obeyed this quantity should be proportional to
the inverse of the relaxation time. The peak position is determined by fitting a second
order polynomial to a some points around maximum data point of the loss. Exactly
how many data point are included in the fit depend on the noise. For the shear modulus
relaxation a total of five points were sufficient. For the lowest temperature of the bulk
modulus data, we included as many as 15. The result is shown in Fig. 7.10, where
the full symbols are PPE data and the open symbols are the DC704 data. In both
cases the shear modulus relaxes roughly 2.5 times (0.4 decades) faster than the bulk
modulus. This agrees well with the conclusion of Christensen & Olsen [24] and Morita
et al. [14], but not with the relation ηK/ηG = 2/3 derived by Alig and coworkers
[65, 67]. Despite the difference in relaxation times, the temperature dependence of
bulk and shear relaxation times seems to the same for these two liquids.

In our group it is customary to characterize the shape of the relaxation function in
terms of the minimum slope (suggested by Olsen et al [68]) and the normalized half
width the relaxation (suggested by Dixon et al [70]). The minimum slope is defined as
the minimum of the logarithmic derivative of the high frequency part of spectrum

αmin = min
f>fmax

(
d logχ′′

d log f

)
(7.9)

which is a negative number giving the high frequency power law behavior of the liquid
(see Fig. 13.3 in chapter 13 for an illustration of the procedure). αmin expresses
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Figure 7.11 Example of the determination of the full width at half maximum. Dots are data
points, full curve shows a Debye relaxation (rescaled to make the peak positions collapse),
and the red arrow marks the full width at half maximum, W . Usually we normalize this
number to the width of a Debye process, wD.

the “stretching” of the relaxation as does the model parameters βSE and βCD of the
stretched exponential function and the Cole-Davidson fitting functions (Eqs. (2.7) and
(2.8)), but without assuming any model or functional form of the relaxation.

Determining the minimum slope thus involves taking the numerical derivative of the
data, and this only works really well for relatively noise-free measurements. For most
dielectric data this is an excellent method to characterize the spectral shapes of relax-
ation as documented Nielsen et al [69]. For shear modulus relaxation data it works
relatively well, while the bulk modulus data are simply too noisy for this procedure.

The full width at half maximum W is the width of the relaxation spectrum at half
maximum (illustrated in Fig. 7.11). It is more straight forward to determine W and
we should be able get obtain value even for the bulk modulus relaxation spectra.

We show the minimum slopes of DC704 and PPE shear relaxation as a function of loss
peak frequencies in Fig. 7.12(a) compared to the values obtained in 2005 by Jakobsen et
al [27] for the same substances (in smaller open symbols). There is excellent agreement
between the two sets of data.

In Fig. 7.12(b) we report the widths (normalized to the width of Debye W/WD),
obtained for both bulk and shear modulus measurements. The scatter is quite large for
the bulk relaxation values which reflects the relatively large noise in the measurement
itself. Within the scatter the bulk and shear measurements agree, which is also what
we expect based on the TTS analysis in the previous section. The width of DC704
shear relaxation is more or less constant while the PPE values decrease slightly with
decreasing temperature. This again confirms that TTS is well obeyed in DC704 and
not in PPE (but the changes are not dramatic).

Both width and minimum slope for DC704 agree very well with previous results, while
we observe a discrepancy between widths of the shear relaxation in the present mea-
surements and the values reported in [27] for PPE. The latter are shifted towards lower
values (narrower spectral shape), but the temperature dependence (or loss peaks fre-
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Figure 7.12 Spectral shape parameters for DC704 and PPE. Triangles are DC704 data, circles
are PPE data, shear modulus data in green and bulk modulus data in blue. Large symbols
are from present measurements, small symbols are parameters reported by Jakobsen et al
[27]. Bulk modulus relaxation data were too noisy to extract any meaningful minimum slope
value. There is excellent agreement between present results and previously reported values of
the minimum slope and, in the case of DC704, with W . For PPE there is a small discrepancy
in the width parameter in absolute numbers, but not in temperature dependence.

quency dependence) is similar. Jakobsen and Niss [25] showed that an imperfect filling
of the shear transducer can lead to a spurious broadening of the spectral shape, what
could explain this observed discrepancy.

7.4 Time scales of the alpha relaxation in different responses

We have observed that the time scales of the bulk and shear modulus relaxation,
although not identical, have a constant decoupling index. Is this surprising? Maybe
not, since both responses probe the structural relaxation processes of the liquid.

On the other hand the dynamics of viscous liquids are often stated to be characterized
by a break-down of the Stokes-Einstein relation at around T/Tg ∼ 1.2 [33, 35], and as
mentioned in the introduction several experimental studies [33–37, 39–42, 48, 49, 71]
find that the decoupling index is temperature dependent.

Others again report no or only weak decoupling of time scales in measurements [7, 44–
46]. Jakobsen et al [27] report a constant decoupling index of dielectric and shear
mechanical relaxation times for some liquids and not for others.

Common for many of these publications is that data from own measurements are
compared to literature values. This should always be done with caution. Since the
relaxation times and viscosities are extremely temperature dependent even a very small
difference in calibration of temperature can lead to a spurious temperature dependence
of the decoupling index when Tg is approached.

We illustrate this point in Fig. 7.13 by a simulated relaxation map. The left figure
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Figure 7.13 Illustration of a spurious temperature dependent decoupling of relaxation times.
In the left figure the blue and red curves are both shifted one decade in relaxation time
with respect to the black curve. In addition the red curve is shifted 1% on the temperature
axes. This shift is barely visible in the ordinary relaxation map. The right figure shows the
decoupling index as a function of temperature of the red and blue curves with respect to the
black curve. For the blue curve the decoupling index is (of course) constant while the red
curve has a dramatic temperature dependence due to the small shift on the temperature axes.

shows a relaxation time curve in black and the identical curve shifted one decade in
blue. The red curve is identical to the blue curve except it has been shifted 1% up in
temperature. There is hardly any visible difference between the blue and red curve in
this plot. But when we look at the decoupling index (defining the black curve as the
reference) there is a dramatic difference in the behavior; the decoupling index of the
blue curve of course being constant, while red curve increase quite substantially with
decreasing temperature.

In our group several different techniques for measuring response functions of viscous
liquids have been developed to be measured in the same set ups. In addition to the
already mentioned methods (mechanical and dielectric spectroscopy techniques) we can
measure the longitudinal heat capacity, cl, and the longitudinal expansion coefficient,
αl. The longitudinal heat capacity, cl, was measured by Jakobsen et al [72] using
the 3ω-method. The longitudinal expansion coefficient, αl, was measured in the time-
domain by Kristine Niss [73] using a micro-regulator to make fast (“instantaneous”)
temperature jumps (the micro regulator is described in [21]). All data were acquired
in the same cryostat and experimental set up, except the αl measurement, which was
carried out in a very similar set up. The temperatures of the two cryostats were
calibrated by the procedure described in Appendix B and the temperature has been
adjusted accordingly.

Thus we are able to compare the time scale of the alpha relaxation for five different
responses, all measured under (almost) identical condition. Loss peak frequencies for
all the response functions are shown in Fig. 7.14. In the comparison we included
also the loss peaks of the compressibility, although the compressibility is simply the
inverse of the bulk modulus κ̃S = 1/K̃S , and thus not a “new” or independent response
function, as well as the (inverse) shear viscosities determined in section 7.1 above. The
dashed line is a fit of the dielectric loss peaks to the Avramov equation (chosen due to
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Figure 7.14 Loss peak frequencies for a number of different thermo-visco-elastic response
functions all (except for αl) measured in the same set-up. cl data is measured using the
3ω-method by Bo Jakobsen [72]. αl is measured in the time-domain by Kristine Niss [73].
Dashed lines are fits of the dielectric loss peaks to the Avramov equation (see chapter 10).
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its superiority over the VFT equation for DC704, see also chapter 10)

τ = τ0 exp

{(
B

T

)n}
(7.10)

with τ0, B, and n as free fitting parameters.

It is evident that for both DC704 and PPE the different response functions relax on
slightly different time scales, though not dramatically different. All relaxation times at
a given temperature fall within roughly one decade. It also appears from the figure they
have a similar temperature dependence. Because this is difficult to judge from such a
relaxation map, we quantify differences in temperature dependence by the decoupling
index defined as the logarithm of the ratio of loss peak frequencies, log

(
fmax/f

ε′′

max

)
,

using the dielectric values as a reference because it covers a very wide span of relaxation
times.

Unfortunately, not all measurements are taken at the same temperatures, so instead of
the actual dielectric loss peaks we used the fit as a reference. A good fit is important in
the case of DC704 because we need to extrapolate to be able to estimate the decoupling
index of the αl loss peaks. In the case of PPE all measurements except the heat capacity
was measured at the same temperatures. The plotted decoupling indices are thus the
ratio of the actual measured peak frequencies. Since the temperature region of the
heat capacity measurement was covered by the dielectric measurement, a simple linear
interpolation between dielectric loss peaks were used to estimate the decoupling of heat
capacity relaxation time.

Fig. 7.15 shows the decoupling indices of all measurements. As already indicated by
Fig. 7.14, these are very close to constant. We observe little or no decoupling of time
scales in DC704 and PPE for most of the measurements. This is really quite remarkable
when the sensitivity of the decoupling index is taken into consideration.

Based Fig. 7.15 we can establish a hierarchy of relaxation times, shear relaxation being
the fastest and heat capacity relaxation the slowest

τcl > ταl
> τε > τκs

> τKS
> τG . (7.11)

This may not necessarily be valid in general. In the literature it seem well established,
though, that the dielectric relaxation is slower than the shear modulus relaxation [7,
26, 27, 44, 50, 61] and there also indications of the bulk modulus relaxation in general
is slower than the shear relaxation [14, 24, 64].

The inverse viscosities have been scaled by an arbitrary factor C to place the data in
the window of the loss peak frequencies and thus the position of these data points is not
relevant for this comparison. The viscosities in the decoupling plot seem less constant
(especially for PPE) which may be explained by the fact that the proportionality of
relaxation time and viscosity is only approximate. The Maxwell model predicts that
τ = η/G∞ and over the temperature interval shown here G∞ decreases roughly 30%
with increasing temperature (see Fig. 9.1). A change of 30% in G∞ will shift the point
of the highest temperature 0.15 decades down with repect to the point at the lowest
temperature, which – at least in the case of PPE – is roughly what would bring the
viscosities to fall on a horizontal line.
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Figure 7.15 Decoupling index for DC704 and PPE of all measured response functions. For
DC704 a fit (Eq. (7.10)) of the dielectric relaxation times was used because the dielectric
measurement was taken at slightly different temperatures. These plots clearly show that
there little or no decoupling of the time scales. The Avramov fit is near perfect for DC704,
which is also required if the extrapolation down to the temperatures of the αl measurement
should be trusted.

7.5 Discussion and concluding remarks

Based on the findings in this chapter we can conclude the following:

• The bulk and shear modulus relaxation shapes are almost identical in shape for
DC704 and PPE respectively

• TTS is obeyed in DC704 and only small deviations from TTS is seen in PPE
• There is no sign of a β relaxation in either DC704 or PPE (unless the small

deviations from TTS is a signature of underlying small amplitude beta process)
• Time scales of of the five different probes presented here decouple, but the de-

coupling index is constant for time scales at temperatures down to (and actually,
in the case of DC704, also somewhat below) the glass transition temperature

DC704 and PPE thus show particularly simple patterns of relaxation. This immediately
poses two questions: Why is this? And is it unique?

Probably the coupling of time scales in viscous liquids is not universal. There are
strong indications from experiment of a break-down of the Stokes-Einstein relation
[33–37, 39–42] and – perhaps more convincing – from simulations [74–82] as Tg is
approached. Even though some of reported temperature dependent decoupling index
may be explained by experimental uncertainties of the temperature, there are other
examples where this is not the case; Jakobsen et al [27] for instance report decoupling
index for shear and dielectric relaxation in seven different liquids measured in the same
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experimental setup, where some liquids display a constant decoupling index and others
not. And simulations certainly do not suffer from these problems.

Then we may speculate why it seems to be the case for DC704 and PPE.

A class of viscous liquids with simple dynamics have been identified in computer simu-
lations. They have been termed “strongly correlating liquids” [83] due to their strong
correlations between fluctuations of the configurational part of pressure and potential
energy at constant volume. The dynamics of these liquids can described in terms of one
’order’ parameter. Viscous liquids with one order parameter have been shown to have a
“dynamical Prigogine-Defay ratio” equal to unity [84]. The dynamical Prigogine-Defay
ratio is defined as a ratio of a combination of (the imaginary part of) three independent
thermo-visco-elastic response functions

Λ ≡ κ′′T (ω)c′′P (ω)

T [α′′P (ω)]
2 , (7.12)

where κ′′T is the imaginary part of the isothermal compressibility, c′′P (ω) is the imaginary
part of the isobaric specific heat and α′′P (ω) is the imaginary part of the isobaric
expansion coefficient. Λ = 1 was shown to hold approximately for two computer
liquids [85].

If DC704 and PPE belong to this class of liquids, then certain combinations of linear
response functions will be proportional and thus have identical relaxation times. Since
there are only three independent thermo-visco-elastic response function, the remaining
may be calculated from a combination of these three. It seems plausible that the
relaxation times from combinations of these three linear response functions may be
proportional if they themselves are proportional in frequency. So far, this is just a pure
speculation and it remains to be confirmed.

There is however a clear indication that DC704 is a “strongly correlating liquid”. In
Paper V (p. 289) the density scaling exponent for DC704 is predicted using the same
shear modulus, bulk modulus, heat capacity, and expansion coefficient data as in sec-
tion 7.4 and found to be in agreement with the exponent determined by dielectric
measurements under different pressures.
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8 Broadband mechanical spectrum of
DC704

In this chapter we return to the original idea of measuring the mechanical properties of
viscous liquids: combining the low frequency measurements with result from the high
frequency techniques developed in the Nelson group at the Department of Chemistry
at MIT.

This collaborative work has been underway for several years now and there are still
some loose ends, but it is now close to an end.

8.1 Introduction and motivation

The dramatic slowing down with temperature of the structural relaxation in super-
cooled liquids represents a serious challenge for any theory of supercooling liquids. It
is equally challenging experimentally to span that many orders of magnitude in time
or frequency. No single technique can cover the entire range of relaxation times and as
a result any such attempt must be pieced together by several different techniques.

Dielectric spectroscopy has long been able to cover an impressive 18 orders of magni-
tude in frequency [86] and routinely cover 9 decades from mHz to MHz. In Fig. 8.1
such a broadband measurement of glycerol by Lunkenheimer and co-workers is shown.
Recently, a similarly impressive light scattering study of OTP by Petzold & Rössler
[87] follows the alpha relaxation over 16 decades in time over 200K, from just above
Tg (245K) to well above the melting temperature (440K), shown in Fig. 8.2.

These extremely broad spectra provide valuable insight into the rich dynamics of vis-
cous liquids: the temperature dependence of the alpha-relaxation time, the evolution
of the alpha relaxation shape with temperature, and the emergence of less intense and
less temperature dependent relaxation processes once the alpha-relaxation has moved
to lower frequencies. A schematic representation of a low-temperature dielectric loss
spectrum due to Lunkenheimer et al [88] is shown in Fig. 8.3.

Dielectric spectroscopy is a very precise method and results are straight-forward to
interpret compared to other types of spectroscopy where the extraction of the desired
properties is usually more involved. The abundance of dielectric data in the literature
is a proof of the popularity of the technique. But in reality dielectric spectroscopy is a
substitute (but a good, reliable, and very precise one) for what we are really interested
in, namely the thermodynamic and mechanical response functions, the “true” measures
of viscosity.

As a result there has been numerous attempts to connect the dielectric response to the
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Figure 8.1 Broadband dielectric spectroscopy of glycerol covering 18 decades in frequency.
As the temperature is lowered the alpha relaxation process moves down in frequency and
broadens. At low temperatures (close to Tg) a wing develops on the high frequency side
of the alpha peak. Already at quite high temperatures a fast process (peak around 1THz)
separates from the alpha relaxation. This processes is completely temperature independent
and get more and more distinct as the temperature is lowered. From [86].

Figure 8.2 Light scattering study of OTP covering 16 decades in time using different light
scattering techniques. From [87].
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Figure 8.3 A schematic representation of a typical dielectric loss spectrum of a viscous liquid
at a temperature just above Tg. At the lowest frequencies we see the alpha relaxation which
has a characteristic asymmetric shape with ω ∝ 1 on the low frequency side of the peak
and ω ∝ β where −1 < β < 0 on the high frequency side of the peak. At slightly higher
frequencies a secondary relaxation may appear, which is sometimes called a slow beta or a
Johari-Goldstein beta process. This process is less temperature dependent than the alpha
relaxation. Around 1 THz a temperature independent peak appears which is referred to as
the “microscopic peak” or the Boson peak. In the region just below the Boson peak it is
sometimes suggested that additional “fast processes” exist because the loss is higher than
what a simple superposition of the present processes would suggest. From [89].

mechanical properties and reveal exactly how they may be related, e.g. [60, 63]. It is
demonstrated in chapter 7 that in some liquids the dielectric relaxation time is nearly
proportional to the viscosity. For other liquid this may not be the case.

In dielectric measurements spectral shapes can get distorted due to DC conduction
thus making it difficult to determine shape parameters and relaxation times. In mono-
alcohols the dominant signal is due to an extremely slow Debye process, which is not
related to the structural relaxation [28, 90, 91]. In those cases mechanical spectroscopy
offers some advantages over dielectric spectroscopy. Mechanical spectroscopy can be
applied to any liquid – also the ones with small (or no) dipole moments.

8.1.1 Broadband mechanical spectra in the literature

Mechanical relaxation data spanning many decades have often been constructed by in-
voking the time-temperature-superposition principle. The frequency (or time) window
of a certain technique may be relatively small, but by measuring at different tempera-
tures different parts of the relaxation spectrum is uncovered and then shifting the data
to make them collapse onto one master curve, it is possible to “extend” the frequency
window (see for instance [92] who claim to cover more than 30 decades). This proce-
dure however only produces one master curve and usually only of the alpha relaxation,
and thus does not reveal any information on the temperature evolution of the alpha
process or on additional processes. It is questionable if this procedure is valid over
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Figure 8.4 A master curve of shear mechanical relaxation in m-toluidine using time-
temperature superposition of two different measurements, a dynamical shear measurement
and an ultrasonic shear measurement giving a total dynamical range of ∼13 decades. From
[8].

more than a limited range of temperatures.

Mandanici et al [8] combined two techniques in different dynamical regions with TTS
thus avoiding absurd extrapolations. This way almost 13 decades in frequency is re-
liably covered. But still only as a master curve and not covering a broad range of
temperatures.

Read and coworkers have measured tensile creep compliance of aging polymers covering
a time span from 10−8s - 105s corresponding to a frequency window 1.6µHz to 16MHz
with a total of four different techniques that together covered most of the region [93, 94].
The polymers were quenched from a temperature above Tg to room temperature (<
Tg) and the evolution of the beta process some of the alpha process was followed
as the sample was aging. The creep compliance of polypropylene measured over 13
decades in time is shown in Fig. 8.5. While the mechanical methods applied in this
study were indeed linear response measurements, the sample properties was not studied
in equilibrium as a function of temperature, but out of equilibrium as a function of
(waiting) time at a fixed temperature.

We thus believe that we are the first to present an attempt at compiling the mechanical
counterpart of Fig. 8.1, combining 6 different mechanical spectroscopy techniques
spanning 14 decades in frequencies from 1mHz to (almost) 1 THz for an equilibrium
liquid. The total temperature range covered is 150-400K.

If matched correctly we will at the same temperatures have access to the short time
properties, the high (“infinite”) frequency moduli, and the long time properties, i.e.
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Figure 8.5 Tensile creep compliance measurements on poly(propylene) covering 13 decades in
time. The polymer was quenched from 353K to 295K and measured at different aging times.
The figure is from [5], the data were also published in [94].

relaxation time and fragility index. This could prove extremely valuable for testing
the proposed correlations between high frequency elastic moduli and fragility [95] as
well as models suggesting that the alpha relaxation time is controlled by the short time
elastic properties, e.g. shoving model [96]. Experimentally one usually only has access
to one of the limits and thus a test of such relations rely on assumptions regarding
the continuation of the curve (for instance G′′max ∝ G∞ in [96]) or on literature values
of relaxation times or fragility (e.g. in [97]). Given that these may vary considerably
with measured property and preferred definition of Tg, it is advantageous with complete
mechanical spectra, where we are sure to link the high frequency moduli to the “correct”
values of for instance relaxation times.

8.2 Mechanical spectroscopy techniques used here

In Figure 8.6 we give an overview of various techniques available to us for probing the
mechanical properties of a liquid and the frequency range each of them covers.

For some of these methods, certain geometries are natural to work with and certain
properties are measured, for other methods other geometries and quantities are con-
venient. Thus, to match measurements and compile a spectrum, it will be necessary
to convertsound velocities into moduli (or vice versa) and measured moduli into other
moduli.

In the following subsections we briefly sketch the principles of the techniques used to
compile the broadband spectrum of DC704 and specify how to convert between the
measured properties.
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Figure 8.6 Overview a the mechanical spectroscopy techniques used here and their frequency
windows. PBG/PSG techniques (presented in chapters 4 and 5) cover roughly seven decades
from 1 mHz to 10kHz (the PBG measurements are however quite noisy at the lowest
frequencies and the lower limit of this measurements 10mHz rather than 1mHz). Using the
resonances in the PBG spectrum we can extend this method into the 100-500kHz region, but
only at moderately high temperatures. Impulsive Stimulated Scattering (ISS) techniques can
measure both longitudinal and transverse sound velocities and damping in the MHz-GHz
region [98, 99]. Laser Ultrasonics (LUS) combined with Time Domain Brillouin Scattering
(TDBS) covers from 1Ghz to almost 1THz [100]. This technique measures mainly longitudinal
acoustics, but can also measure shear waves [101].

8.2.1 Connection between the complex moduli, sound velocity and sound
attenuation

The general equation of motion for an isotropic medium is given by Landau & Lifshitz
[6, p. 87]

(K + 4/3G)∇(∇ · u)−G∇×∇× u = ρü (8.1)

where u is the displacement field, ρ is the density, and K and G are the bulk and shear
moduli. Assuming a one dimensional geometry we have u = (ux, 0, 0), and then Eq.
(8.1) reduces to

Mu′′x = ρüx (8.2)

where the dot means differentiation with respect to time and the apostrophe here means
differentiation with respect to x, and M = K + 4/3G.

Assuming a harmonic input the displacement field can be written

u(x, t) = u0e
i(ωt+kx) = u0e

ik((ω/k)t+x) (8.3)

where the propagation velocity of the wave (the sound velocity) is cl = ω/k. Inserting
this into Eq. (8.2) we obtain

Mk2 = ρω2 ⇒ cl =

√
M

ρ
. (8.4)



8.2 Mechanical spectroscopy techniques used here 99

But if there is dispersion in the medium M is complex, i.e. the wavevector k (or the
frequency) is complex, k = k′ + ik′′

ei(kx−ωt) = ei((k
′+ik′′)x−ωt) = e−i(ωt−k

′x)e−k
′′x (8.5)

From this we define the sound velocity velocity as cl = ω
k′ and the damping coefficient

is k′′. Using the relation from Eq. (8.4) we get an expression for the sound velocity,
cl, and the acoustic damping α

cl(ω) =
ω

k′(ω)
=

1

Re
{√

ρ
M(ω)

} , α(ω) = k′′(ω) = ω Im

{√
ρ

M(ω)

}
. (8.6)

If we conversely want to calculate the modulus from wave vector k and a measured
complex frequency (ω̃ = ω′ + iω′′), then by Eq. (8.4) we have

M̃ =
ρ(ω′2 − ω′′2)

k2
+ i

2ρω′ω′′

k2
(8.7)

and conversely if the frequency is fixed and a complex wavevector is measured

M̃ =
ρω2(k′ − k′′)2

|k|4
+ i

2ρω2k′k′′

|k|4
. (8.8)

Temperature-dependence of density

Obviously, to calculate back and forth between sound velocities and moduli, we need
to know the temperature dependence of the density of the liquid. Since we have not
measured this, we will have to use an estimate.

Density is defined as mass divided by volume ρ = m
V . If we have a fixed mass and mon-

itor the development with temperature ρ = ρ(V (T )). To the first order temperature
dependence of the volume can be written

V (T ) = V0 +
dV

dT
(T − T0) = V0

[
1 +

1

V0

∂V

∂T
(T − T0)

]

= V0 [1 + αp(T − T0)]

(8.9)

and we have
ρ(T ) =

m

V0[1 + αp(T − T0)]
=

ρ0

1 + αp(T − T0)
, (8.10)

where αp is the (isobaric) expansion coefficient. The expansion coefficient for liquids
is in general somewhere between 5 · 10−4K−1 and 10 · 10−4K−1. The value for DC704
αp = 72 · 10−5K−1 is given in [102]. We will assume that the expansion coefficient is
temperature independent.

8.2.2 PBG/PSG (mHz-kHz)

These techniques were described in chapters 4 and 5 and they are aimed measuring high
moduli (in the MPa-GPa range) and optimized to measure the low frequencies. These



100 Broadband mechanical spectrum of DC704

techniques measure the complex bulk and shear modulus, which can be converted into
a longitudinal modulus through the relation

M = K + 4/3G. (8.11)

In these measurements, the frequency is fixed and a complex modulus (complex wavevec-
tor) is measured.

8.2.3 Impulsive Stimulated Scattering (MHz-GHz)

In the megahertz frequency range, Impulsive Stimulated Scattering (ISS) techniques
can measure both longitudinal and shear sound velocities and damping, depending on
the experimental geometry [98]. ISS is a pump-probe experiment where two short laser
pulses are overlapped spatially and temporally in the sample to impulsively excite a
material response and probe beams then measures the time evolution of the response.

The VVVV geometry refers to the excitation pulses and probe beams all being ver-
tically polarized, VHVH refers to the polarization of the two pump pulses as well as
the probe beams being polarized at 90◦ angles. The technique operated in the VVVV
geometry is termed Impulsive Stimulated Thermal Scattering (ISTS). In ISTS, ab-
sorption of excitation laser pulses in the liquid results in an impulsive heating and
a thermal expansion in the peaks of the generated interference pattern. The expan-
sion launches two counter propagating acoustic waves, whose wavelength matches the
excitation interference fringe spacing.

(a) Schematic view of the ISS setup (from [100]). Two
light pulses are crossed spatially and temporally in the
sample, thus producing an interference pattern. In
the VVVV geometry of the experiment (excitation and
probe pulses all have the same polarization direction)
some heat will be absorbed in the peaks of this in-
terference pattern causing a rapid thermal expansion.
This rapid expansion launches two counter propagating
acoustic waves which will diffract a probe beam incident
on the grating pattern created by the wave.

(b) Typical signal of an ISTS measurement.
The offset is due to the thermal grating that
decays slowly through thermal diffusion,
while the oscillations are due to the acous-
tic waves propagating. The inset shows the
Fourier transform of the signal from which
the frequency of the oscillations can be de-
termined. From [97].

Figure 8.7 Principle of the Impulsive Stimulated Thermal Scattering (ISTS) technique and
an example of the signal output.

Diffraction of a probe laser pulse incident on the grating pattern generated by the
acoustic wave arises through the induced changes in the refractive index (which in the
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case of ISTS mainly comes from density changes). The signal (an example is shown
in Fig. 8.7) shows time-resolved oscillations which eventually decay due to acoustic
damping (or if the acoustic wave propagates out of the probing region).

The frequency ω(k) of the acoustic response at the selected wave-vector k allows for
a determination of sound velocity through the dispersion relation cl(k) = ω(k)/k.
The decay of the acoustic oscillation envelope is related to the acoustic attenuation
I(t) ∼ exp(−γt). There is also a quasi-steady-state density modulation which decays
on a micro second timescale due to diffusion of the heat from the grating peaks to the
nulls, which results in an offset of the signal.

In this measurement, the wave vector is fixed and a complex frequency is measured.

8.2.4 Laser Ultrasonics (GHz-THz)

Laser ultrasonics is an analogue to the conventional ultrasonic technique, but it has
access to much higher frequencies, typically from a few GHz up to several hundreds of
GHz.

In a picosecond laser ultrasonic measurement very short light pulses (typically ∼300fs)
irradiates a thin metal film (10-100nm) that acts as a transducer converting the ab-
sorbed light to thermal energy. The thermal expansion of the film launches an acoustic
wave and the response gets detected through a variably delayed probe pulse. If a ma-
terial is in contact with the metal film the acoustic pulse will be transmitted into the
this material and the mechanical properties of the this material can be studied. Sound
velocity of the sample can be determined through a measured round trip time and the
damping by comparing the signal intensity of two echoes.

In the set up in the Nelson lab the technique is operated in transmission mode, which
means that there is a metal film on both sides of the sample. The pump pulse then
generates an acoustic wave on one side of the sample which then propagates through
the sample material to the second metal film. The arrival of the strain pulse on the
second metal film will cause a small deformation (displacement) of the film which gets
detected interferometrically by a variably delayed probe pulse.

When this technique is employed to measure mechanical properties of liquids a multi-
layer construction is necessary where the liquid is sandwiched between two metal coated
substrates. Liquid layer thicknesses varying from a few nanometers to a few microns
can be fabricated this way [100].

Narrow band acoustic wave generation

The standard laser ultrasonic technique is a broadband technique, because a short
pulse contains many frequencies. In the Nelson group a pulse-shaper was developed
to facilitate frequency tuning of the acoustic wave generation. The idea is to split the
pulse into a pulse-train of seven pulses with a variable delay between the pulses, where
the delay sets the frequency.

The principle of the measurement is sketched in Fig. 8.8, where also a typical signal
from such a measurement is shown.
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(a) A train of ultra short laser light pulses incident
on a thin metal film. The metal film absorbs some
of the pump light what causes a sudden heating
and thermal expansion of the film. The expansion
of the film generates an acoustic wave pattern sim-
ilar to the shaped light pulse which then propa-
gates across the sample and get detected interfero-
metrically on the receiver film by the probe pulse.
The transducer film is usually very thin (10-50nm)
to facilitate generation of high frequency acoustic
waves, while the receiver film is somewhat thicker
(∼ 100nm) to get a high reflection and to hinder
probe light penetration into the sample.

(b) Signal in the LUS measurement. Zero de-
lay time corresponds to the time where the pump
pulse hits the transducer film. At a later time the
signal arrives at the receiver film which then gets
detected interferometrically as a small displace-
ment of the receiver film. Different colors corre-
spond to different liquid layer thicknesses hence
the different arrival times. From [100].

Figure 8.8 Principle of the narrow band laser ultrasonic technique and an example of the
signal output.

Compared to the broad band approach the narrow band technique enhances the sig-
nal at selected frequencies thus improving the signal to noise ratio when a frequency
resolved spectrum is sought.

In this measurement the frequency is fixed and a complex wavevector is measured.

Time domain stimulated Brillouin light scattering

It is also possible to monitor the propagation of the strain pulse directly in the liquid,
see figure 8.9(a). For this technique the setup is identical to the LUS setup, but the
sample sandwich construction is slightly different: in this case there is no receiver metal
film and the probe light penetrates into the liquid.

The probe pulse light will be reflected by the transducer film but also by the propagat-
ing strain wave. These two parts will interfere constructively or destructively depending
on the length of the extra path travelled by light reflected at the film. As the strain
pulse propagates through the sample, the two parts of the reflected beam will move in
and out of phase, resulting in an oscillatory signal, see figure 8.9(b). As in the ISTS
measurement, the frequency of the oscillations νB can be related to the sound velocity
and the damping of the oscillations to the acoustic damping. The incident angle of the
probe beam, θ, the sound velocity of the liquid cl, and the probe light wave lengths λ,
will select out a specific frequency of the oscillations, according to the relation

νB =
2ncl
λ sin θ

(8.12)

where n is the refractive index of the liquid. Thus there are different possibilities for
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tuning the frequency.
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(a) In this configuration the probe light penetrates
into the sample and directly probes the acoustic
wave as it propagates through the sample. A por-
tion of the light gets reflected by the propagating
strain pulse and interferes with the light reflected
by the film. As the wavefront propagates, the two
reflected beams will alternate between constructive
or destructive interference at the detector.

(b) An example of signal from a TDBS mea-
surement. As the temperature decreases the fre-
quency of the oscillations increase and the damp-
ing decreases, reflecting an increase in sound ve-
locity and decrease in acoustic damping. From
[100]

Figure 8.9 Principle of the Time Domain Brillouin Scattering (TDBS) technique and an
example of the signal output. The frequency of the oscillations can be related to the sound
velocity of the liquid and the decay to the acoustic damping in the liquid.

This technique is close to standard frequency domain Brillouin scattering; but in the
TDBS experiment a stimulated wave is probed instead of thermally induced acoustic
waves. And the scattered probe light is not split into frequency components, instead
the intensity of the scattered light gets detected, which will average all scattered fre-
quencies.

In this measurement the wave vector is fixed and a complex frequency is measured.

8.3 Matching the measurements

One way to assess how well the data from the different measurements match, is by
plotting data as a function of temperature at fixed frequencies or fixed wavelengths. In
this representation the measurements are only required to span wide in temperature to
get overlap of the different methods, and they do need to overlap in frequency. Plotting
the sound velocity or the real part of the modulus as a function of temperature a solid-
like level and a liquid-like level should appear and for each selected frequency (or wave
vector) there will be a transition from one to the other, happening at a temperature that
depends on the frequency: a low frequency/high wave vector the transition happens at
low temperatures and vice versa.

In Fig. 8.10 we show the longitudinal sound velocity as measured in the high frequency
techniques and calculated using Eq. (8.6) from the measured moduli at low frequencies.
The limiting high and low frequency levels of the liquid sound velocity are indicated by
dashed lines. Obviously the relaxation strength decreases with increasing temperature
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Figure 8.10 The longitudinal sound velocity as a function of temperature at different fixed
frequencies or wavelengths. The zero and infinite frequency levels of the liquid sound velocity,
c0,liq(T ) and c∞,liq(T ), are suggested by the dashed lines. The glass transition temperature
is marked by a vertical dashed line. In the measurements the glass transition is manifested
as a change in slope of the temperature dependence of the “solid-like” sound velocity. The
transition from liquid-like to solid-like behavior happens at a lower temperature with lower
probe frequency/larger probe wavelength. The agreement between the different methods is
excellent.

and the extrapolations of the limiting high and low frequency levels indicate that it
vanishes around 400K. We have also indicated a “glass-line” (black dashed line labelled
cglass and the glass transition temperature is shown by a vertical dashed line. The glass
transition is clearly seen in the measurement as a change in slope from the c∞,liq-level
to the cglass level.

Overall there is good agreement between different methods. The low frequency mea-
surements pointa to a slightly higher and steeper c∞ level than the high frequency
measurements, while the agreement at the c0 level is remarkable. No corrections of
temperature or otherwise were introduced.

We proceed to construct the frequency resolved spectrum, which is shown in Fig.
8.11. Each temperature has been assigned a color ranging from dark blue (lowest
temperatures) to dark red (high temperatures). This should make it easier visually
to link the high and low frequency regions. In this representation the frequency gap
between the high and low frequency methods becomes quite clear. The data points
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from the resonance method provide some linking between the two regions, but only in
the M0 level and the beginning of the dispersive region is given by this method. And
only the real part as the fitted values of the imaginary parts (the fitted viscosities) are
too noisy be meaningful in this context (see section 4.7 (chapter 4) for details on the
resonance method).

It is also clear that the different data sets do not fit exactly. As already seen in the
(T, cl)-representation, the low frequency region has a slightly higher K∞ level than
what is measured at the high frequencies, but with the estimated error on the bulk
and shear moduli of 4-7% each gives an error of ∼5-10% on the sum, so the deviation
is within the error of the of the measurement.

In the MHz region there is a discrepancy between the low temperatures and the higher
temperatures, which can probably be explained by the fact that they are from different
measurement series. Also the agreement of the ISTS data with the LUS and TDBS
data of the GHz region is not perfect; in the real part the ISTS data at intermediate
temperatures is lower that what both LUS results and extrapolations from low tem-
peratures suggest. In the imaginary part on the other hand there is apparently no
discrepancy between the three high frequency methods.

Also there is some systematic error on the lowest temperatures in the MHz region.
These curves should be flat showing theM∞-level (as the LUS curves at corresponding
temperatures do), but instead they bend slightly upwards toward the higher frequen-
cies.

Pink curves are stretched exponential fits that connect the low and high frequency
regions for a few selected temperatures. (The curves are fitted “by hand” and are thus
not fits in the least squares sense.) The fits give a reasonable interpolation, which
shows that there are no additional processes “hiding” in the regions we are currently
not covering.

At the lowest temperatures the stretching exponent β was set to 1/2, but with increas-
ing temperature the relaxation narrows. This is really only inferred by the real part of
the spectrum where the flatness of the high-frequency end forces the fit to be narrow. In
the imaginary part the loss grows with frequency showing the emergence of a spectral
feature that is not seen in the real part, and that is independent of temperature. As a
consequence the imaginary parts of the stretched exponentials seem quite postulated.

The high frequency spectral feature seen only in the loss is probably the low frequency
side of the Boson peak or the “microscopic” peak, which is also found in e.g. dynamic
light scattering, dielectric spectroscopy, and neutron scattering around a couple of THz.
The amplitude of this peak seems to be higher than the alpha relaxation, which is not
the general picture.
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8.4 Discussion and outlook

We have presented a broadband mechanical spectrum of DC704 using 6 different exper-
imental techniques covering a total of 14 decades of frequency (although only sparsely
from 10kHz to 10MHz) and 200K in temperature. To the best of our knowledge this
has never been attempted before using true linear response mechanical measurements
on equilibrium liquids. This offers a unique possibility to study that entire relaxational
range from the very fluent to the ultra-viscous liquid just above the glass transition.

There are many uncertainties and possible sources of error that could have potentially
destroyed a meaningful outcome of the attempt to match that many measurements.

In the low frequency region we need to calculate the longitudinal modulus from the
bulk and shear moduli, each of which have uncertainties on the absolute numbers.
Tschoegl and Knauss [103] discusses the necessary conditions for determination of any
mechanical modulus by calculation from two other. Their strict the experimental
protocol demands that the source functions are determined “simultaneously on the same
specimen, under the same conditions of the experimental environment”, furthermore
they go on to “add the requirement of high accuracy and precision.” We can not claim
that we live up to all of these demands, but we are close:

• the low frequency bulk and shear moduli are measured under the same conditions
of experimental environment (same lab, same cryostat) though not simultane-
ously

• the measurements are not carried out on exactly the same specimen, but different
specimens from the same bottle. The closest we can come to measuring on the
same specimen is filling the two measuring cells at the same time (which was
actually sometimes also done)

• we do have a quite high precision in the shear measurement and fairly high in
the bulk measurement and the reproducibility of the measurements is fair

We thus argue that in our case such an addition is safe.

When we compile the broadband mechanical spectrum none of these demands are met:
the measurement are performed in different labs with different bottles of chemicals,
different handling of the liquids, and in different cryostats. In addition to that, the dif-
ferent techniques measure slightly different quantities, thus necessitating a conversion
of (some of) the data, and further assumptions in order to make these conversions, e.g.
assumptions regarding the temperature dependence of density.

With all of these reservations and uncertainties, it can seem quite miraculous that we
can successfully match the measurements. Since we are not in the religious business, we
will instead view this as a confirmation of both ends of the spectrum being determined
correctly.

To make a convincing statement about the evolution of the dynamical mechanical spec-
trum of DC704, however, we would like to fill the gap in measurements at frequencies
in the kHz to MHz range to connect the high and low frequency measurements.
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9 Cauchy (and Cauchy-like) relations

The relation between the stress σ and the strain ε tensor for small deformations is
linear (Hooke’s law)

σij = cijklεkl (9.1)

where the indices i, j, k, l runs through the three spatial directions, e.g x, y, z. Thus
there are 81 entries in the tensor c and potentially 81 different elastic moduli. However,
both stress and strain tensors are symmetric by definition which can be written: cijkl =
cjikl = cijlk. A symmetric second rank tensor has only 6 independent components.
Therefore, by collecting the indices i, j and k, l into index pairs (i.e. xx = 1, yy = 2,
zz = 3, yz = 4, zx = 5, xy = 6), the elasticity tensor c can be thought of as a 6 × 6
matrix, thus reducing the number of possible independent elastic moduli to 36. Usually,
it is also assumed that the stress tensor can be derived from an elastic potential W
[104]

σij =
∂W

∂εij
⇒ cijkl =

∂2W

∂εij∂εkl
. (9.2)

We thus have the following symmetry: cijkl = cklij , which means that the 6×6 matrix
defined above is symmetric. This reduces the number of independent moduli to 21.

For most crystalline structures the symmetry reduces this number further. For instance
the hexagonal structure has 5 independent moduli and the cubic only 3 [6]. For an
isotropic solid (such as a glass) the number of independent moduli reduces to two,
namely c11 = cxxxx (the longitudinal modulus) and c44 = cyzyz (the shear modulus).

9.1 The Cauchy relations

The Cauchy relations are a set of relations between certain elements of c. The relations
are traditionally derived through an assumption of central forces between pairs of
molecules (see e.g. [105, p. 245-248]), i.e. that particles/molecules interact through
pair-potentials depending only on the distance between them. 1 In compact notation
the Cauchy relations can be written [104]

cijkl = cikjl (9.3)

which amounts to 6 relations. In elastic solids these relations are rarely found to
hold true except for some noble gas crystals [107], rather the deviations from the
Cauchy-relations are studied to obtain information about the nature of the inter-atomic
potentials, see e.g. [108, 109].

1 This is not a necessary condition. Weiner et al [106] have derived the same relations from an
assumption about the deformation of electron density.

109



110 Cauchy (and Cauchy-like) relations

In the isotropic case, where the number of independent and nonzero moduli is already
reduced to two, the Cauchy relation provides a relation between the two, namely c44 =
3c11, reducing the number of independent moduli to just one. Expressed in terms of
the longitudinal and shear moduli, the Cauchy relation for an isotropic solid states that

M = 3G (9.4)

or equivalently, since M = K + 4/3G, the Cauchy relation is sometimes stated as

K = 5/3G . (9.5)

Intuitively, a relation between the bulk and shear moduli of an isotropic solid is maybe
not so surprising. If we imagine a model the material where each molecule is connected
to its nearest neighbors by springs (of possibly different spring constants). Then a
shearing of the material will involve some of the same springs that are involved in a
compression.

9.2 Cauchy relation for liquids

The Cauchy relation is derived for a purely elastic solid and it is unclear how and if it
should be applied to liquids. In thin liquids the shear modulus is vanishing (at least not
at moderate frequencies, see however [101]), while the bulk modulus still persists. In
that case a Cauchy relation would not make sense. For viscous liquids, where the short
time / high frequency response to a deformation appears solid-like, a generalization of
the Cauchy relation would perhaps be useful.

The most straightforward generalization of the Cauchy relation to the visco-elastic
case, where the moduli become frequency-dependent, is perhaps the following

K(ω) = 5/3G(ω) . (9.6)

This relation can however not be expected to hold since the two moduli generally
relax on different timescales (see chapter 7) and thus can not be proportional for all
frequencies. The next obvious attempt would be a translation of the moduli in Eq.
(9.4) to the solid-like moduli in the viscoelastic case

K∞ = 5/3G∞ . (9.7)

Zwanzig & Mountain [110] derived a relation between the high-frequency elastic moduli
of liquids similar to this expression which includes a term that depends on temperature
and pressure

K∞ = 5/3G∞ + 2(P − ρkT ) , (9.8)
where the added term for the isobaric case in a small temperature interval can be
regarded as a constant.

A generalized Cauchy relation between M∞ and G∞ was found to describe data well
[111]

M∞ = AG∞ +B (9.9)
where A and B are constants. This relation describes data well for many organic glass-
formers [112–116], for bulk metallic glasses [117, 118], and even in through irreversible
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chemical changes such as sol-gel transition, polymerization, and curing epoxy-systems
[119–121], and A is found to be close to 3 (i.e. the proportionality predicted by the
Cauchy relation, see Eq. (9.4)).

A “pure” Cauchy relation for viscous liquids was proposed by Fioretto et al [116],
where the relation is suggested to hold for the relaxations strength rather than the
high-frequency moduli

∆K = 5/3∆G (9.10)

where ∆K = K∞ −K0 and ∆G = G∞ − G0 = G∞. This has also been observed in
several liquids by Tage Christensen and Niels Boye Olsen.

In general, the two expressions in Eq. (9.9) and (9.10) can not both be valid since that
would lead to K∞ = 5/3G∞+K0 which again implies K0 being constant. Clearly, this
must be wrong. An exception to this general consideration is stated below. The latter
expression Eq. (9.10) is – in spite the lack of theoretical justification – more appealing
since it has no adjustable parameters.

Moreover, in the pure Cauchy relation (Eq. (9.10)), unlike the general Cauchy relation,
both sides converge to zero for T → ∞, and this relation could thus be valid for any
temperature. In contrast the generalized Cauchy relation which must break down once
G∞ vanishes at higher temperatures.

9.3 Experimental data

With our shear and bulk modulus measurements it is possible to test these relations.
In Fig. 9.1 shear and bulk modulus data are presented as a function of temperature at
a fixed frequencies. All measurements presented in chapter 4 and 5 are included which
gives and idea of the error on the limiting values of G∞, K∞, and K0. Inspecting
the plots it becomes clear that the temperature interval where we access to all three
quantities (G∞, K∞, and K0) is small. To extend the temperature interval some, we
approximated the temperature dependence of the three quantities with linear expres-
sions. Thus the straight lines in red and blue with errorbars in Fig. 9.1 represent
approximate mean values of the data sets and the errors indicated are between 3% and
7% and chosen to include all measurements. These regression lines can now be used
for extrapolation to extend the temperature interval for comparison some.

In Fig. 9.2 these “mean-value” curves are plotted for regions where we trust the fits
and their extrapolations. For DC704 this is the temperature interval 210-230K and for
PPE the interval shown is 250-270K. The results are consistent with the pure Cauchy
relation in Eq. 9.10, though less convincing for DC704. It should be noted that with
the assumptions of an affine dependence of G∞, K∞, and K0 on temperature, Eq.
9.9 automatically applies, and thus we have no way of distinguishing between the
two relations, although the slope in the two cases obviously can not be the same. In
particular, we can conclude that for these two liquids the slope of (G∞,K∞) is not close
to the Cauchy prediction. For DC704 the slope is 2.3 and for PPE it is 3.4 which is far
from the 5/3 ≈ 1.7 predicted in the Cauchy relation and reported in the literature.

The assumption that G∞, K∞, and K0 depend linearly on temperature is only valid
over a small temperature interval which is most evident for the K0 level of PPE (see
Fig. 9.1), which flattens out at higher temperatures.
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Figure 9.1 The shear and bulk moduli at fixed (high) frequencies as a function of temperature.
All measurements of chapters 4 and 5 are included to give an idea of the error. The limiting
K0, K∞ and G∞ are approximated by linear fits to a “mean” of all measurements with
errorbars (between 3% and 7 %) to include all measurements.

9.4 Discussion and concluding remarks

We have shown that the “pure” Cauhcy relation and the generalized Cauchy relation
can not both in general be valid, except in the case where K0, K∞ and G∞ all de-
pend linearly on temperature. For small temperature intervals (like in our case) the
generalized Cauchy relation almost trivially holds.

The data for PPE and DC704 are thus not in conflict with the generalized Cauchy
relation, but this is not too surprising, given that we used linear approximations
and extrapolations of the limiting high and low frequency moduli. The slopes of the
(G∞,K∞)-curves are however not close to the Cauchy prediction.

Our data however clearly shows that K0(T ) ∝ T (Fig. 9.1) is not valid over the entire
measured temperature interval, and probably the same is true for the instantaneous
values of bulk and shear moduli. We thus find it unlikely that the generalized Cauchy
relation should hold over broader temperature intervals.

Perhaps more surprisingly, the data provides support for the “pure” Cauhcy relation
(Eq. (9.10)). For PPE the agreement of the data with this prediction of is very
convincing.

Clearly, the relation K(ω, T ) = 5/3G(ω, T ) proposed in Eq. 9.7 does not hold. It
does however seem like the shape of the (K(ω, T ), G(ω, T )) curves (at least for DC704)



9.4 Discussion and concluding remarks 113

G∞ [GPa]

K
′
[G

P
a]

DC704

1.6G∞ − 0.3
5/3G∞

2.8
G∞

+ 1.9 K∞
∆K

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

G′ [GPa]

K
′
[G

P
a]

PPE

5/3G∞

3.4
G∞

+ 2.6 K∞
∆K

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

Figure 9.2 Various Cauchy-relations plotted for DC704 and PPE. In both, the dots are
(G(ω),K(ω)) for different temperatures, red circles are the generalized Cauchy relation
(G∞,K∞), and blue circles are the “pure” Cauchy relation (∆G,∆K). The fits to the general
Cauchy relation is shown as a full line and the “pure” Cauchy relation prediction as a dashed
line. Clearly, Eq. (9.7) does not give unified description of the data, although the shape of
the (G(ω),K(ω)) curves seems to be preserved
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Figure 9.3 A Cauchy-like relation appears to be valid for DC704. The inset shows the
real part of the frequency-dependent bulk modulus for a given relaxation time plotted
against frequency dependent the shear modulus at the same relaxation time. Each color is a
different fixed relaxation time. Each curve was fitted by a straight line (in black). The main
figure shows that the same curves all collapse when the intercept subtracted, i.e. plotting
(G′(ω, τ),K′(ω, τ)−K0(τ)). For high values of τ (corresponding to low temperatures) there
is a slight curvature in the data, but this can be ascribed to the match of relaxation times
being imperfect.

is preserved for different values of T . Already in chapter 7, we have a hint that the
shape of bulk and the shear moduli are (close to) identical, while the relaxation time
at a given temperature is different (the shear modulus is “faster”). This explains the
shape preservation of (K(ω, T ), G(ω, T )). It also means that if we compare bulk and
shear modulus relaxation spectra for temperatures with the same relaxation time the
two should be proportional. Plotting (G(ω, τ),K(ω, τ)) should thus give straight lines.
The intercept would then correspond to the K0 level for the given relaxation time. Of
course the lines would then not collapse for different pairs of G and K curves since K0

depends on temperature.

We tested this for DC704 where by pure luck the relaxation times of the bulk and
shear moduli were separated approximately by the temperature steps ∆T used in
the measurement, i.e. τbulk(T ) = τshear(T + ∆T ). The inset of Fig. 9.3 shows
(K ′(ω, τ), G′(ω, τ)) for different values of τ (symbols) as well as their fits (black lines).
All fits have slopes close 1 (between 0.99 and 1.01). For some of the higher values of
τ (corresponding to low temperatures) there is a slight curvature in the data, but this
can be ascribed to the match of relaxation times being imperfect.

Subtracting the intercept (the K0(τ)) all the data point collapse onto one line with
slope ∼ 1, which is shown in the main figure. Although the factor of proportionality is
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strikingly close to one, this is probably not significant and will depend on the particular
set of measurements plotted together – recall that the spread in absolute values (unlike
the shape) is substantial for these data.

So it seems that at least for some simple liquids the following relation between bulk
and shear moduli

K ′(ω, τ)−K0(τ) ∝ G′(ω, τ) (9.11)

may be valid. We can call this a “dynamical” or an “isochronal” Cauchy relation.
Note that this relation also implies proportionality between the relaxation strengths
(for a fixed relaxation time) which is simply the limit for ω → ∞. Measurements on
other liquids as well as a more careful matching of relaxation times would however be
required to further investigate/establish this relation.
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10 Dynamic divergence? – an analysis of a
large set of dielectric data

This chapter presents an analysis of a large set of relaxation time data obtained through
dielectric spectroscopy. Most of the results were published in [1], but more details will
be provided here as well as some new findings. The paper is enclosed as Paper II, p.
265.

Compared to Paper II [1] there are a few minor changes. Symbols and colors for each
dataset has been redefined, thus figures and tables will not be identical to the ones
presented in [1]. The dataset for 5PPE has been replaced by a dataset with a much
broader temperature range (was taken subsequently in connection with the mechanical
measurements) and the dataset for PHIQ has been removed (as we later discovered
that per-hydro-isoquinoline is in fact the same as deca-hydro-isoquinoline).

10.1 Non-Arrhenius behavior of the relaxation time

The focus of this chapter is on the non-Arrhenius temperature dependence of the
relaxation time τ . τ generally increases more rapidly upon cooling than predicted
by the well-known Arrhenius equation that characterizes, e.g., the reaction time of a
chemical reaction as a function of temperature. Thus if the activation energy ∆E is
defined by

τ(T ) = τ0 exp

(
∆E(T )

kBT

)
, (10.1)

(where kB is Boltzmann’s constant, T is temperature, and τ0 is the pre-exponential
factor) one usually observes that ∆E(T ) increases upon cooling. To the best of our
knowledge there are no liquids where ∆E decreases upon cooling.

The most widely used fit to data is the Vogel-Fulcher-Tammann (VFT) equation dating
back to the 1920’s [2–4]:

τ(T ) = τ0 exp

(
A

T − T0

)
, (10.2)

where A and T0 (and sometimes τ0) are fitting parameters. This equation predicts a
divergence of the liquid relaxation time at T = T0. By its very nature this prediction
cannot be conclusively verified because, if true, close to T0 the liquid would require
much longer time to equilibrate than a human life time. Experimentalists often do
not focus very much on the interpretation of T0, but pragmatically regard the VFT
equation as just a convenient fit to data. Many theorists, on the other hand, were
inspired by the VFT equation to develop theories predicting a phase transition at T0

to some sort of ideal glassy state with infinite relaxation time [5].
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10.1.1 The entropy model

Probably, the most famous of models predicting a phase transition to a state of infinite
relaxation time is the Adam-Gibbs entropy model[6]. This model predicts that the
temperature dependence of the apparent activation energy is inversely proportional to
the configurational entropy

∆E ∝ 1

Sc
(10.3)

where the configurational entropy is defined as the entropy minus the vibrational part,
Sc = S − Svib ≈ Sliquid − Sglass.
This is justified as follows [7]: Any molecular rearrangement is a thermally activated
transition that involves all molecules of a “cooperatively rearranging region.” Such a
region is defined as a “subsystem of the sample which, upon a sufficient fluctuation
in energy (or, more correctly, enthalpy), can rearrange into another configuration in-
dependently of its environment.” Three crucial assumptions go into the model: (1)
The activation energy is proportional to region volume. This is justified by writing
the change in Gibbs free energy upon activation as a chemical potential change ∆µ
times volume and assuming that “in a good approximation the dependence of ∆µ on
temperature and region volume can be neglected.” (2) There is a lower limit to the
size of a cooperatively rearranging region since it must have at least two configurations
“available to it, one in which the region resides before the transition and another one
to which it may move.” (3) The cooperatively rearranging regions are “independent
and equivalent subsystems”, i.e., there are only insignificant interactions of any given
region with its surroundings. Then the configurational entropy of the entire sample is
simply a sum of the regional entropies, which are proportional to region size.

At some finite temperature the critical size is thus expected to become macroscopic,
because the entropy of the liquid decreases faster than the entropy of the glass. At
zero configurational entropy only one (or very few) configurations are available to the
whole system.

The entropy can be found by integrating the heat-capacity and thus the configurational
entropy can be found by integrating the configurational part of the heat-capacity.
The configurational heat capacity may be defined as the difference between the heat-
capacity of liquid and that of the glass, ∆Cp = C liq

p − Cglass
p . Assuming that this

quantity does not change much in the vicinity of Tg we may write

Sc(T ) ≈ ∆Cp

∫ T

T0

1

T ′
dT ′ = ∆Cp ln(T/T0) (10.4)

assuming Sc(T0) = 0. Close to T0 (where δT =: T − T0 → 0) we may expand this
expression to the first order to obtain

ln

(
1

1− δT/T

)
≈ ln (1 + δT/T ) ≈ δT/T (10.5)

and we arrive at
∆E ∝ 1

Sc
∝ T

T − T0
(10.6)

when approaching T0. This expression is exactly the functional form for the temperature-
dependence of the relaxation time suggested by the VFT equation.
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There are both theoretical and experimental objections to this model, some of which
we have summarized in [7] (enclosed Paper II p. 265).

10.1.2 Other models

The Adam-Gibbs entropy model is not the only phenomenological macroscopic model
for the viscous slowing down of super-cooled liquids. Some of them are compatible
with a relaxation time diverging at a finite temperature, others not.

The free volume model by Cohen, Turnbull, and Grest[8, 9] predicts that the free
energy of activation is inversely proportional to the free volume, vf , defined as the
volume within its cage less the volume of the molecule

∆E ∝ 1

vf (T )
. (10.7)

This expression obviously diverges if the free volume vf goes to zero, for instance if
the volume of the molecule is assumed to be independent of the temperature while the
total volume decreases due to thermal contraction.

The volume of a molecule is however not very well-defined (except in the case of hard
spheres). In the denominator of Eq. (10.7) two large numbers, namely the volume of
the sample and the total volume occupied by the molecules, are subtracted from each
other to give a small number. The inverse of their difference is consequently extremely
sensitive to the exact definition of molecular volume.

There are also various elastic models (summarized in a review by Dyre [10]), the shoving
model by Dyre, Olsen & Christensen [11] being the most recent. The central assumption
of this model is that the energy necessary to make a flow event in supercooled liquids
is due to a deformation of the surroundings of the rearranging molecules, making room
for the molecules to rearrange. Assuming a purely radial local volume increase gives
a pure shear deformation of the surroundings. The free energy of activation in this
framework is thus proportional to the instantaneous shear modulus, G∞

∆E ∝ G∞(T ). (10.8)

According to this model the increase in G∞(T ) with decreasing temperature (as the
liquid “stiffens”) is sufficient to explain the temperature dependence of the relaxation
time. Elastic models are difficult to unite with the idea of a diverging relaxation
time, since this would imply that the liquid at some finite temperature should become
infinitely rigid.

10.2 Status of the VFT divergence

The Adam-Gibbs entropy theory from 1965 predicts a second order phase transition
at T = T0 to a state of zero configurational entropy – a unique glassy state – and
infinite relaxation time [6]. Later, leading theorists like Edwards [12, 13], Anderson
[14] and, more recently, Bouchaud in 2004 [15] and Wolynes in 2007 [16], have all
investigated and developed this intriguing scenario much further. The list of theoretical
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Figure 10.1 The ratio of the Kauzmann temperature, TK , and the VFT divergence tempera-
ture, T0, for a number of glass-forming liquids. There is an almost perfect correlation between
TK and T0. Data reported in [32].

publications stating more or less explicitly that the goal of the work is to produce a
VFT law continues (e.g. [17–25]).

Although there are diverging opinions from other well-known theorists [26–29], it re-
mains an attractive idea that the dramatic slowing down of relaxations is caused by an
underlying phase transition to a state with infinite relaxation time; the fact that data
are usually well fitted by the VFT equation has reinforced this idea over many years
now.

Support for the idea of a “dynamic divergence” at T = T0 traditionally came from the
reported equality of T0 and the Kauzmann temperature TK , the temperature where the
liquid phase entropy by extrapolation is identical to the crystal phase entropy [30–32].
Fig. 10.1 shows a seemingly perfect correlation between T0 of the VFT equation and
the Kauzmann temperature TK for a collection of liquids (data reported in [32]).

In 2003 Tanaka presented a compilation of data showing, however, that T0 = TK is
not confirmed by experiment [33] and the deviation seems to increase the “stronger”
the liquid. These data are shown in Fig. 10.2 where TK/T0 is plotted as a function of
the parameter D (sometimes referred to as the “fragility parameter”. The connection
to Angell’s fragility index (see chapter 2, Eq. (2.6) for a definition) comes from writing
the VFT equation in the following way

τ = τ0 exp

(
DT0

T − T0

)
. (10.9)
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1. GeO2

2. SiO2

3. ZnCl2
4. butyronitrile
5. Zr46.75Ti8.25Cu7.5Ni10Be27.5
6. Mg65Cu25Y10

7. Zr41.2Ti13.8Cu12.5Ni10Be22.5
8. Pd40Ni40P20

9. 1,2-propane diol
10. ethylene glycol
11. Cu47Ti34Zr11Ni8
12. glycerol
13. sorbitol
14. toluene
15. o-terphenyl
16. propylene carbonate
17. triphenyl phosphite
18. sucrose

Figure 10.2 The ratio TK/T0 as a function of the parameter D (which can be seen as a
measure of fragility) for 18 different liquids (see Ref. [33] for details and references on the
liquids). Evidently, T0 is not equal to TK and the deviation from equality is increasing with
increasing D, corresponding to decreasing fragility index. Figure from [33].

Calculating Angell’s fragility index of this expression gives D =
(
Tg

T0
+ T0

Tg
− 2
)
mA.

This means that we have the following

D large for Tg
T0

large (’strong’ liquids)

D small for Tg
T0
→ 1 (’fragile’ liquids).

(10.10)

The trend with larger deviations for strong liquid may not be so surprising, since strong
liquids are characterized by obeying a near Arrhenius temperature dependence of the
relaxation time. Thus fitting these data with the VFT equation would reveal a T0 close
to 0K. At the same time strong liquids often have high glass transition temperatures
∼ 500− 1000K and correspondingly high TK .

Regardless of the conclusion of such studies, it is an indisputable fact that they are
comparing two temperatures, none of which are directly measured. The determination
of TK involves extrapolations of data and T0 is a parameter from a nonlinear fit.
This again underlines how difficult it is to conclusively test the existence of a phase
transition below Tg to a totally arrested phase. Below, we rely on experimental facts for
the temperature dependence of the dynamics and ask: How convincing is the evidence
for the dynamical divergence predicted by the VFT equation?

10.3 Method

It is not possible to directly test the existence of a T0, since the rapid increase in
relaxation time with decreasing temperature makes the equilibration of the liquid much
below Tg exceed normal laboratory time scales. So instead of any direct evidence we
have to look to circumstantial evidence. We thus return to the fact that the VFT
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equation originally introduced as a convenient fitting function for the non-Arrhenius
temperature dependence of relaxation times or viscosities.

We believe that if a T0 indeed exists – and thus theories predicting a VFT like expression
for the temperature dependence of the relaxation time are correct – it is reasonable to
expect that the VFT equation should fit relaxation time data better than any other
simple equations with the same number of fitting parameters.

In order to quantify how well the VFT equation fits data we compare the VFT equation
to another popular fitting function [34–36] that is now known as the Avramov equation:

τ(T ) = τ0 exp

{(
B

T

)n}
. (10.11)

Versions of the Avramov equation has in the past been used with fixed values of n [37–
39]. Letting n be a fitting parameter, however, the Avramov equation has three fitting
parameters (two with dimension, and one dimensionless) just as the VFT equation,
but no dynamic divergence.

Although the prefactor τ0 is often regarded as a fitting parameter, we chose to fix it to
a physically reasonable value, which leaves only two free fitting parameters in the two
equations (see in section 10.5 below for an elaboration on this constraint).

The pre-exponential factor in the Arrhenius equation is interpreted as a microscopic
entity related to the attempt frequency of crossing some barrier opposing the rear-
rangement of particles, while the exponential (Boltzmann) factor is the probability of
success. τ0 is thus expected to have phonon like timescales, 10−15s − 10−12s, so we
chose to fix τ0 = 10−14s.

10.3.1 Selection of relaxation time data

For this method to work accurate data are needed. Dielectric relaxation measurements
give the some of the most precise relaxation time data, much more accurate than data
from other relaxation processes or from viscosity measurements. For practical reasons
the best dielectric data for ultra-viscous liquids come from experiments on molecu-
lar organic liquids; these liquids are often easily super-cooled and they are usually
convenient to work with.

The analysis is based on an impressive database of dielectric measurements compiled
by Albena Nielsen. Some datasets were measured by Albena herself, some by Niels
Boye Olsen, and the rest were collected from leading experimental groups: the groups
of Peter Lunkenheimer, Ernst Rössler, Ranko Richert, Marian Paluch, and Ricardo
Diaz-Calleja.

From the dielectric loss data we identified the relaxation time τ as the inverse loss
peak frequency, τ ≡ 1/fmax. The loss peak frequencies were determined by fitting a
parabola to the top five data points of the dielectric loss at each temperature. The
frequency at which this parabola take its maximum value was defined to be the loss
peak frequency (see Fig. 10.3). This method has the advantage of being independent
of models, robust, and easy to implement, i.e. identification of this peak frequency can
be completely automated. So although the inverse loss peak frequency is not identical
to an average relaxation time or even proportional to it (if TTS is not obeyed), it
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Figure 10.3 Example of the determination of loss peak frequencies (here 5-PPE). For each
temperature the data point of maximum value of the dielectric loss is identified. Then a
parabola is fitted to this point and two points on either side. The loss peak is now defined as
the maximum of this parabola. The plot shows the data (black circles), the fitted parabolas
(red solid line), and the maximum of parabolas (red crosses).

nevertheless represents a characteristic time for the liquid and it can be identified in
an unbiased way.

The fitting region was limited to relaxation times between 1 µs and 1000 s. This
was done for two reasons. First, we compare different fits to different data sets, and
restricting the fitting region ensures that all data sets lie in more or less the same
dynamical region. Secondly, the restriction was introduced in order to ensure that
we do not compare different types of dynamic behavior; otherwise there is the risk
that one ultimately tests the two equations ability to interpolate between two different
types of dynamic behavior. Thus the lower limit (1 µs) was chosen to ensure that the
dynamics are well within the “landscape” dominated domain [40, 41], i.e. well below
the crossover temperature (the Tc of mode-coupling theory [26, 42, 43]). The upper
limit (1000 s) was chosen to ensure that all data are true equilibrium data. A further
requirement was that only data sets covering at least four decades with a minimum of
5 different temperatures were included in the analysis.

In addition, some materials were discarded from the analysis prior to this selection
process:

• The analysis was limited to non-polymeric systems because the polymer glass
transition may be fundamentally different from the liquid-glass transition [44].

• It is well-established [45–47] that the dominating dielectric process (an intense
Debye like process sometimes referred to as the α′-process) in mono-alcohols is
not related to the structural glass transition thus making it difficult to accurately
determine the peak-position of the true α-process
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Figure 10.4 The figure shows the data sets used in the analysis (for table of liquids
and corresponding symbols, see table 10.1). All liquids clearly exhibit the non-Arrhenius
temperature dependence of the relaxation time that generally characterizes ultraviscous
liquids.

• Although the dielectric (and other) properties of plastic crystals are similar to
those of super-cooled liquids they are not liquids, these systems are crystalline,
and the origin of the complex dielectric relaxation spectrum is not structural
disorder but orientational disorder of an otherwise ordered crystal

Out of an initial selection of datasets for more than 60 different liquids, only 41 met
these demands.

Fig. 10.4 shows the analyzed data. Although the analysis was limited to organic liquids,
the datasets span quite large region of Tg’s (from roughly 90K to about 340K). All
liquids exhibit the characteristic non-Arrhenius behavior with a relaxation time that
upon cooling increases stronger than predicted by the Arrhenius equation (fragility
index of the liquids lie in the region 40− 160). All liquids, symbols, and references to
where the data were first published are listed in Table 10.1.
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10.3.2 Sensitivity of parameters in the models

One initial check to make before we start the fitting routines is the sensitivity of the
model output to the fitting parameters. Normally, this is done if one wants an idea
of how much fitted values of the parameters can be trusted – especially if the physical
interpretation of a fitted value is meaningful. Obviously, if the model is insensitive to
some parameter, the fitted value has little meaning.

This is of course not particularly interesting if the equations were merely regarded as
fitting functions, but since we are looking for evidence for the existence of a T0 this is
relevant.

The sensitivity matrix (see appendix D) is a matrix with columns corresponding to the
number of fitting parameters and rows corresponding to the number of data points,
and each entry is the derivative of the model with respect to one of the parameters
evaluated in a specific point.

The logarithmic derivatives of the VFT equation is given by

∂ ln τVFT
∂ lnA

=
A

T − T0
,

∂ ln τVFT
∂ lnT0

=
AT0

(T − T0)
2 . (10.12)

And in the case of the Avramov equation we get

∂ ln τAvramov

∂ lnn
= n

(
B

T

)n
ln

(
B

T

)
,

∂ ln τAvramov

∂ lnB
=

(
B

T

)n(
1

n

)
. (10.13)

In the case of the VFT equation, the sensitivity matrix (for a liquid with N data points)
will look like this

SVFT =




A
T1−T0

AT0

(T1−T0)2

A
T2−T0

AT0

(T2−T0)2

...
...

A
TN−T0

AT0

(TN−T0)2




(10.14)

Evaluation the sensitivity matrices for several liquids with some initial guesses for the
parameters reveals that both the VFT and Avramov equations are sensitive to both
their parameters.

10.3.3 Correlations between parameters

The next step is a check for correlations between parameters. Again, if two parameters
are close to 100% correlated it is not possible to determine each of them uniquely –
only a combination.

A standard way to check for correlations between parameters is the normalized covari-
ance matrix (see appendix D). This is a symmetric matrix with ones in the diagonal
and the ijth entry shows the correlation between parameter i and j. Since we are only
dealing with two parameters this is a 2× 2-matrix with only one interesting entry (the
off-diagonal element).
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For the VFT equation this gives the following correlation factor between A and T0

c =

∑N
l=1

(
1

Tl−T0

)3

√
∑N
l=1

(
1

Tl−T0

)4∑N
l=1

(
1

Tl−T0

)2
(10.15)

where the subscript l denotes the points where the model was calculated. It is obvious
that |c| ≤ 1. We can also see that if we have only one point, the two parameters then
|c| = 1. Of course increasing the number of (data) points will decrease the correlation,
but the sums in Eq. (10.15) will always be dominated by the data point(s) closest to
T0, and one would consequently expect the correlation factor to be close to one.

Indeed, evaluating c for a number of datasets with some initial guesses for parameters,
reveals that the two parameters for both VFT and Avramov equations are highly
correlated (c > 0.95). From this analysis it seem that there is little hope to determine
T0 (or any of the other parameters) uniquely, but in the stability test of the section
below the picture is a little less pessimistic.

10.3.4 Details of the fitting routines

The VFT and Avramov equations were fitted to data using the least-squares method.
The procedure for selecting data sets for the analysis, as well as the subsequent fitting
procedures, were fully automated via MatLab routines.

Initial guesses to feed the fitting routines were established via a linearization of both
equations

VFT-equation: 1

ln τ
τ0

=
1

A
T − T0

A
(10.16)

Avramov equation: ln ln
τ

τ0
= lnB − n lnT (10.17)

The linear regression (y = ax+b) to this representation provides us with initial guesses
for the fitting parameters since calculation shows

n = −a, B = exp(b) (10.18)

for the Avramov equation, and in the case of the VFT equation we obtain

A =
1

a
, T0 = − b

a
. (10.19)

We checked the robustness of the fits by varying the parameters 70% to either side from
these initial guesses. In Fig. 10.5 we show a representative example of the outcome.

Fits to the Avramov equation are very stable. Varying the initial guess 70% to either
side of the guess presented above in Eq. (10.18), yields the same average error with
very little variation in the fitted values for the fitting parameters (see figure 10.5,
right column). To illustrate how small the deviations are for the Avramov equation
we plotted the fitted values for B and n minus the average value. The deviation (in
absolute numbers) for n is thus ∼ 10−8 and ∼ 10−6K for B (for all liquids), i.e. for
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Figure 10.5 Example (5-PPE) of the robustness of the fits (left column: VFT equation, right
column: Avramov equation). Top row shows the squared standard deviation (defined in Eq.
(10.20)) plotted against the initial guesses of the parameters, second and third rows show the
fitted values of the parameters as a function of the initial guesses.
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all practical matters the fits give identical parameters. The VFT equation shows a
similar stability as long as the guess for T0 is not too close the lowest temperature of
the dataset. If this condition is not met, the fits go crazy, giving rise to high standard
deviations and nonsense values for the fitted parameters.

The correlations between parameters is also evident doing this analysis – the stability
plots for the fitted values of the parameters are practically mirror images of each other
(although it can be difficult to see in the 3D plots). Having said that though it is also
quite clear that the variations in the parameters are very small, so as stated above, it
is safe say that the parameters are uniquely determined (for reasonable initial guesses).

These conclusions are of course completely dependent on the fitting algorithm. We used
a predefined function in MatLab, fminsearch, which (as we have shown) is sufficiently
robust.

10.4 Analysis and results

Examples of fits are shown in Fig. 10.6 with VFT fits in solid lines and Avramov fits
in dashed lines. Overall, both equations fit well. For a detailed comparison of the two
fitting functions we use the standard deviation formula

σ =

√√√√ 1

N − p
N∑

i=1

(log(τfit,i)− log(τdata,i))
2 (10.20)

where N is the number of data points and p = 2 is the number of degrees of freedom.
Fig. 10.7 shows σVFT and σAvramov for all liquids. For clarity the numbers are sorted in
descending order from “worst fit” to “best fit”, a clever suggestion of Ulf R. Pedersen.
Arranging the numbers in this manner makes any differences in the fitting ability
between the two equations visually clearer. However, this also means that two points
on a vertical line are not necessarily from the same liquid and should not be compared.
In this representation it is clear the VFT equation generally fits data better than the
Avramov equation.

Inspecting the fits (in Fig. 10.6 as well as those not shown) shows that deviations are
rather systematic. Thus highly non-Arrhenius liquids, i.e. data sets with large curva-
ture, are generally poorly fitted by the Avramov equation. Apparently, the Avramov
equation is not able to “bend” enough to capture the curvature of these data sets. Is
this a signal of the dynamic divergence predicted by the VFT equation? In order to look
into this question we investigate how the activation energy changes with temperature
by use of the temperature index defined [48] by

I = −d ln ∆E

d lnT
. (10.21)

The temperature index quantifies the activation-energy temperature dependence in a
way that is independent of the unit system, much like the Grüneisen parameter of
the solid state physics. If for instance the temperature index is five, lowering the
temperature by 1% leads to a 5% increase of activation energy. The temperature index
is related to Angell’s fragility index by

mA = c(1 + I(Tg)) (10.22)
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Figure 10.6 Examples of fits with the VFT equation (solid lines) and the Avramov equation
(dashed lines). In some cases it is hard to distinguish between the two fits, but there are
examples where VFT equation is superior to the Avramov equation and vice versa. In all
cases both equations fit rather nicely.

where c = log10(τ(Tg)/τ0) = 16 if τ0 = 10−14 and the glass transition temperature is
defined by τ(Tg) = 100 s.

For the Avramov equation the temperature index is constant, IAvramov = n − 1. For
the VFT equation one finds

IVFT =
T0

T − T0
. (10.23)

Thus the VFT temperature index increases upon cooling and it diverges at T = T0.
Fig. 10.8 shows the numerically calculated temperature indices. For nine out of ten
liquids the temperature index increases with decreasing temperature. This explains
why the VFT equation fits data better than the Avramov equation.

The temperature index is also useful for throwing light on how strong the evidence
for the existence of a dynamic divergence is. First, we chose the eight liquids that
are best fitted by the Avramov equation. Fig. 10.9 (left) shows the actual and the
VFT-predicted temperature indices for these liquids. There is very little agreement
between the fits and the actual values; in some cases (i.e. DC704 and TPE) it seems
almost ridiculous to impose a VFT functional form. If we instead look at some of the
liquids that are best fitted by the VFT equation (Fig. 10.9 right) we can on one hand
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Figure 10.7 Standard deviation from fits to data of the VFT equation and the Avramov
equation. For clarity the numbers have been arranged in descending order for each of the
two fits. As a consequence two points on a vertical axes do not in general belong to the same
liquid. Plotted this way it is evident that the VFT-equation on average fits data better than
the Avramov equation.
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Figure 10.8 The graph shows the temperature index (eq. 10.21) as a function of temperature
for all liquids. With a few exceptions, the temperature index increases with decreasing
temperature. This feature is captured by the VFT equation while the Avramov equation
predicts a temperature independent index.
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Figure 10.9 The temperature index for the liquids where VFT equation (right), respectively
the Avramov equation (left), fits best. The full lines show the VFT predicted temperature
indices that diverge at a finite temperature. There is little compelling evidence for such
a divergence in the data. In both subfigures the black dot marks the glass transition
temperature determined by an extrapolation of the VFT equation to τ = 100s.

say, the data are not inconsistent with a dynamic divergence. On the other hand, one
cannot reasonably say that there is compelling evidence for the VFT extrapolation.

10.4.1 Fitting of different dynamic regions

Now we have more or less established that the evidence for a dynamic divergence is
inconclusive. Another question that could be relevant for clarifying the issue is: how
much do the fitting parameters change with the fitting region? If we have a correct
model we would expect that the fitting parameters do not depend too much on the
fitted region.

For this analysis we selected datasets that span a wide dynamical window. Instead of
the selection criteria used above we selected the liquids spanning at least 5.5 decades
in the region where 10−3 < τ < 106 and measured at least 9 different temperatures.
21 datasets met these requirements.

Fig. 10.10 shows the fitting parameters of the VFT and Avramov equations fitted to
different dynamical regions ([10−6−100]s, [10−5−101]s, [10−4−102]s, and [10−3−103]s),
normalized to the fitted value at the highest temperatures (shortest times) of the
given parameter. From these plots we can see that for the Avramov equation the
changes in fitting parameters with changing dynamical region is systematic as well as
monotonic: lowering the temperature region that is fitted, leads to an increase in n
while B decreases (with a few exceptions showing no change). This is also what we
would expect because the temperature index is increasing with decreasing temperature
and IAvramov = n− 1.

For the VFT equation there seems to be no clear trend in the changes in fitted values,
although the changes are monotonic. It is however clear that there is a correlation
between A and T0 (as we already predicted earlier); when one increases, the other one
will decrease and vice versa. A maximum of 10% change in T0, however, may not
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Figure 10.10 The fitting parameters of the VFT and Avramov equations fitted to different
dynamical regions ([10−6 − 100]s, [10−5 − 101s], [10−4 − 102]s, and [10−3 − 103]s), normalized
to the fitted value at the highest temperatures (shortest times) of the given parameter.

be significant enough to draw any conclusions regarding the evidence for a dynamic
divergence.

10.5 Influence of the choice of pre-factor

So far we have not treated the pre-factor, τ0, as a fitting parameter. The choice of τ0
does however influence the fitting results. There are several ways of examining this.
One is to vary the fixed value and monitor the changes in fitting ability of the VFT and
the Avramov equations. Another is to let the pre-factor be a free fitting parameter.
Below we will explore both options.

Starting with the former, Fig. 10.11 shows the sum of deviations for all 41 liquids when
varying the τ0 from 10−6s to 10−20s for both the VFT and the Avramov equation.
The fits are clearly quite sensitive to this parameter, both curves have an asymmetric
shape rising sharply when τ0 increases and also somewhat less dramatically when τ0 is
lowered. In between the two extremes there is a minimum for both equations, occurring
in the case of the Avramov equation around 10−10−10−9s, and in the case of the VFT
equation around 10−15 − 10−14s. One could say that the physically meaningful pre-
factor are friendlier to the VFT equation than the Avramov equation. However, the
two curves cross at τ0 = 10−12s, which means that for this choice of pre-factor Avramov
equation fits the data just as well the VFT equation.
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Figure 10.11 The sum of deviations for all liquids in the study for different choices of the
pre-factor τ0. The fits are clearly quite sensitive to this parameter.

The choice of pre-factor also influences the temperature index. This is illustrated in
Fig. 10.12 where the temperature index for cumene is plotted for τ0 varying as above.
Not only does the absolute values change quite a bit; also the temperature dependence
of the index does in some cases change from increasing with decreasing temperature to
the opposite. Interestingly, there exists a value of τ0 for which the temperature index
is constant (marked with a dashed line). This observation also holds true for almost all
other liquids studied here (see Fig. 10.16 for further support of this postulate). This
is by no means trivial. But it also shows that the temperature index is quite sensitive
to the choice of pre-factor. On the one hand this represents the most serious objection
to using the temperature index method of quantifying the temperature changes of
activation energy. On the other hand for physically reasonable values of τ0 the overall
picture is pretty clear.

Now we will turn to the other option for examining the influence of the choice of pre-
factor: letting τ0 be a free fitting parameter. In Fig. 10.13 the results of this is shown
and it is evident that with three free fitting parameters, there is absolutely no reason
to prefer the VFT equation over the Avramov equation. The inset shows a histogram
over the fitted pre-factors and as one would expect from figure 10.11 the “distribution”
peaks around 10−9s for the Avramov equation while the VFT “distribution” peaks
around 10−12s, but has a somewhat higher mean value.

10.5.1 What can and cannot be learned from different data representations?

In the following we will present two temperature derivative analysis methods and apply
them to our sets of data. In contrast to the temperature index analysis, there are no
assumptions regarding the pre-factor and thus it is merely a way presenting data –
in fact they correspond to (as we will show) a linearisation of the VFT equation and
the Avramov equation, respectively, with three fitting parameters (two for the linear
regression and one for the constant of integration).
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Figure 10.12 An example (here cumene) of the influence the choice of τ0 has for the
temperature index. It is evident that a low pre-factor (τ0 < 10−11) results in an index that
increases with decreasing temperature where as the exact opposite behavior can be obtained
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Figure 10.13 Error of the fits varying all three parameters (including the pre-factor, τ0) of
the VFT and Avramov equations. The inset shows a histogram over the fitted values of the
pre-factor; as one would expect from figure 10.11 the “distribution” peaks around 10−9 for
the Avramov equation while the VFT “distribution” peaks around 10−12, but has a somewhat
lower mean value.
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The first is a commonly used way plotting relaxation time data, sometimes called
Stickel-analysis after the author of [49]. The analysis is based on the VFT equation:
we observe that if the temperature dependence of the relaxation time can be described
by the VFT equation, then we can write

d

dT
ln τVFT =

d

dT

{
A

T − T0

}
= − A

(T − T0)2
(10.24)

and thus we have

s :=

(
−d ln τ

dT

)−1/2

=
1√
A

(T − T0) (10.25)

i.e. plotting (T, s) we should get a straight line, if the VFT equation is a correct
description of data. This rarely gives a straight line if a large dynamical window is
considered. The main point made by Stickel et al [49] was in fact that the VFT equation
alone could not describe the entire data set.

In our case we have restricted ourselves to the viscous region just above Tg, so let us
nevertheless proceed to carry out this analysis on the data we have used here. The
results can be inspected in Fig. 10.14. The x-axis has been shifted by Tg to squeeze
the data sets a little closer together. Most data sets seem to follow a relatively straight
line, although there are also examples of clear deviations from that, e.g. PDE, KDE,
5-PPE, and MTHF are all distinctly convex.

The Stickel plot offers an easy way of determining T0: this is simply the intersection
of the extrapolation of a straight line through the data points with the x-axis. If T0

has a physical meaning it should not depend (too much) on which points are included
in the fit. We do an analysis similar to that of section 10.4.1 and determine T0 for the
different dynamical regions.

In Fig. 10.15(a) a Stickel plot of the same subset of data used in section 10.4.1 is shown.
From Fig. 10.15(b) it is obvious that for most liquids T0 changes quite significantly
depending on the fitting region. For most liquids, T0 decreases, the fitting region
moves to lower temperatures. For a few it decreases or remains more or less constant.
It also seems to be a gradual change rather than a kink between two different “VFT
regions”. In Fig. 10.15(c) we show two extreme examples of changes in T0; for dBAF
T0 increases when the temperature region fitted is lowered, while 5-PPE shows the
opposite behavior. The dotted line is a linear regression line to the entire region (gives
the “average” T0).

The general problem with this analysis is that the Stickel plot visually understates how
dramatic a divergence is. At the same time it emphasizes the high temperatures, which
is unfortunate since the relaxation time dramatically changes when Tg is approached
while not much is happening at higher temperatures. So plotting a quantity like s
linearly in temperature may lead to some unjustified extrapolations: It is easy to
ascribe a “wiggle” at the end of this curve to noise, while in fact this is where the
interesting physics is going on (and also where the VFT equation is expected to work).

A clever way of focussing on the timescales rather than the temperatures, is to put
log fmax (or log τ) on the x-axis. Defining a temperature dependent fragility (much
like the temperature index) one gets a quantity that does not depend on the choice of
pre-factor:

m(T ) :=
d log fp
d lnT

(10.26)
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Figure 10.14 Here the Stickel-plots for all of the data sets used in the analysis. The x-axes is
shifted by Tg to squeeze the datasets closer together. The data were split in six windows to
avoid too busy plots.
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Figure 10.15 T0’s dependence on the fitting region in the Stickel plot. Left figure shows
the fitted T0 for different fitting regions (normalized to the high temperature value) for 21
liquids. Right figure shows two extreme examples of changing T0: PPE where T0 decreases
dramatically, and dBAF with the opposite behavior. Dashed lines is a linear regression line
to the entire region and thus gives the “average” T0-value.
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where fp is the loss peak frequency. Taking the value of this function at Tg will give
us the Angell fragility index

m(Tg) =
d log fp
d lnT

∣∣∣∣
Tg

=
d log(1/fp)

Td(1/T )

∣∣∣∣
Tg

=
d log(1/fp)

d(Tg/T )

∣∣∣∣
Tg

= mA (10.27)

with our definition of relaxation time, τ = 1
fmax

.

It was discovered by Niels Boye Olsen that data seem to follow a straight line if this
quantity was plotted as a function of the logarithmic loss peak frequency. This is shown
in Fig. 10.16.

It seems we have the following

d log fp
d lnT

= a log fp + b , (10.28)

and if we integrate this we get

fmax(T ) = 10−
b/a exp

{
ln 10 exp(aC)

a
T a
}

(10.29)

where C is a constant of integration. With the following definitions: n = −a, B =
− ln 10−

1/a exp(−C) and f0 = 10−
b/a, this is exactly the Avramov equation.

So although the connection is more subtle than in the Stickel analysis, the “fragility”
analysis is a way of linearizing the Avramov equation.

Two things are worth noting in this context. 1) It is obvious that the Angell’s fragility
index is not a material constant (such as a melting temperature), but highly dependent
on the definition of Tg. If the definition of Tg instead of τ(Tg) = 100s were τ(Tg) = 1s
then m would be lower. 2) It is also obvious that the curves in the “fragility” plot do
not have the same temperature dependence. Most seem to follow straight lines in this
plot, only with different slopes. This means that some of these lines will cross each
other and thus changing the definition of Tg should in principle affect (and possibly
spoil) many correlations found between fragility and other quantities.

However, for all liquids m is a decreasing function of log fmax. This means that to some
extent some correlation with fragility index will not be entirely lost if the definition
of Tg changes. In Fig. 10.17 we have illustrated this by correlating m at the usual
definition of Tg with m at a definition of τ(Tg) = 1s. The dashed line represents perfect
correlation, and each data point is a liquid. Clearly, the correlation is not completely
lost, although the data points now are a somewhat scattered.

10.6 Fitting functions without divergence

The previous section showed that there is no reason to prefer the VFT equation over
the Avramov equation when all three parameters are allowed to vary, and hence no
sign of a dynamic divergence (according to the ansatz we have made).

But one might ask: is this a fair argument? We fixed the pre-factor precisely to ensure
a possible physical interpretation of the parameter T0, and should we now be willing
to accept unphysical values of the pre-factor?
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Figure 10.16 Fragility-index (defined as mT ≡ d log fmax
d lnT

) a function of temperature. At
Tg this corresponds to fragility index defined by Angell. The vertical lines mark the glass
transition defined via the equation τ(Tg) = 100s.
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Figure 10.17 The correlation of m with the usual definition of Tg with m with a different
definition of Tg. The dashed line represents a perfect correlation. Clearly, the correlation is
not entirely lost when the definition of Tg is changed, but significant scatter is introduced.

Maybe not, and thus we proceed to construct a fitting function that has an increasing
temperature index upon cooling, but no dynamic divergence (recall that our analysis
in section 10.4 showed that the superiority of the VFT fits were due to it’s prediction
of an increasing I(T ) with decreasing temperature). If we, however, want to compare
any such function to the VFT equation, the number of free fitting parameters should
be the same. Since one free parameter is reserved to the constant of integration, we
are left with one, and thus it is a game of finding monotonically decreasing functions
of only one parameter (which for instance rules out a linear expression). We consider
to such functions, I = T1−T

T (FF1) and I =
(
T2

T

)2 (FF2). By integration one finds

∆E ∝ T exp

(
T1

T

)
(FF1) (10.30)

∆E ∝ exp

(
T 2

2

2T 2

)
(FF2) (10.31)

In Fig. 10.18 the standard deviations from fit to data of the VFT equation and the two
fitting functions, FF1 and FF2, are shown, and it is clear that FF1 and FF2 fits data
at least as well as the VFT-equation. In Fig. 10.19 we show the same liquids as in Fig.
10.9 (i.e. the eight liquids best fitted by the Avramov (upper panel) and VFT (lower
panel) equations) and we see that the FF1 and FF2 predictions are in good agreement
with the data and makes what seems reasonable extrapolations to lower temperatures
compared to the VFT equation.

We can also subject these new functions to the same analysis as in section 10.5, and
we find that FF1 and FF2 in all areas perform at least as well as the VFT equation.
In Fig. 10.20 we show the dependence of the choice of pre-factor (compare Fig. 10.11).
We clearly see that FF1 and FF2 fits as well as the VFT equation for low values of the
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Figure 10.18 The figures shows the mean squared distance from data point to the fit for
the VFT equation compared to the new fitting functions, FF1 (Eq. (10.30)) and FF2
(Eq. (10.31)). There is no significant difference in the ability to fit data between the three
functions.
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Figure 10.19 The temperature index for the liquids where Avramov equation (upper panel),
respectively the VFT equation (lower panel), fits best. Dashed lines are the predicted
temperature index for FF1, and dash-dotted lines are the FF2 prediction.
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Figure 10.20 The sum of deviations for all liquids in the study for different choices of the
pre-factor τ0. The fits are clearly quite sensitive to this parameter, but for the physically
meaningful values of τ0 the conclusion is that the VFT equation fits better than the Avramov
equation.

pre-factor, better for intermediate, and as well as the Avramov equation for the really
high values of the pre-factor.

These two fitting functions, FF1 and FF2, were chosen rather arbitrarily and too much
emphasis should not be put on the functional form of these. Interestingly, however, a
recent publication from Mauro et al. [50] arrive at an expression for the temperature
dependence of the activation energy quite similar to FF1

∆E(T )/kB = K exp

(
C

T

)
. (10.32)

10.7 Discussion and conclusions

We have shown that for a large body of dielectric data, the VFT-equation and the
Avramov-equation both generally fit very well, but the VFT-equation on average fits
slightly better when the pre-factor τ0 is fixed at a physcially reasonable value. If this
restriction is relaxed the two functions fit data equally well.

It was also shown that (for physically meaningful values of τ0) the temperature index
with few exceptions increases upon cooling, an interesting fact by itself. This means
that not only is the activation energy increasing with decreasing temperature, it is
increasing with increasing rate. This feature is captured by the VFT equation, while
the Avramov equation predicts a constant temperature index. Other fitting functions
with an increasing temperature index and no dynamic divergence are shown to fit data
at least as well as the VFT equation.
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This fact indicates that there is no convincing evidence for a dynamic divergence at
a finite temperature. As pointed out already by Harrison, both the Avramov and the
VFT equations are convenient for interpolation of experimental data, but extrapolation
outside the experimental range should not be carried out with any degree of confidence,
nor should any physical meaning necessarily be assigned to these equations [34].

We limited the analysis to a dynamical region where we believe the dynamics are
dominated by the energy-landscape. It can of course be discussed where exactly is the
cross-over in dynamics is taking place, but the conclusions drawn here are still valid
if one restricts the fitting region to the ultra-viscous region (10−3 < τ < 103), as we
show in Fig. 10.21.
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Figure 10.21 The mean squared error of VFT and Avramov equations as well as FF1 and FF2
when restricting the fitting region to the ultra-viscous region just above Tg (10−3s < τ < 103).
This decreased the number of liquids to 28, but the result are very similar. If anything,
restricting the fitting region closed the gap between the VFT equation and the Avramov
equation.

A clever way to extend the range of relaxation times beyond those obtainable by
linear relaxation experiments is to consider results from ageing experiments. Studies
by McKenna, Simon, Plazek and co-workers – mainly on polymeric systems – show
that the VFT prediction is not followed when systems are aged into equilibrium by
annealing for sufficiently long time slightly below the glass-transition temperature [51–
53]. In Fig. 10.22 we show their results on the molecular glass-former m-toluidine and
a polymer, polystyrene.

Although the accuracy of these experiments is not comparable to that of dielectric relax-
ation experiments on the metastable equilibrium phase, it was nevertheless possible to
conclude that the relaxation times deviate from the VFT equation by always increasing
less markedly when lowering temperature than predicted by the VFT equation. These
results are fully consistent with the above conclusion and including polymeric systems
in the analysis would not have changed the outcome [54, 55].

In this study only organic glass-formers were studied. However, a related study by
Mauro et al [50] on a range of oxide glasses show similar results. These authors find
that in general the VFT and Avramov equations fit equally well (varying all three
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(a) From [51]. (b) From [52].

Figure 10.22 Data for m-toluidine (a) and polystyrene (b) showing that when then the sample
is aged into equilibrium below Tg the relaxation time increases less than predicted by VFT
equation fitted to relaxation time data below Tg.

parameters), but extrapolations to low temperatures of fits to viscosity data at high
temperatures predict too high, respectively too low, Tg’s. They suggest a new equation
for describing viscosity data (mentioned previously, see Eq. (10.32)) and show that this
equation give more reasonable prediction of Tg as well as of the pre-factor. So it seems
that conclusions drawn here based on organic liquid data are also valid for oxide glasses.

We conclude that the data analyzed – the most accurate presently available for any
class of glass-forming liquids – do not give convincing indications of any dynamic
divergences. Consequently, the temperature T0 of the VFT equation cannot be assigned
any fundamental significance. In our opinion, theories predicting a dynamic divergence
of the VFT form should be reconsidered.
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glycerol Gly M 192 ; 252 −1.89 ; 5.85 1.08 ; 1.97 [66]
isopropyl-benzene Cum ∗ 131 ; 149 −1.26 ; 4.73 2.46 ; 3.27 [56]
m-tricresyl-phosphate mTCP ◦ 209 ; 233 −1.58 ; 3.49 2.22 ; 3.32 [69]
m-toluidine mTol � 184 ; 200 −2.77 ; 2.76 3.43 ; 4.07 [1]
o-terphenyl OTP . 252 ; 282 −0.24 ; 5.71 2.64 ; 5.25 [70]
phenolphthalein-dimethylether PDE × 299 ; 333 −1.47 ; 4.51 2.89 ; 3.93 [71]
phenyl-salicylate (salol) Sal + 223 ; 253 −1.38 ; 5.6 3.62 ; 4.45 [72]
polypropylene-glycol PPG � 200 ; 240 −1.51 ; 5.46 1.45 ; 3.43 [66]
pyridine-toluene PT ∗ 125 ; 131 −2.85 ; 1.63 5.07 ; 6.46 [66]
squalane Sqa ◦ 170 ; 210 −1.92 ; 5.05 −0.25 ; 3.77 [64]
sucrose-benzonate SB � 341 ; 400 −1.14 ; 5.54 1.39 ; 4.16 [73]
tetraphenyl-tetramethyl-trisi DC704 O 211 ; 240 −2.62 ; 5 3.53 ; 4.11 [64]

loxane
tricresyl-phosphate TCP . 216 ; 248 −0.69 ; 4.95 1.8 ; 3.16 [1]
triphenyl-ethylene TPE × 254 ; 274 −1.47 ; 3.13 3.43 ; 4.04 [64]
tripropylene-glycol TPG � 192 ; 228 −2.01 ; 4.78 1.4 ; 3.31 [66]
trisnaphthylbenzene tNB M 357 ; 405 0.09 ; 5.86 2.51 ; 3.67 [74]
xylitol Xyl ∗ 254 ; 284 −0.59 ; 4.66 2.18 ; 4.13 [56]

Table 10.1: Trivial name, abbreviation, and symbols used in the
figures. The table also includes information such as the dynami-
cal interval available, the temperature interval, temperature index
interval, and references to where the data were first published.
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11 The out-of-equilibrium dynamics

In the previous parts of the thesis we have been addressing the properties of the (meta-
stable) equilibrium liquid. For many purposes – both in application and from a more
fundamental point of view – it is also extremely interesting what happens when the
liquid is taken out of equilibrium, i.e. when it forms a glass.

The glass transition is a kinetic event; by definition a glass is simply a highly viscous
liquid that has not yet had time to equilibrate [1–6]. Any glass thus relaxes towards the
equilibrium liquid state. Equilibrium can only be reached on laboratory time scales,
however, if the glass is kept at a temperature not too far below the glass transition
region.

The change of materials properties over time is referred to as aging. Aging of purely
physical properties is termed “physical aging” to distinguish it from other time-dependent
processes such as chemical degradation [7].

Aging of glasses is a nonlinear phenomenon, because the aging rate is structure depen-
dent and itself evolves with time when the structure changes as equilibrium is gradually
approached [7–16]. Thus aging studies provide information beyond that obtained by
linear-response experiments like, e.g., dielectric relaxation measurements.

In the following sections we give an overview of phenomenology that characterizes
relaxation of viscous liquids close to and below the glass transition temperature.

11.1 Aging effects

Figure 11.1 illustrates the change of some measured property p (typically volume or
enthalpy) of a liquid cooled through the glass transition. The liquid coefficient is defined
by the slope of the cooling curve in the liquid state

αliqp =

(
∂p

∂T

)

eq

(11.1)

and a corresponding coefficient can phenomenologically be defined for the glass, αglp =(
∂p
∂T

)
gl
. Since the glass is not in equilibrium this is however not a thermo-dynamically

well-defined quantity. If p is volume then αp is the thermal expansion, and if p is
enthalpy then αp is the heat capacity. Usually, the liquid coefficient is larger than the
glassy coefficient, αliqp > αglp .

In the liquid and glassy regions (far above and far below Tg, respectively) thermal
cycling is reversible, i.e. the same path is followed during cooling and reheating. In the
glass transition region this is not the case; when a liquid is cooled and re-heated across
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Figure 11.1 Cooling curve following the property p for a continuously cooled liquid. When the
structural relaxation time becomes comparable with the inverse cooling rate the liquid will
not have time to fully relax to equilibrium and the measured property will start to deviate
from the equilibrium line.

the glass transition region a hysteresis is observed, as shown in Fig. 11.2. When the
liquid is cooled through the glass transition region, the measured property p gradually
changes slope from the liquid value αliqp to the glassy value αglp . During re-heating a
different path is followed: when the glass transition region is approached p stays below
the cooling curve, then at a higher temperature it approaches the liquid line with a
much steeper slope, see Fig. 11.2(a). In the derivative (Fig. 11.2(b)) the cooling curve
is a gradual change from the (high) liquid value to the (low) glassy value. The hysteresis
shows up in the re-heating as an undershoot approaching the glass transition region
and an overshoot towards the liquid level. How large the under- and overshoots are
depends on the cooling and heating rates: a slow cooling rate and fast re-heating rate
gives a small undershoot and a large overshoot, while a fast cooling and subsequent
slow heating gives a large undershoot and a small overshoot. The hysteresis effect is
a consequence of the glass aging (or relaxing) irreversibly towards the (meta-stable)
equilibrium state during the thermal cycle.

This relaxation can be studied in a more controlled way by temperature step experi-
ments. In Fig. 11.3(a) a schematic representation of a temperature step experiment
is shown. At t = 0 a temperature step from T1 to T2 is imposed on the liquid. The
liquid responds instantaneously to the temperature step following the glass line – it
is quenched out of equilibrium. Then an isothermal relaxation towards equilibrium
follows. The overall change in p is given by ∆p = αliqp (T2 − T1) and the instantaneous
(glassy) change is given by ∆pg = αglp (T2 − T1). The purely structural part of the
response is thus given by ∆ps = ∆αp(T2 − T1) where ∆αp is defined as the difference
between the liquid and glassy coefficient. In Fig. 11.3(b) the temperature step and the
measured property p is shown as a function of temperature.

Of course a temperature step in a real experiment cannot be instantaneous because heat
diffusion takes time. A temperature step can however be regarded “instantaneous” if
the temperature is established homogeneously through the liquid, before any structural
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(a) Cooling and reheating (b) Derivative of p

Figure 11.2 The hysteresis observed when a glass is thermally cycled across the glass transition
region. In the glass transition region the heating curve lies below the cooling curve. If the
heating rate is slow it will start to relax toward the equilibrium line (giving rise to a large
undershoot in the derivative) and then follow the equilibrium line. If the heating rate is
fast no structural changes takes place in the beginning and the heating curve continues the
glassy line and only later catches up with the liquid line. This gives a large overshoot in the
derivative. From [13]
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Figure 11.3 A schematic representation a temperature step experiment. The material is
initially in equilibrium. At time t = 0 the temperature is changed from T1 to T2. The
measured property p responds by an instantaneous jump from p(0, T1) to p(0, T2) followed
by a slow structural relaxation towards equilibrium at the new temperature, p∞(T2). The
overall change in p is given by the liquids coefficient times the change in temperature.
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relaxation takes place. This will allow for an “ideal aging experiment” [17, 18], which
is defined as an aging experiment where the full relaxation curve is monitored. Doing
an ideal aging experiment is thus a matter of generating large separation between the
heat diffusion time and the structural relaxation time, e.g. by a small sample and/or
low temperatures.

11.1.1 Non-linearity

We stated that aging is a non-linear phenomenon. What does that mean? Let us start
by summarizing what a linear response means. Define the input (how we perturb the
system) as θ and the output as p (the property we measure). In the simplest case the
output is proportional to the input

p(t) = rθ(t) (11.2)

and the proportionality factor r is called the response.

If the system has a time-dependent response (i.e. relaxing systems) then the simple
relation in Eq. 11.2 will be replaced by a convolution of the response function with the
input history

p(t) =

∫ t

−∞
r(t− t′)θ̇(t′) dt′ . (11.3)

This is the definition of a linear response. Eq. 11.2 is thus the special case of Eq.
11.3 where r(t) is constant. This could be the response of a purely elastic solid to a
deformation.

A particularly simple instance of the above occurs when the input is a Heaviside step
function, θ(t) = θ0ϕ(t), where ϕ(t) =

{
0 t < 0
1 t > 0

. Then input-output relation becomes

p(t) =

∫ t

−∞
r(t− t′)θ0ϕ̇(t′) dt′

= θ0

∫ t

−∞
r(t− t′)δ(t′) dt′ = θ0r(t)

(11.4)

i.e. the shape of the response function is measured directly. In particular, Eq. (11.4)
means that for different magnitudes (and sign) of θ0 we measure the same output.

If the input is the temperature, this relation rarely holds for viscous liquids. Even for
small temperature steps, the response depends both on the sign and magnitude of the
temperature step. In Fig. 11.4 this shown by a temperature up and a temperature
down jump to the same temperature (figure from [9]). The two responses are clearly
not mirror symmetric, the down jump appearing quite flat and reaching equilibrium
much faster than the up-jump. The up-jump – while slower in the beginning – has a
much steeper approach to equilibrium.

This is the so-called fictive-temperature effect described already by Tool in the 1940’s
[19], an effect which comes from the fact that the relaxation rate is structure dependent
and itself evolves with time: A temperature down jump is “auto-retarded” [9] because
as the structure ages, the aging rate decreases. In contrast, a temperature up jump is
“auto-accelerated” because as the structure ages, the aging rate increases [9].
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Figure 11.4 The asymmetry of approach following a temperature up-jump and down-jump to
the same temperature. This asymmetry shows that the response to even small temperature
steps is nonlinear. The asymmetry arises because a down-jump is “auto-retarded”: for
every time-step the intrinsic relaxation time becomes slower and slower, approaching the
equilibrium value of the set temperature, giving rise to a stretching of the curve. The up-jump
on the other hand is “auto-accelerated”: the intrinsic relaxation time is increasing as the
equilibrium value is approached, thus revealing a sharper (or more compressed) curve shape.
From [9].

The retardation or acceleration of the structural relaxation is thus a consequence of a
large difference in the relaxation time at initial temperature T1 and the final tempera-
ture T2. How large or small does a temperature step need to be before the measured
response becomes nonlinear? Obviously, small enough that the relaxation time does
not change too much, τ(T2)/τ(T1) ≈ 1.

Assuming an Arrhenius expression for the equilibrium relaxation time τ(T ) = τ0 exp
(
TA

T

)
,

where TA is the activation temperature simply defined by activation energy divided by
Boltzmann’s constant, the change of the temperature by some percentage r will result
in the following change of relaxation time

τ(T (1 + r)) = τ0 exp

(
TA

T (1 + r)

)
= τ0

{
exp

(
TA
T

)} 1
1+r

(11.5)
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and we can express τ(T (1 + r)) in terms of τ(T )

τ(T (1 + r)) = τ(T )

{
exp

(
TA
T

)} r
1+r

(11.6)

TA is on the order of 104 and T of 102 and thus by insertion we see that a 10% change
of temperature will result in an increase in relaxation time by a factor of almost 104.
A change of 1% gives an increase by a factor 3, and only with a change in temperature
less than one permille, can we expect a roughly linear response in a temperature step
experiment.

11.1.2 Relaxation function and relaxation rate

From the measured property p in a temperature step experiment we can define a
relaxation function subtracting the value approached at long times and normalizing by
the overall change [13, 17]

R(t) =
p(t, T2)− p∞(T2)

p(0, T1)− p∞(T2)
, (11.7)

where p∞ refers to the value approached for t → ∞, i.e. the equilibrium value at the
T2.

For any relaxation function R(t) the Kovacs-McKenna (KM) relaxation rate Γ(t) is
defined [9, 14] by

Γ(t) ≡ −d lnR

dt
= − 1

R

dR

dt
, (11.8)

which is sometimes referred to as the inverse effective relaxation time, Γ = 1/τeff.
The KM relaxation rate gives the relative change of the relaxation function with time
and is independent of normalization. For a simple exponential relaxation function,
R(t) = exp(−t/τ), the KM relaxation rate is constant: Γ(t) = 1/τ . For the stretched-
exponential, R(t) = exp[−(t/τ)β ] (0 < β < 1) the KM relaxation rate is Γ(t) =
(β/τ)(t/τ)β−1 that decreases monotonically to zero as t→∞.

A convenient representation of aging data is a parameterized plot of the logarithm of
the KM relaxation rate versus the relaxation function, a so-called Kovacs-McKenna
plot. We show the original plot presented by Kovacs [9] in Fig. 11.5.

Kovacs [9] measured volume changes and did not use a normalized relaxation function,
but the relative volume change δ = (V − V∞)/V∞ as the x-axis. Thus for all the up
jumps we have δ < 0 because volume is increasing, while (δ > 0) for down jumps. In
the Kovacs plot the difference between up jumps and down jumps then becomes very
obvious: for down jumps the KM relaxation rate is monotonically decreasing, while the
KM relaxation rate for up jumps approach equilibrium in a much flatter manner – for
large up jumps the relaxation rate may even become non-monotonic: first decreasing
and then increasing.

In this figure it appears that temperature up and down jumps to the same temperature
do not always approach the same KM relaxation rate at long times. This gap between
terminal relaxation rates is sometimes referred to as the “expansion gap” or the “τ -
effective paradox”. The existence of an expansion gap has been a matter of debate
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Figure 11.5 The Kovacs-McKenna plot. This is parameterized plot of the KM relaxation rate
(defined in Eq. (11.8)) as a function of the relaxation function. The figure also illustrates
the so-called τ -effective paradox (sometimes also called the expansion gap), which is the
observation that apparently KM relaxation rate is not approaching the same value following
temperature jumps to the same temperature from above and below. From [9].

[20–23]. Kolla & Simon [18] recently concluded, however, that there is no expansion
gap for t → ∞; they attributed the reported expansion gap to the fact that Kovacs’
was unable to examine departures from equilibrium that were small enough to show
the convergence of time scales.

11.1.3 Memory effect

In a cross-over experiment the input to the system gets a little more complicated. In
Fig. 11.6 we give a schematic representation of a cross-over experiment. The input now
consists of two consecutive temperature steps of opposite sign. The initial measured
response is identical to that of Fig. 11.3. At a later time t1 the temperature is changed
to a temperature T3 characterized by the equilibrium value of p∞(T3) being identical
to the measured p(t1, T2). If the system has no “memory” of the past input, it should
immediately be in equilibrium and thus the p should not change. What is observed
is instead a hump: p changes in the opposite direction followed by a decay back the
equilibrium value at T3. This is sometimes called the memory effect.
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Figure 11.6 Schematic representation of the memory effect in a cross-over experiment. At
t = 0 the temperature is changed from T1 to T2 and the measured property starts adjusting
to the new temperature. At time t = t1 (before equilibrium is reached) the temperature is
changed to T3, the temperature where the equilibrium value of the property is equal to value
at that instant, p∞(T3) = p(t1, T2). If the system has no “memory” of the past the material
should instantly be in equilibrium. Instead what is observed is a “hump”: the value changes
after the temperature is adjusted, then decays back to the same value.

The memory effect in a cross-over experiment has been convincingly demonstrated, e.g.
by Kovacs [9] for poly-vinyl-acetate, and by Macedo & Napolitano [24] and Spinner and
Napolitano [25] for borosilicate glass. The data of Kovacs et al [26] for several cross-
over experiments, where initial and final temperatures, T1 and T3, are fixed, while the
intermediate temperature T2 is varied. The memory effect grow with the amplitude
of the consecutive up- and down-jumps and apparently all the curves from different
temperature inputs merge at sufficiently long time with the curve of a simple quench
from T1 to T3.

11.2 The Tool-Narayanaswamy formalism

Already in 1931 Tool introduced the idea of a “fictive” temperature (actually he called
it “equilibrium” temperature at that time and only later was the term “fictive” tem-
perature adopted) as a measure of the structural state of a glass [27]. Later, in the
1940’s this idea developed into the model described below [19]. The definition of the
fictive temperature is depicted in Fig. 11.8, where we show a cooling curve of p(T )
(but temperature history is not important for the definition).

The fictive temperature is the temperature of the intersection of the projection of the
point (T1, p(T1)) in the (T, p)-plot onto the extrapolated equilibrium line using the
slope of the glass line. Tf is thus the equilibrium temperature from which the system
must be quenched to obtain the property p(T1). Thus the limiting value of Tf is Tg for
a continuously cooled system.

By this definition the fictive temperature changes continuously from initial temperature
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Figure 11.7 Data from cross-over experiments. The inset shows the input sequence: (A) is
a simple 5K temperature down jump, (B)-(E) are cross-over experiments with increasing
amplitude on the temperature steps both down- and subsequent up-jumps, such that the final
temperature in all cases is the same. Large figure shows the corresponding volume response
to the temperature inputs. The larger the amplitude of the jump cycle is, the larger is the
memory effect. From [26].
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Figure 11.8 Definition of the fictive temperature, Tf . The slope of the measured property
in the liquid state ∂p/∂T = αliq

p is higher than that of the glassy state, αgl
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temperature is found by extrapolating a line with the slope αgl
p to intersect with the
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T1 to the final temperature T2 after a temperature step (see Fig. 11.9) following the
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Figure 11.9 Evolution of the fictive temperature following a temperature step. With
the definition of the fictive temperature provided in Fig. 11.8, this quantity will decay
monotonically from T1 to T2 following the relaxational part of the response function of the
measured property p. Adapted from [28]

structural part of the measured property p. We have that [17]

Rp(t) =
p(t, T2)− p∞(T2)

p(0, T2)− p∞(T2)
=
Tf − T2

T1 − T2
. (11.9)

The difference between this definition of a relaxation function and Eq. (11.7) is just
the normalization: Eq. (11.7) was normalized to the overall change in ∆p, and the
above relaxation function is normalized to the structural part, ∆ps.

Tool proposed the following equation to describe the time-dependence of the fictive
temperature (and thereby the relaxation function) [19]

dTf
dt

=
T − Tf
τ

(11.10)

where τ = τ(T, Tf ) is a function of both temperature and fictive temperature and
suggested the following expression for τ [19]

τ = k exp (−A1T −A2Tf ) (11.11)

where k, A1, and A2 are constants. With some minor modifications Eqs. (11.10) and
(11.11) can also describe situation where a liquid is cooled or heated at constant rates.
Tool demonstrated that his equation gave a reasonable description of heating rate data
[19].

The model can however not explain the cross-over experiment. It was then concluded
that the model was too simple, having only one “order-parameter” (namely Tf ) and
that more advanced approaches were needed to describe the aging phenomenology [13].

Narayanaswamy’s idea [17, 29] was that since the nonlinearity of structural relaxation
was due to a change in relaxation rate, then linearity could be restored by using the
reduced time. If the structural clock rate is denoted by γ(t) = 1/τ(t), the reduced time
t̃ is defined [13, 17–23, 30] by

t̃(t) =

∫ t

−∞
γ(T (t′), Tf (t′))dt′ , (11.12)
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where the lower bound is arbitrary. t̃ is sometimes called the “material time” or the
time measured on “the internal clock”.

Assuming now that the response of a material is linear except from the time dependence
of the relaxation rate γ and that time-aging-time superposition (TAS) holds (so that
R is retains its form when temperature is changed — even out of equilibrium), we can
describe the aging of the property as a linear convolution integral in the reduced time
t̃

p
(
T, t̃
)

= p∞(T )−∆αp

∫ t̃

−∞
R
(
t̃− t̃′

) dT
dt̃

dt̃ , (11.13)

where ∆αp = αliqp − αglp . Consequently, fictive temperature is given by a similar ex-
pression

Tf = T −
∫ t̃

−∞
R
(
t̃− t̃′

) dT
dt̃

dt̃ . (11.14)

If R is assumed to be a pure exponential R(t̃) = exp(−t̃) then Eq. (11.14) reduces to
Tool’s equation (Eq. (11.10)).

In principle, R(t̃) could be measured by making linear temperature steps, but in prac-
tice this requires extremely good temperature control and high measurement precision
and is not very feasible. Instead, the stretched exponential (SE) function has proven
to be a quite successful expression for the linear relaxation function

R(t̃) = exp
(
−t̃β

)
. (11.15)

Narayanaswamy [17] also suggested an expression the dependence of relaxation rate on
temperature and fictive temperature based on the Arrhenius equation

γ(T, Tf ) = γ0 exp

(
−x ∆E

kBT
− (1− x)

∆E

kBTf

)
, (11.16)

where x is a number between 0 and 1 and ∆E is the activation energy.1 Equation
(11.16) reduces to the Arrhenius equation when T = Tf . There is no theoretical
justification for this form, but it has been shown to describe data well by numerous
authors [17, 29, 31]. The Arrhenius equation in general is inadequate to express the
temperature dependence of the equilibrium relaxation time, but for a small temperature
interval, such as a temperature step in an aging experiment, it is a good approximation.

Later other functional forms of γs(T, Tf ) have been suggested based on extensions
of different models of the temperature dependence of the equilibrium relaxation time
(Mauro et al [32] compares 5 different). None of these are theoretically justified either.
Below we list two examples that are based the Adam-Gibbs model and the Avramov
model that we encountered in part II

Avramov equation: γ(T, Tf ) = γ0 exp

{
−
(
T∗
Tf

)g (
Tf
T

)h}

Adam-Gibbs equation: γ(T, Tf ) = γ0 exp






 T∗

T
(

1− T0

Tf

)







(11.17)

1 This notation is actually not due to Narayanaswamy, but his expression is equivalent to this.
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It should be noted that the Avramov expression has four fitting parameters (γ0, T∗,
g, and h) compared to the Arrhenius expression and the Adam-Gibbs expression that
have only three fitting parameters, γ0,∆E, x and γ0, TA, T0 respectively.

Scherer [33] showed for aging data on a range of oxide glasses that the Arrhenius
expression introduced by Narayanaswamy and the Adam-Gibbs expression fit data
equally well.

11.2.1 Fitting heating rate curves

In the following we implement the TN model presented above on to fit a set of heating
rate data from the literature. Partly to demonstrate what we can get out of such
analysis and how well it works, and partly to test a new relaxation function (emerging
from the analysis of aging experiment in the next chapter) that we call the exponential√
t relaxation function

R(t) = exp
[
−c
√
t̃− t̃

]
. (11.18)

This function has a long time exponential decay and seems to give a better description
of the relaxation function than the SE function in a temperature step experiment [34]
(see Paper III, p. 269). Thus it would be interesting to see if this function also gives a
better fit to other types of aging experiments, like the cross-over experiment and DSC
heating curves. A similar function was suggested by Hornbøll et al [35], introducing
an exponential cut off to the SE function but without fixing the stretching exponent,
β. Hornbøll et al showed that the TN model using their function gave a superior fit to
hyper quenched glasses. However, their fit involves one extra parameter, the β of the
SE function, which is normally fixed.

As an example of heating rate data we will use the B2O3 data of DeBolt et al [31]
(presented in Fig. 4 of [31]). They consist of three heating rate curves of a sample;
All were heated at a constant heating rate of qh = 10K/min, subsequent to a cooling
by different cooling rates (qc = 40, 10, 2K/min). The data clearly show the hysteresis
described earlier in the form of a undershoot and overshoot in the derivative of the
fictive temperature.

For the relaxation rate’s dependence of temperature and fictive temperature, we will
use the expression suggested by Narayanaswamy (Eq. (11.16)), which is also what was
done in the paper, and as the relaxation function we will use both the SE function and
the exponential

√
t function. We then have a total of four fitting parameters: γ0,∆E, x

of Eq. (11.16) and one shape parameter for each of the relaxation functions, β and c
respectively. In principle, ∆E and γ0 can be determined by equilibrium relaxation data
in the relevant temperature interval to reduce the number of fitting parameters and
ensure a physical interpretation of the model, but since we do not have the equilibrium
data they were treated as fitting parameters.

All three data sets were fitted simultaneously and the result are shown in Fig. 11.10.
Figure 11.10(a) shows the data as they were presented in [31] as well as the fits to
the TN-model. The curves in color represent fits to the exponential

√
t function and

the fits using the SE function are shown as a black full line. Obviously, the TN-model
captures all the features of the glass transition hysteresis and apparently, the choice
of relaxation function makes little difference. The fitted parameters are listed in table
11.1 as well as the χ2 value. The fitted parameters for the Arrhenius expression are
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Figure 11.10 Fitting the B2O3 by DeBolt et al reported in [31] data using the TN model. The
samples have been cooled at different rates (qc = 40, 10, 2.5K/min) and subsequently reheated
at the same rate (qh = 10 K/min). Data points (circles) are shown in (a) as well as the TN
fits using the exp

√
t relaxation function (in color) and the stretched exponential (black lines).

Fitting parameters are given in table 11.1. Both functions fit the data excellently, but the
standard deviation shows that the exp

√
t relaxation function fits slightly better. (b-d) shows

the fitted Tf curves (both cooling and re-heating) as a function of time, temperature, and
reduced time. In the beginning T and Tf are identical, but around Tg the fictive temperature
“freezes” in and does not change before the temperature again is increased.

not very different in the two cases, and the shape parameters both predict a relatively
narrow relaxation functions, so the fits are consistent with each other. The pre-factors
γ0 are extremely high, which can probably be explained by the fact that it is a relatively
small temperature interval around Tg where the Arrhenius expression is important, and
a non-Arrhenius relaxation times are fitted to an Arrhenius expression in the vicinity
of Tg, the result would be a very steep curve with a high γ0.
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γ0

[
1
s
]

∆E/kB [K] x β c χ2

SE 2.2 · 1029 4.0 · 104 0.52 0.71 0.18
SE [31] 1.5 · 1033 4.5 · 104 0.40 0.65
exp
√
t 7.7 · 1027 3.7 · 104 0.56 0.79 0.15

Table 11.1 Fitting parameters from fitting TN model to B2O3 data from DeBolt et al [31]
including the parameters obtained by DeBolt et al. Our fitted values of the parameters
deviate from those of DeBolt et al, but they did not use a least-square method for fitting.

The heating rate experiment is not as well-defined and controlled experiment as the
temperature step experiment. Thermal gradients will inevitably arise when a sample
is continuously cooled. This problem gets bigger for a faster cooling rate, and this
may explain the relatively poor fit to the sample with the highest cooling rate (data in
bottom of Fig. 11.10(a)), compared to the fits to the slower cooling rates. How severe
this problem is, of course also depends on sample size compared to heat diffusion length.

11.2.2 Shift factors and TAS

The TN-model can of course also be applied to temperature step experiments, where
normally the reduced time is calculated by numerical integration of Eq. 11.12 using
one of the proposed expressions for the clock rate’s dependence of fictive and real
temperatures (e.g. Eq. (11.16) or (11.17)). The measured curve directly gives the
relaxation of the fictive temperature (Eq. (11.9)).

There is however a clever way of determining an out-of-equilibrium relaxation rate
directly from experimental data instead of via modelling. This approach is mathemati-
cally equivalent to the TAS concept [36–40] and is sometimes referred to as the method
of reduced variables.

The procedure was traditionally implemented by first using the short-time response of
for instance a mechanical perturbation to take a “snap-shot” of the structure during a
temperature step experiment [22, 41–43]. These curves are then shifted horizontally on
the time axes in order to determine the aging-time shift factors, aTf

. Assuming time-
aging time superposition, the shift factors are proportional to the structural relaxation
time. Thus, the reduced time is found via an equation equivalent to Eq. (11.12),
t̃ =

∫ t
0
(aTf

(t′))−1 dt [26].

Struik defined the proper protocols for doing this [12], which is illustrated in Fig.
11.11(a). He suggested that a series of square perturbations be applied to the aging
sample at different aging times. The duration of the perturbation ti should be sub-
stantially lower than current aging time Tai , more specifically ti/tai < 0.1. In Fig.
11.11(b) we show an example where the shift factors have been determined in an aging
experiment by O’Connell et al [38]. The figure shows that the TAS assumption hold
since all the measured short time responses can be collapsed to one master curve.
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(a) Struik’s protocol [12] for determining shift factors. Adapted from [44]

(b) Determining the out-of-equilibrium relaxation rates via shift factors. From [38]

Figure 11.11 Time-aging-time superposition (TAS) to determine shift factors. (a) Struik’s
protocol for determining the short time response of an aging sample, according to which the
duration of the perturbation should be roughly 1/10th of the current aging time. (b) An
example from O’Connell et al that implements this procedure determine the shift factors.
Clearly, TAS principle is obeyed in this case since the curves collapse to master curve when
shifted appropriately along the time axis.
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11.3 Concluding remarks

The existence of a material time is an old idea that predates Narayanaswamy; thus
the well-known time-temperature superposition concept may be regarded as a “linear”
internal clock hypothesis. Narayanaswamy’s insight was to generalize this to describe
aging, which is a highly non-linear phenomenon.

The TN formalism is standard for interpreting aging experiments and used routinely
used in industry for predicting aging effects [35, 45, 46]. Nevertheless, it is not known
whether – and in which sense – the internal clock exists, or if it should merely be
regarded as a convenient mathematical construction. The TN formalism is for instance
difficult to unite with the idea that the dynamics of a viscous liquid is heterogeneous.

Usually, it is assumed that different probes can have different internal clocks. Roe &
Millman showed a difference in enthalpy and volume relaxation [47] and similar results
have been found by others [22, 43, 48].

In the following chapter we propose a test to resolve some of these questions.
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This chapter presents aging experiments on five organic liquids for temperature up and
down jumps (section 12.2), which were published in [34]. Several paragraphs of this
chapter are identical and almost all of the figures to those of the paper, but there are
some changes: most of the background material has been omitted since it was covered
in the previous chapter, and a section on the approach Lunkenheimer et al has been
added. The measurement presented here were carried out by Niels Boye Olsen.

In section 12.4 a new test of the existence of an internal clock is proposed. In contrast to
most earlier works this test makes no assumptions regarding which quantity controls
the internal clock’s rate or the mathematical form of the relaxation function. This
section demonstrates that all five liquids have internal clocks. Section 12.6 extends
the data analysis in order to study whether the long-time relaxation is stretched or
simple exponential. Section 12.7 shows that within the experimental uncertainties the
long-time simple exponential structural relaxation has the same rate as the long-time
exponential decay of the dipole autocorrelation function. A discussion of noise and
systematic errors in the data analysis is given in section 12.8. Finally, section 12.9
gives a summary and some concluding remarks.

12.1 Introduction and motivation

A typical aging experiment consists of a temperature step, i.e., a rapid decrease or
increase of temperature to a new, constant value. Ideally, such a temperature step
should be instantaneous. In practical terms this means that the new temperature
should be established as constant in time and homogeneous throughout the sample
before any structural relaxation has taken place. If this is achieved and if sufficient
time is available, it is possible to monitor the complete relaxation to equilibrium of the
physical property being probed. An experimental protocol that measures the complete
relaxation curve will be referred to as an “ideal aging experiment” [18].

What are the requirements for an ideal aging experiment? First, there should be
good temperature control and the setup should allow for rapid thermal equilibration
following a temperature jump. Secondly, a physical observable is needed that may
be monitored quickly and accurately and which, preferably, changes significantly even
for rather small temperature changes. The latter property allows for studying aging
following temperature jumps that are of order just one percent in absolute units, which
is enough for most ultra-viscous liquids to become highly nonlinear. The organic liquids
studied in here have glass transition temperatures in the region 170K-200K and most
temperature jumps presented are just one or two Kelvin jumps.

In order to make faster temperature-jump experiments possible, we designed a dielec-
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Figure 12.1 Schematic drawing of the dielectric measuring cell with the microregulator. The
liquid is deposited in the (50 µm) gap between the disks of the dielectric cell. The Peltier
element heats or cools the dielectric cell, depending on the direction of the electrical current
powering the element. The current is controlled by an analog temperature-control system that
receives temperature feedback information from an NTC thermistor embedded in one disc of
the dielectric cell. A stainless steel electrode pin keeps the cell pressed against the Peltier
element and provides electrical connection to one of the disks. The dielectric measuring cell
is placed in the main cryostat.

tric cell based on a Peltier thermoelectric element by means of which the heat flow is
controlled via electrical currents (Fig. 12.1) [49]. The characteristic thermal equilibra-
tion time of this “microregulator” is two seconds. This is almost a factor of hundred
times faster than that of conventional equipment, which usually involves much larger
heat diffusion lengths; our liquid layer is just 50 µm thick and the use of a Peltier
element minimizes heat diffusion lengths outside of the liquid layer. In the microreg-
ulator temperature may be kept constant over weeks, keeping fluctuations below 100
µK [49, 50]. The experimental setup is detailed in Refs. [49] and [50], which describe
the microregulator, the surrounding cryostat, and the electronics used for measuring
the frequency-dependent dielectric response.

For monitoring aging we chose to measure the dielectric loss (the imaginary part of
the dielectric constant) at a fixed frequency. With modern equipment this quantity
may be measured quickly and accurately. For a viscous liquid of molecules with a
permanent dipole moment, a large frequency range exists in which the dielectric loss
changes considerably for small temperature variations. The dielectric loss was used
previously for monitoring aging by several groups, e.g., by Johari [51], Schlosser and
Schönhals [52], Alegria et al. [53–55], Leheny et al. [36, 56], Cangialosi et al. [57],
Lunkenheimer et al. [58–60], D’Angelo et al. [61], and Serghei and Kremer [62].

12.2 Experimental results and initial data analysis

We studied aging of the following five organic liquids: Dibutyl phthalate (DBP), di-
ethyl phthalate (DEP), 2,3-epoxy propyl-phenyl-ether (2,3-epoxy), 5-phenyl-4-ether
(5-PPE), and triphenyl phosphite (TPP). These liquids are excellent glass formers. In
order to ensure complete equilibrium before each measurement, the sample was kept
at the temperature in question until there were no detectable changes of the dielectric
properties.
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Figure 12.2 A typical measurement. (a) Schematic representation of the protocol in which the
sample is first aged to complete equilibrium to a temperature slightly below the calorimetric
glass transition temperature Tg, a process that typically takes weeks, followed by two down
temperature jumps and two up temperature jumps. (b) Data from measurements on DEP
following this protocol, jumping from 184K to 183K, further to 182K, and back to 183K and
finally to 184K. The dielectric loss ε′′ was measured as a function of time at the frequency
f = 1Hz. The duration of the measurement depends on the temperature range, i.e., how long
it takes to equilibrate the sample fully after a temperature jump. Following this procedure
we know the relaxation functions as well as the equilibrium values of the dielectric losses at
the temperatures in question.

Aging was studied by monitoring how the dielectric loss at a fixed frequency, ε′′(f),
develops as a function of time following a temperature jump. In order to avoid the
liquid aging significantly during the measurement of a single frequency response data
point, the monitoring frequency f must be considerably higher than the inverse struc-
tural relaxation time that is of order the inverse alpha loss-peak frequency; thus the
monitoring frequency must be much larger than the loss-peak frequency. For the data
analysis of sections 12.3 and 12.4 to apply, however, f must also be sufficiently below
any contribution(s) from potential beta processes. These constraints vary with the
liquid and the selected temperature range, and the choice of f was optimized for each
liquid. For all five liquids the optimal f is in the Hertz range.

Measurements consist of consecutive temperature jumps of (usually) one or two Kelvin,
in most cases with two down/up jumps followed by two up/down jumps. This is
illustrated in Fig. 12.2, which in (b) shows the raw data obtained for DEP. Here
f = 1Hz and the temperature jumps are one Kelvin. The temperature protocol ensures
that data are obtained for one up and one down jump to the same temperature. The
duration of each measurement varies with the relaxation time of the liquid in question
at the measured temperatures. A time-consuming part of the experiment is the initial
aging to complete equilibrium at some target temperature just below the calorimetric
glass transition temperature, which in most cases required weeks of annealing. In all
cases care was taken to ensure that the loss at one temperature was monitored until the
sample had reached complete equilibrium; only thereafter was temperature changed to
a new value. In section 12.8 possible sources of errors in the experiments.
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Figure 12.3 Monitoring aging by measuring the dielectric loss at a fixed frequency. This
figure presents the full set of data upon which the paper’s analysis is based. The data are
given in log-log (base 10) plots showing the dielectric loss as a function of time. In all cases
the starting situation (“t = 0”) is that of thermal equilibrium, a condition that is ensured
by annealing for such long time that no observable change is seen in the dielectric loss. (a)
Dibutyl phthalate (DBP). A series of measurements at f = 0.18Hz stepping 1K from 177K
and 175K to 176K, as well as the reverse. (b) DBP stepping from 175K to 177K and back,
this time monitored at f = 1Hz. (c) Diethyl phtalate (DEP) (f = 1Hz). (d) 2,3-epoxy
propyl-phenylether (2,3-epoxy) (f = 1Hz). (e) 5-polyphenyl-ether (PPE) (f = 1Hz). (f)
Triphenyl phosphite (TPP) (f = 1Hz).
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Figures 12.3(a)-(f) show the data. Two data sets were included for DBP, with aging
monitored at different frequencies. Note that aging for down jumps to a given tem-
perature is faster than for an up jump ending at the same temperature (compare, e.g.,
the two jumps to 200 K in Fig. 12.3(f)), which is due to the fictive temperature effects
described in the previous chapter. The fact that the fictive-temperature effect is clearly
visible in Fig. 12.3 shows that even relatively small temperature jumps of 1K or 2K
are highly nonlinear.

For any experiment monitoring the relaxation of some quantity towards its equilibrium
value, the normalized relaxation function R(t) is defined by subtracting the long-time
(equilibrium) limit of the quantity in question and subsequently normalizing by the
overall relaxation strength [13, 17]. For a temperature jump from T1 to T2 starting
from equilibrium the normalized relaxation function is given by

R(t) =
log ε′′fm(T2, t)− log ε′′fm(T2, t→∞)

log ε′′fm(T1, t = 0)− log ε′′fm(T2, t→∞)
, (12.1)

where fm denotes the fixed frequency at which the dielectric loss is measured.

Taking now DBP as an example, Fig. 12.4(a) shows as functions of time the normalized
relaxation functions for all six temperature jumps of Fig. 12.3(a) and (b). Figure
12.4(b) shows the corresponding KM relaxation rates (see Eq. (11.8)). At long times
there is considerable noise in the KM rates because the relaxation rate is difficult to
determine by numerical differentiation when the noise becomes comparable to R(t)
[21]. In order to eliminate unreliable long-time Γ(t) data points we introduced a cut-
off at 0.5% from equilibrium for all data sets. Despite the long-time noise it is clear
that for up and down jumps ending at the same temperature (175, 176, or 177 K)
the KM relaxation rates eventually approach the same number. This shows that there
is no expansion gap as Kovacs proposed in 1963 based on experiments monitoring
relaxation by measuring volume changes [9]. Figure 12.4(c) is a parameterized plot
of (R(t), log(Γ(t))) which – except for the normalization of R introduced here – was
the data representation originally used by Kovacs [9] (see Fig. 11.5 in the previous
chapter). Again, it is clear that up and down jumps to the same temperature approach
the same KM relaxation rate at long times (R→ 0). This observation is in agreement
with the conclusion of Kolla & Simon [18], that the expansion gap vanishes for t→∞.

12.3 The internal clock hypothesis

According to the TN formalism, for all temperature jumps applied to a given system –
small or large, up or down – the normalized relaxation function is a unique function of
the material time that has passed since the jump was initiated at t̃ = 0: R = R(t̃). In
applications of the TN formalism one often allows for different material times to control
the aging of different quantities (with the function R(t̃) varying with the quantity that
is being monitored). But if an internal clock really exists, a common material time must
control all relaxations. In particular, the relaxation of the clock-rate activation energy
itself during aging must be controlled by the same material time that controls the
dielectric aging process. A major point of paper III is to check against experiments the
consequences of assuming that an internal clock exists. The next subsections develop
a theory for testing this.
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Figure 12.4 (a) Normalized relaxation functions for DBP as functions of log(time). (b) The
Kovacs-McKenna (KM) relaxation rates Γ defined in Eq. (11.8) for these data, as functions
of log(time). Up and down jumps ending at 176 K give the same relaxation rate at long
times, showing that there is no so-called expansion gap as proposed by Kovacs in 1963 [9].
(c) Parameterized plot of (R(t),Γ(t)). Again, it is seen that different temperature jumps to
the same temperature approach the same relaxation rate at long times (small R).

Determining the structural clock rate γs(t) in the TN formalims usually involves some
mathematical modelling, fitting of data, or assumption regarding what controls the
relaxation [10, 13, 17, 63]. In Sec. 12.4 we develop a test of the internal clock hypoth-
esis which does not require such procedures, but proceeds directly from data without
explicitly determining the material time, t̃(t). First, however, it is necessary to define
precisely both the dielectric relaxation rate, γd, in an out-of-equilibrium situation and
the structural clock rate, γs.

12.3.1 Defining the dielectric relaxation rate for out-of-equilibrium
situations

The five liquids studied are all good glass formers that obey time-temperature super-
position (TTS) for their main (alpha) process to a good approximation. Moreover,
they all have a high-frequency decay of the loss that to a good approximation may be
described by a power-law, ε′′(f) ∝ f−n, where n is close to 1/2. In Fig. 12.5(a-b)
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we show equilibrium dielectric loss curves at different temperatures for DBP and how
they collapse when scaled with the loss peak position. It was conjectured some time
ago that a high-frequency exponent of −1/2 reflects the generic properties of the pure
alpha process obeying TTS (i.e., whenever the influence of additional relaxation pro-
cesses is negligible) [64], a conjecture that was strengthened by a recent study involving
more than 300 dielectric spectra [65]. For the below data analysis the exponent n was
identified as the minimum slope [65] of the log-log plotted dielectric loss curve above
the loss peak, evaluated at the temperature where the loss peak is 0.1 Hz (shown for
DBP in Fig. 12.6(a)). The values for n thus obtained are listed in Table 12.1.

DBP DEP 2,3-epoxy 5-PPE TPP
β 0.506 0.483 0.550 0.507 0.495

Table 12.1 The high-frequency slopes n used in the data analysis.

The inverse power-law high-frequency dielectric loss is used to monitor the dielectric
relaxation rate γd(t) as the structure ages following a temperature jump. This is
done by proceeding as follows. First, we define the dielectric relaxation rate for the
equilibrium liquid, γd, as the angular dielectric loss-peak frequency:

γd ≡ 2πfmax , (12.2)

where fmax is the loss-peak frequency. If temperature is lowered in a step experiment,
the dielectric loss curve gradually moves to lower frequencies as the system ages and
relaxes to equilibrium. How to define a dielectric relaxation rate γd for this out-
of-equilibrium situation? It is not possible to continuously monitor the entire loss
curve, because the aging takes place on the same time scale as that of the dielectric
loss, implying that linear-response measurements around the loss peak frequency are
not well defined (i.e., a harmonic input does not result in a harmonic output). To
circumvent this problem, the intuitive idea is that how much the dielectric relaxation
rate has changed may be determined from how much the loss has changed at some fixed
frequency in the high-frequency power-law region, which is illustrated in Fig. 12.6(a).
Mathematically, this corresponds to defining γd(t) from the high-frequency equilibrium
expression as follows

ε′′(f, t) ∝ (f/γd(t))
−n . (12.3)

Thus by probing the dielectric loss at the fixed frequency f , the dielectric relaxation
rate may be determined during aging from

log γd(t) =
1

n
log ε′′(f, t) +A . (12.4)

The calibration constant A is found by using equilibrium data from higher temperatures
where the loss peak is within the observable frequency range. Figure 12.6(b) shows that
the procedure of predicting the peak position by the measuring the dielectric loss at a
fixed frequency indeed is valid; the loss peak positions for the spectra where the peak
position is in the frequency window is shown in green triangles, while the predicted
peak positions using the dielectric loss at different fixed frequencies are shown in black
symbols. All curves line up at low temperatures (i.e. when the alpha peak has moved
past the “probing” frequency) thus confirming the procedure.
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Figure 12.5 (a) Dielectric loss spectra for DBP above Tg (i.e., equilibrium data). (b) TTS
plot of the same spectra illustrating that the high-frequency wing of the alpha (main) process
approaches a slope of roughly −1/2 as temperature is lowered [64, 65]. All five liquids have
high-frequency slopes close to −1/2, but this fact is not important for the analysis. (c)
Illustration of the procedure used to determine the inverse power-law exponent n, which is
identified as the minimum slope of the dielectric loss curve in a log-log plot at the temperature
where the loss-peak frequency is 0.1 Hz (blue dotted curve). The red data points give the
numerical slopes of this curve, and the red dashed curve is a parabola fitted to the bottom
points of the slope; the analytic minimum of the parabola determines the minimum slope
[65].
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Figure 12.6 (a) Illustration of how one utilizes the fact that the loss varies as f−n at
high frequencies to measure the dielectric loss-peak frequency that by definition gives the
dielectric clock rate, also during aging (Eq. (12.4)).(b) The loss-peak frequencies determined
from the equilibrium spectra (green) and the predicted peak-positions using Eq. (12.4)
below (corresponding to γd) at different measuring frequency. The curves line up at low
temperatures, showing that this procedure determines the correct loss-peak frequency.

Although the above ideas seem straightforward, from a conceptual point of view one
may question the validity of the concept of a dielectric relaxation rate in a situation
where the structure ages on the same time scale as the dipoles relax. In order to specify
the precise assumptions needed to justify defining γd(t) via Eq. (12.4), we reason as
follows. According to linear-response theory, for a system in thermal equilibrium the
measured output is calculated from a convolution integral involving the input before
the measuring time. A convenient way to summarize time-temperature superposition
(TTS) for the equilibrium liquid is to formulate the convolution integral in terms of a
dielectric “material” time t̃: If γd is the equilibrium liquid’s dielectric relaxation rate
(Eq. (12.2)), the dielectric material time is defined from the actual time t by

t̃ = γd t . (12.5)

In terms of t̃, since in a standard dielectric experiment the input variable is the electric
field E and the output is the displacement vector D, the convolution integral is of the
form

D(t̃) =

∫ ∞

0

E(t̃− t̃′)ψ(t̃′)dt̃′ . (12.6)

Equation (12.6) describes TTS because it implies that, except for an overall time/frequency
scaling, the same frequency-dependent dielectric constant is observed at different tem-
peratures (we ignore the temperature dependence of the overall loss, an approximation
which introduces a relative error into the data treatment well below 1% over the range
of temperatures studied).

In Eq. (12.6), which applies at equilibrium whenever TTS applies, the dielectric ma-
terial time is defined from the actual time by scaling with γd (Eq. (12.5)). In the
out-of-equilibrium situation following a temperature jump, the simplest assumption
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is that Eq. (12.6) also applies, however with a generalized dielectric material time
involving a time-dependent dielectric relaxation rate γd(t), i.e.,

dt̃ = γd(t)dt . (12.7)

As the system gradually equilibrates at the new temperature, the dielectric relax-
ation rate γd(t) approaches the equilibrium liquid’s loss-peak angular frequency at
the new temperature. The equilibrium liquid’s power-law dielectric loss ε′′ ∝ f−n

applies in a range of frequencies obeying f � fmax. Since by Eq. (12.6) ε(ω̃) =∫∞
0
ψ(t̃′) exp(−iω̃t̃′)dt̃′ where ω̃ = ω/γd, the equilibrium liquid’s loss obeys ε′′ ∝ ω̃−n

for ω̃ � 1. By the mathematical Tauberian theorem this implies that ψ(t̃′) ∝ (t̃′)n−1

whenever t̃′ � 1. The proposed generalization of Eq. (12.6) to out-of-equilibrium
situations now mathematically implies that the dielectric relaxation rate γd(t) is given
by Eq. (12.3) (or Eq. (12.4)). Assuming the simplest generalization of TTS to out-
of-equilibrium situations, we have thus defined a generalized dielectric relaxation rate;
moreover we have shown how to measure it by monitoring the high-frequency dielectric
loss at a fixed frequency using the inverse power-law approximation.

The procedure described above for determining the dielectric clock rate is equivalent to
the time-aging time superposition [36–40] (described in chapter 11), where the short-
time response of a perturbation of the liquid during an aging experiment is used to
determine the shift factors [22, 41–43].

In the following we relate γd(t) to the TN structural relaxation clock rate γs(t), but
first the latter quantity needs to be precisely defined.

12.3.2 Defining the structural relaxation clock rate

The structural relaxation clock rate γs(t) determines the structural relaxation’s ma-
terial time in the TN formalism. Just as was the case for the generalized dielectric
relaxation rate, it is not a priori obvious that any γs(t) may be defined; the eventual
test of the existence of γs(t) is whether a consistent description is arrived at by assuming
its existence. Assuming for the moment that this is the case, we define the structural
relaxation clock rate’s time-dependent activation (free) energy E(t) by writing

γs(t) = γ0e
−E(t)/kBT (γ0 = 1014s−1) . (12.8)

The activation energy E(t) depends on the structure and evolves during the structural
relaxation. Consider the case of structural relaxation induced by a general temperature
variation. According to the TN formalism the aging of the activation energy is described
by a linear convolution integral over the temperature history involving a material time
t̃s defined by the analogue of Eq. (12.7),

dt̃s = γs(t)dt . (12.9)

Including for convenience the inverse temperature in the below equation, the linear
convolution integral for the activation energy’s evolution induced by a temperature
variation, T (t) = T0 + ∆T (t), is given by an expression of the form
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∆(E/kBT )(t̃s) =

∫ ∞

0

∆T (t̃s − t̃′s)φ(t̃′s)dt̃
′
s . (12.10)

12.3.3 Assuming the existence of an internal clock

A main purpose of this work was to investigate the consequences of assuming that an
internal clock exists. This assumption implies that the same material time controls
dielectric aging via Eq. (12.6) and aging of the structural relaxation clock rate via Eq.
(12.10), i.e., that for any aging experiment one has

γs(t) ∝ γd(t) . (12.11)

A clock works by counting repeated physical processes, and two clocks measure the
same physical time if the number of ticks counted by the clocks are proportional for
all time intervals. Thus both above-defined clock rates γd and γs are defined only up
to a proportionality: The physical content of Eqs. (12.6) and (12.10) is invariant if the
reduced times are redefined by multiplying by some number. Nevertheless, Eq. (12.11)
is not trivial; thus Eqs. (12.6) and (12.10) may both apply with different definitions
of the reduced time. As mentioned, the TN formalism is often used assuming that
different physical quantities (e.g., volume and enthalpy) relax with rates that are not
proportional [13, 22, 43, 48].

If Eq. (12.11) applies, we find via Eqs. (12.3) and (12.8) that after a temperature jump
to temperature T the logarithm of the measured loss is given by

ln ε′′(fmax, t) = −n E(t)

kBT
+ C , (12.12)

and that this quantity relaxes following a material time whose rate may be determined
from Eq. (12.4). We proceed to derive a test of this prediction. If this is fulfilled, the
internal clock hypothesis will be regarded as confirmed.

12.4 A test for the existence of an internal clock

In this section we show that the existence of an internal clock, i.e., the assumption
that the dielectric clock rate is proportional to the structural relaxation clock rate
(Eq. (12.11)), can be tested without evaluating t̃ explicitly and without fitting data to
analytical functions.

First, we define a dimensionless KM relaxation rate by replacing time in Eq. (11.8) by
the reduced structural relaxation time,

Γ̃ ≡ −d lnR

dt̃s
. (12.13)

According to the TN formalism, for all temperature jumps R(t̃s) is the same function
of t̃s. This implies that Γ̃(t̃s) is the same for all jumps. By eliminating t̃s, Γ̃ is a unique
function of R:



194 Testing the internal clock hypothesis

Γ̃ = Φ(R) . (12.14)

Thus one way of testing whether the TN formalism applies is to check whether Γ̃ is a
unique function of the normalized relaxation function for different temperature jumps.
To do this we express the dimensionless KM relaxation rate in terms of the real unit
KM relaxation rate,

Γ̃(t̃) = −d lnR

dt

dt

dt̃s
=

Γ(t)

γs(t)
. (12.15)

If an internal clock exists, γs(t) may be evaluated from its proportionality to the
dielectric relaxation rate Eq. (12.11), which is accessible via Eq. (12.4). Note that the
unknown proportionality constant in Eq. (12.11) is irrelevant because, as mentioned,
clock rates are only defined up to a proportionality constant (in Sec. 12.7 we discuss the
possibility of absolute calibration of the structural and dielectric clock rates). Thus, if
γs(t) ∝ γd(t), then Γ̃ may be calculated directly from a temperature jump experiment’s
data via Eq. (12.15), since Γ(t) and γd(t) are determined both from ln ε′′(fm, t) via
Eqs. (11.8) and (12.4), respectively.

Defining the proportionality constant between the two rates to be unity, γs(t) = γd(t),
the results for the KM relaxation rates Γ(R) and the dimensionless KM relaxation
rates Γ̃(R) are plotted in Fig. 12.7. For all five liquids the results are consistent with
the internal clock hypothesis. Even the 4K down jump for TPP – corresponding to a
clock-rate variation of almost two orders of magnitude – falls nicely onto the master
curve. The spread in KM relaxation rates as R ∼= 0 is approached at long times
reflects the already mentioned fact that relaxation rates cannot be determined reliably
by numerical differentiation when the noise becomes comparable to the distance to
equilibrium.

Once the existence of an internal clock has been demonstrated, it is natural to evaluate
the reduced time t̃ explicitly by integration in order to determine R(t̃). As shown
in Fig. 12.8 this gives the data collapse predicted by the TN formalism. For the
numerical integration one must either include short-time transient points, where the
sample still undergoes temperature equilibration, or omit the initial measurements.
The error introduced from this uncertainty influences all values of t̃. This is one reason
to prefer the “direct” test of the internal clock hypothesis of Fig. 12.7; another reason
is that the direct test is simpler because it avoids evaluating the material time t̃.

12.5 The approach of Lunkenheimer et al

Lunkenheimer and coworkers recently studied aging by monitoring the dielectric loss
[58–60]. They found that the relaxation curves R(t) to a good approximation may
be described by a stretched-exponential relaxation function which, as a new feature,
introduces a time-dependent characteristic time τ(t): R(t) = exp

[
−(t/τ(t))β

]
. The

nonlinear stretching exponent β was found to be identical to that derived from the linear
dielectric relaxation function. This is a novel approach to aging studies. However, it
does not lend any obvious physical interpretation to τ(t), which has the appearance
of a “global” averaged relaxation time representing the entire aging process until time
t. It is mathematically incompatible with the TN-formalism. In terms of a “reduced
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Figure 12.7 Kovacs-McKenna (KM) relaxation rates Γ and its dimensionless version Γ̃(t̃) =
Γ(t)/γd(t) (defined in Eq. (12.13) and calculated from data via the internal-clock hypothesis,
γs(t) = γd(t)) as functions of the normalized relaxation functions R for the five liquids. For
each liquid the upper subfigure shows Γ(R), the lower subfigure shows Γ̃(R). In all cases
there is data collapse of Γ̃(R) within experimental errors. This confirms the existence of an
internal clock for these liquids.
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Figure 12.8 The traditional way of demonstrating TN data collapse by plotting the normalized
relaxation functions as function of the reduced time, R(t̃). The insets show the normalized
relaxation functions plotted against real time, R(t).
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time” the definition with this approach would read

t̃ = t/τ(t) = γ(t)t (12.16)

which can not be valid at same time as the TN formulation of a reduced time in Eq.
(11.12).

Since with our data we have direct access to the relaxation rate γ we can of course also
test this approach. Figure 12.9 shows that this approach does not work nearly as well
as TN-formalism for PPE. Further inspection reveals that Eq. (12.16) gives fairly good
data collapse for temperature down-jump, and for temperature up-jumps respectively
(compare with Fig. 12.8), but not an overall collapse.

Lunkenheimer and co-workers a recursive definition of the clock rate was used, which
in our notation reads

γ(t) = [γ(t = 0)− γ(t→∞)] exp
{
− (t/τ(t))

βage

}
+ γ(t→∞) , (12.17)

where γ(t = 0), γ(t → ∞) and βage were treated as fitting parameters. We have not
tested this method of determining the clock rate which strictly speaking could give a
different result than what we show in Fig. 12.9.

The approach of Lunkenheimer and co-workers [58–60] clearly does not work as well
as the TN formalism when using the clock rate measured directly. From a pragmatic
point of view this concept is also less useful than the TN formalism, since it is unclear
how it should be applied to more complicated thermal histories.

12.6 Long-time asymptotic behavior of the structural relaxation

Inspecting the shape of the dimensionless KM relaxation rate as a function of the
normalized relaxation function in Fig. 12.7 shows that the aging is not exponential,
because that would imply a constant KM relaxation rate. The stretched-exponential
function, exp[−t̃β ], is commonly used for fitting relaxation functions. It is difficult
to get reliable data on the long-time behavior of structural relaxations, but our data
allow one to get such data with fair accuracy. Figure 12.7 shows that Γ̃(R) → const.
at long times (R → 0) for all five liquids. This is also evident from the DBP data for
which Fig. 12.10(a) shows the dimensionless Kovacs plots, a stretched exponential (red
line), and Eq. (12.19) (blue line) with the values of the fit parameters listed in Table
12.2. The KM relaxation rate for the same data is in Fig. 12.10(b), where again is
included a test of the fit by the stretched-exponential relaxation function (red straight
line). Although the data become noisy at long times, they do show a bend over at long
times that is inconsistent with the stretched exponential relaxation function – the KM
relaxation rates approach a finite value at long times. The blue curve in Fig. 12.10 (b)
is the “exponential

√
t” relaxation function detailed below.

The fact that the KM relaxation rates converge to finite values means that the re-
laxation function at long times follows a simple exponential decay. To model this
mathematically with as few parameters as possible, we fitted the data to the following
“exponential

√
t” relaxation function that retains features of a stretched exponential

with exponent 1/2, but has a long-time simple exponential decay [35, 66]:
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Figure 12.9 The result of using the definition of a reduced time of Eq. (12.16). Although it
does gather the curves the data collapse is not as convincing as in Fig. 12.8.
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Figure 12.10 Fits of the “exponential
√
t relaxation” function (Eq. (12.19)) (blue) and the

stretched exponential (R(t̃) = exp
(
−ase − (bset̃)

cse
)
) (red) to DBP data. (a) In the standard

representation showing R as a function of log(t̃) it is hard to distinguish the two fitting
functions. (b) Relaxation rates as functions of the (reduced) times in a log-log plot. In this
representation the stretched exponential function is a straight line, while the exponential

√
t

relaxation function of Eq. (12.19) has a “banana” shape: at short times it gives a straight
line with slope −1/2, at long times it bends over and eventually levels off to a constant value.
The two asymptotes are marked with dashed lines. Although the measurements are noisy at
long times, we conclude that the data do not follow a straight line, but have a curved shape
similar to the one suggested by the exponential

√
t relaxation function.

R(t̃) = exp
(
−A−Bt̃− Ct̃1/2

)
. (12.18)

Here A, B, and C are fitting parameters. The number A reflects the fact that, due to
fast relaxations, the normalized relaxation function R does not start at unity at the
shortest experimentally accessible times. The case B = 0 gives a stretched exponential
with exponent 1/2, the C = 0 case gives an ordinary exponential decay. At short times
one has R(t̃) ∼= 1 − A − Ct̃1/2, which justifies the name “exponential

√
t relaxation

function” (see Ref. [65] and its references to
√
t relaxation in other contexts). Equation

(12.18) may be rewritten in the more convenient form

R(t̃) = exp
(
−a− bt̃− c(bt̃)1/2

)
(12.19)

where a = A, b = B, and c = C/
√
B. Recast in this form, it is clear that b merely

adjusts the time scale and that c is the only genuine shape parameter.

12.7 Calibrating the dielectric clock rate

The results obtained so far may be summarized as follows. The TN formalism predicts
that the dimensionless KM relaxation rate (Eq. (12.13)) is a unique function of R
for the relaxation towards equilibrium following any temperature jump. This can be
tested only, however, if one is able to determine the structural relaxation clock rate
γs(t). This can be done either by some assumption about the clock rate’s structure
dependence – a common procedure – or, as above, by the internal clock hypothesis,
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DBP DEP 2,3-epoxy 5-PPE TPP
a 0.44 0.48 0.37 0.38 0.34
b 0.13 0.05 0.06 0.15 0.03
c 2.7 4.4 4.6 2.2 5.2
akww 0.55 0.55 0.42 0.45 0.38
bkww 0.96 0.95 1.27 0.90 0.76
ckww 0.64 0.57 0.56 0.64 0.54

Table 12.2 Values of fitted parameters of Eq. (12.19)

DBP DEP 2,3-epoxy 5-PPE TPP
σexp

√
t

log(R) 0.041 0.029 0.042 0.023 0.026
σexp

√
t

log(Γ̃)
0.052 0.028 0.081 0.172 0.111

σkwwlog(R) 0.043 0.030 0.042 0.026 0.026
σkww

log(Γ̃)
0.074 0.037 0.092 0.186 0.116

Table 12.3 Test of how well the two functions fit data, where superscript “exp
√
t” is the

exponential
√
t relaxation function of Eq. (12.19) and superscript “str exp” is the stretched

exponential relaxation function. The quality of the fits is measured via the standard mean-
square deviation σ for fitting, respectively, log(R) as a function of time and log(Γ) as a
function of time. The exponential

√
t relaxation function provides a somewhat better fit than

the stretched exponential.

γs(t) ∝ γd(t), where the dielectric relaxation rate is determined from data via Eq.
(12.4). The data do collapse as predicted by the internal clock hypothesis, confirming
the existence of such a clock for all five liquids.

As emphasized, a clock rate is determined only up to a proportionality constant, i.e.,
two clocks measure the same physical time if their numbers of “ticks” are proportional
for all time intervals. Still, one may ask whether some sort of absolute calibration of
the dielectric and structural relaxation clock rates is possible. We defined the dielectric
relaxation rate in equilibrium, γd, as the dielectric angular loss-peak frequency (Eq.
(12.2)). This is convenient because the loss-peak frequency can easily be determined
accurately. A characteristic feature of the dielectric losses of supercooled organic liquids
is their pronounced asymmetry: Whereas the loss decays as a non-trivial power-law
above the loss-peak frequency, at low frequencies the loss almost follows the Debye
function (ε′′(ω) ∝ ω). Via the fluctuation-dissipation theorem the low-frequency be-
havior corresponds to a simple exponential long-time decay of the equilibrium dipole
autocorrelation function. Inspired by the recent work of Gainaru et al. [67] it is ob-
vious to ask whether redefining γd to be the rate of this long-time decay would imply
that Γ̃ → 1 asymptotically at long times. In other words: Is the long-time exponen-
tial structural-relaxation clock rate equal to the exponential long-time decay of the
equilibrium dipole autocorrelation function? Because the liquids studied here all obey
TTS, such a recalibration of γd corresponds to multiplying each liquid’s equilibrium γd
(defined by Eq. (12.2)) by a fixed constant. This is illustrated in Fig. 12.11.
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Figure 12.11 (a) Illustration of the difference between the two calibrations of the dielectric
relaxation rate γd, using either the loss-peak angular frequency or the rate of the long-time
exponential decay of the dipole autocorrelation function giving the low-frequency Debye
behavior. (b) Normalized Cole-Cole plot of the dielectric loss of DEP (black dots) versus that
of the “exponential

√
t relaxation” model (Eq. (12.19)) used to fit the dielectric data at the

following temperatures: 206 K, 207 K, 208 K, 209 K, 210 K, 211 K (blue dashed line).
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Figure 12.12 Dimensionless Kovacs plots including data for all temperature jumps of the five
liquids, using the alternative calibration of the dielectric relaxation rate corresponding to
scaling data with the long-time dielectric relaxation rate. This procedure “lifts” the curves
of Fig. 12.7 such that the dimensionless KM relaxation rates all terminate at approximately
one at long times (R→ 0).
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Figure 12.13 The slopes of the equilibrium log-log plotted dielectric losses at the measuring
frequencies as functions of temperature. The aging interval is marked with a blue dashed line.
For each frequency there is a temperature window where the slope is constant. In this way
the measuring frequency and temperature jumps can be fine tuned such that the proposed
method for finding the clock rate applies.

For each liquid the recalibration constant is obtained as follows. Assuming Eq. (12.19)
for the equilibrium dipole autocorrelation function, the liquid’s dielectric loss was fit-
ted by the Laplace transform of the negative time-derivative of this function, which
interestingly provides an excellent fit to the dielectric data of all five liquids (compare
Fig. 12.11(b)). In Fig. 12.12 we show the result of applying this re-calibration of the
dielectric relaxation rate in the analysis of Sec. 12.4. Within experimental uncertain-
ties all recalibrated KM relaxation rates converge to one at long times (R → 0). This
suggests an underlying unity in the description of aging for the liquids examined in
this paper.
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Figure 12.14 Examples of the issues with determining the long ε′′(fm, t → ∞) limit of the
data. (a) Zoom of the tail of the 2K up jump to 175K for DBP (data of Fig. 12.3(b)). There
is a small drift at long times, which is due to the slow (compared to the alpha relaxation
time) radial flow of the liquid in the measuring cell. The dashed vertical line marks where the
data were cutoff and the dashed horizontal line marks the ε′′(fm, t → ∞) level used in the
analysis. (b) Zoom of the approach to equilibrium for the 1K up and down jump to 176K.
There is a small overshoot in the up-jump and a small undershoot in the down-jump before
the two curves eventually approach the same value (as they should). The vertical lines show
where the data were cut off at the bottom of the over- or undershoot.

12.8 Systematic errors and noise

We discuss here the some sources of errors of the data and the analysis presented in this
study. For a general and systematic analysis of errors and noise of the measurement
we refer to Igarashi et al [49, 50].

The geometry of the measuring cell (disc radius much larger than disc separation)
introduces an extremely slow radial contraction which in equilibrium dielectric mea-
surements can be neglected. For aging experiments it poses a problem because it
introduces a small drift at long times, which distorts the curve shape of the aging re-
laxation function and complicates the determination of the value approached at long
times. In Fig. 12.14 a zoom of the tail of the DBP data from Fig. 12.3(b) is shown.
The drift is small, but clearly visible. After a temperature step the curve should level
off to a constant (equilibrium) value, instead the curve appears slightly slanted. The
drift coming from the initial quench may be reduced by annealing for long time before
starting a measurement (typically over several weeks), which we did.

A further source of error is that in some cases we also observe a small overshoot when
approaching equilibrium. We do not currently have an explanation for this, but it may
be due to something other than the drift. Whenever a small drift or an overshoot
was present, we chose to cut the data shortly after reaching its maximum/minimum
and ε′′(t → ∞) was adjusted accordingly. This is illustrated in Fig. 12.14 where the
ε′′(t→∞) is marked by a horizontal dashed line and the cut-offs by a vertical dashed
line. Ideally, of course, the level approached from above and below should be identical,
but the deviation is in the permille range.

The signal-to-noise ratio depends on the (dielectric) relaxation strength (correspond-
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Figure 12.15 Illustration of the smoothing procedure described in the text. Blue +’s are
the measured data points, red ·’s are the averaged data points used in the analysis. The
algorithm minimizes the distortion of the curve shape by averaging over few (or no) data
points in the beginning and more data points towards the end of the relaxation. Inset shows
a zoom on the tail of the relaxation curve.

ing to the absolute level of the dielectric loss) of the liquids studied. Thus, there is
more noise in the data for TPP and 5-PPE, which have relatively small dielectric relax-
ation strengths, compared to DBP, DEP, and 2,3-epoxy, which have larger relaxation
strengths.

Although the precision of a dielectric measurement is high with barely any visible noise
in the relaxation curve, we still encounter noise problems when taking the numerical
derivatives of these curves. Averaging over even few data points distorts the curve
shapes at short times, but it is necessary (and also less problematic) to average over
more data points in the long time tails of these curves. To deal with this problem
we designed an algorithm to average over a number of data points that increases with
aging time, i.e., no averaging of the first data points and ending up averaging over 8
(in the case of DBP and 2,3-epoxy) or 16 (in the case of DEP, 5-PPE, and TPP) data
points in the tail. This procedure is illustrated in Figure 12.15.

In Fig. 12.13 we show the slope of the equilibrium dielectric loss at the measuring
frequencies of the aging experiment as a function of temperature. The temperature
intervals used in the aging experiments are marked with a blue line. For each frequency
there is a temperature window where the slope is constant (close to −1/2). In this
way the measuring frequency and temperature jumps can be fine-tuned such that the
proposed method for finding the clock rate is valid. The graphs show that not all
measurements are carried out in the optimal regions. The slopes vary a little in the
aging temperature interval studied for some of the liquids, and they are not entirely
identical to the value above Tg. Thus the conditions for the proposed method for
determining the clock rate are not fulfilled in all cases. However, one can still obtain
data collapse using a slightly incorrect inverse power-law exponent since the error made
is the same for all data points. The error simply results in a vertical shift of the curves
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in Fig. 12.7 and a horizontal shift in Fig. 12.8. A slight variation of the power-law
exponent in the measured temperature interval will influence the shape of the master
curve and may explain why the data collapse is not perfect.

12.9 Concluding remarks

We have shown how the internal clock hypothesis can be checked in a test that neither
involves free parameters nor the fitting of data to some mathematical expression. The
test is based on assuming the standard Tool-Narayanaswamy formalism for structural
relaxation studied by monitoring the liquids’ dielectric loss at a fixed frequency in the
Hertz range, following temperature up and down jumps. Based on data for five organic
liquids we conclude that: 1) All liquids age consistent with the TN formalism; 2) All
liquids have an internal clock; 3) No liquid exhibits an expansion gap; 4) All liquids
have exponential long-time relaxation; 5) The long-time structural-relaxation clock
rate equals that of the long-time simple exponential decay of the dipole autocorrelation
function.

Our finding that the liquids have exponential long-time relaxation is consistent with
several classical viscoelastic and aging models; for instance is the KAHR model [26]
based on a box distribution of relaxation times, which implies the existence of a longest
relaxation time and thus an exponential long-time relaxation. It is also worth empha-
sizing that, in contrast to reports for other materials (e.g., oxide glasses) where there is
evidence that the material clock does not tick the same way for all processes, the data
presented here are consistent with the existence of a unique material time. We have
shown that the structural relaxation rate is proportional to the dielectric relaxation
rate for five organic supercooled liquids, and the fact that the structural relaxation
was monitored by measuring the dielectric loss is, in our opinion, probably not im-
portant. Nevertheless, it would be interesting to study for instance volume relaxation
for the same liquids to investigate whether there really is a common material clock for
these liquids. We finally note that, in contrast to the well-known TNM formalism of
Moynihan et al. [10], the analysis applied here does not require one or more fictive
temperatures.

The emphasis of the data analysis was on using data directly without having to fit to
analytical functions. This is why we determined the dielectric clock rate from the loss-
peak angular frequency (Eq. (12.2)) and the exponent β as the minimum slope of the
dielectric loss at the temperature where the loss peak frequency is 0.1 Hz (Table 12.1).
If this purist approach is relaxed a bit, however, further interesting features appear.
Thus if the dielectric clock rate is instead determined from the dielectric loss’ low-
frequency Debye-like behavior, all KM relaxation rates converge to unity at long times
(Fig. 12.12). Moreover, since the minimum slopes are not completely temperature
independent, but converge to the in Ref. [65] conjectured generic value of −1/2 at
the lowest temperatures (Fig. 12.13), one may ask what happens if the exponent β
of Eq. (12.4) is replaced by −1/2. The result of repeating the entire analysis with
this high-frequency exponent is shown in Fig. 12.16. The main effect is to lift the 2,3-
epoxy data, the liquid whose exponent β was furthest from −1/2. Since the long-time
structural relaxation clock rate, if identical to the redefined dielectric relaxation rate,
should approach the latter from above, this figure is consistent with the conclusion
that the two rates are identical.
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Figure 12.16 Dimensionless Kovacs plots including data for all temperature jumps of the
five liquids, using the alternative calibration of the dielectric relaxation rate corresponding
to scaling data with the long-time dielectric relaxation rate and assuming for all liquids the
high-frequency exponent of the dielectric loss −1/2 [65].

In current state-of-the-art aging experiments the characteristic thermal equilibration
time τ is at least 100 s, if τ is defined from the long-time thermal-diffusion-limited
approach to equilibrium ∼ exp(−t/τ). This reflects the fact that heat conduction
is a notoriously slow process. Experience shows that in order to monitor an almost
complete aging curve at least four decades of time must be covered; for instance the
typical aging function exp(−K

√
t) decays from 97% to 3% over four decades of time.

Thus with present methods, one needs at least of order 100 s× 104 = 106 s to have an
almost ideal temperature down-jump experiment. This is more than a week. Clearly
much is to be gained if it were possible to equilibrate sample temperatures faster.



13 Single parameter relaxation functions

In the last roughly twenty years the stretched-exponential function has become an icon
of relaxation phenomena. If the normalized relaxation function is denoted by R(t), the
stretched exponential (SE) relaxation function is defined by

R(t) = exp
[
−(t/τ)β

]
(13.1)

where 0 < β < 1 is the so-called stretching exponent and τ a characteristic time.

The use of this function goes back to Kohlrausch more than 150 years ago [68], and
the stretched exponential function is sometimes referred to as the Kohlrausch or the
Kohlrausch-Williams-Watts (KWW) relaxation function [69]. The stretched exponen-
tial function has been rediscovered several times in quite different contexts. In 2009
alone more than 100 papers appeared that fitted experimental data or computer simu-
lations to a stretched exponential in physics, chemistry, materials science, engineering
sciences, etc. The interesting history of the stretched exponential function was recently
reviewed by Cardona et al. [70].

The popularity of the SE function comes from the fact that it provides a good single-
parameter fit to many relaxation data. Mathematically, if the stretched exponential
function is written as a weighted sum over exponentials with different relaxation times,
the relaxation-time distribution is asymmetric and dominated by the shorter relaxation
times when plotted on a logarithmic scale. This characteristic asymmetry is found in
numerous experiments. We believe that this fact, in conjunction with the SE functions
purely mathematical beauty, accounts for the popularity of the stretched exponential
for fitting data whenever a single- parameter representation is sought. Once relaxation
data have been fitted by a stretched exponential, it is common procedure to correlate
the stretching exponent β to various other characteristics of the system in question (see,
e.g., [71, 72]). The fact that Eq. 13.1 fits many data quite well has catalyzed theorists
to contemplate why this is, and there are now many derivations of this function. An
overview of some of these may be found in Phillip’s review from 1996 [73].

While it is well known that the stretched exponential rarely fits data perfectly, its
common use is explicitly or implicitly justified from a belief that may be summarized
as follows:

The stretched-exponential function provides the best overall single-parameter
fit to relaxation data.

It is this statement that we wish to test.

207
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13.1 Alternatives to the stretched exponential

In the previous chapter another function emerged, that seem to capture the asymp-
totic high and low frequency behavior of the studied liquids better than the stretched
exponential. We call it the “exponential

√
t” relaxation function. The exponential

√
t

relaxation function is constructed by multiplying a stretched exponential function with
β = 1/2 by a simple exponential.

The stretching exponent is fixed to 1/2 because there are indications that dielectric
relaxation is characterized by an inherent more or less universal high-frequency slope
of −1/2 [64, 65, 74]. At the same time data are generally closer to Debye behavior
at low frequencies than predicted by the stretched exponential function, indicating the
existence of an effective long-time cutoff in the relaxation time distribution; thus the
introduction of an additional simple exponential function in Eq. 13.2.

The mathematical expression for the exponential
√
t relaxation function is

R(t) = exp
[
−C
√
t/τ − t/τ

]
. (13.2)

The dimensionless parameter C governs when one function “takes over” from the other.
For small C’s we get a narrow distribution of relaxation times and a narrow dielectric
loss peak, for large C’s the loss peak broadens to eventually become as broad as that of
the β = 1/2 SE function. This function has the same number of parameters as the SE
functions, namely one dimensionless parameter relating to the shape of the dielectric
loss peak in a log-log plot, one τ that gives the characteristic relaxation time.

The “exponential
√
t relaxation” function is similar to the “modified stretched expo-

nential” introduced by Saglanmak et al [66] and the “composite relaxation function”
introduced by Hornbøll et al [35] which both are functions that combine the stretched
exponential with a long-time exponential cut-off.

Cole-Davidson (CD) relaxation function [75] is another popular fitting function, and
judging from Fig. 13.1, it could well represent a challenge the SE function. The figure is
taken from Nielsen et al [65] and shows the minimum slope (see below for a definition)
plotted against the width of the dielectric loss peak as well as the predictions of the
CD and SE functions. The data in the analysis lies between the two lines predicted by
CD and SE, but significantly closer to the CD prediction. The CD relaxation is purely
empirical and invented to fit non-Debye dielectric relaxation data. It is given in the
frequency domain as follows

ε(ω) = ε∞ +
∆ε

(1 + iωτ)βCD
. (13.3)

Again τ is a characteristic time, βCD is a dimensionless shape parameter, ∆ε is the
relaxation strength, and ε∞ is the high frequency limiting value of the dielectric con-
stant. The CD relaxation function also has a rather sharp cut off in relaxation times,
but the shape parameter allows for different limiting high-frequency power-laws.

The last of the one-parameter functions we will study is the model for generic dielectric
alpha relaxation proposed by Dyre [76]. In the frequency domain the generic alpha
(GA) relaxation function is given by a sum of Debye term and a term involving the
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Figure 13.1 Figure from Nielsen et al [65] showing the minimum slope (Eq. (13.5)) plotted
against the half-width of the data as well as the predictions of the CD and SE functions.
Based on this figure one would guess that the CD function was probably a better choice than
the SE function for fitting these data.

square root of a Debye

ε(ω) = ε∞ + ∆ε

[
C

(
1√

1 + iωτ
+

1√
2 +
√

1 + iωτ

)
+

1

1 + iωτ

]
(13.4)

As with the CD function, we have three parameters fixing position and magnitude
of the spectrum (τ ,∆ε, and ε∞) and a single shape parameter, C. The GA function
also predicts a high frequency loss with a square root dependence of the frequency,
ε′′ ∝ ω−1/2, as does the exponential

√
t relaxation function. And the C parameter

plays much the same role as the C parameter from the exponential
√
t relaxation

function: it determines when the Debye behavior dominates.

As the only function mentioned here this function is theoretically derived. However, it
has hardly received any attention in the community and thus it is not known if it gives
a good fit to data.

13.2 Data selection procedure

By far the most accurate relaxation data are those of dielectric relaxation measure-
ments, a technique that today routinely covers frequencies from mHz to MHz (and
beyond, if required). For super-cooled, glass-forming organic liquids, in particular,
abundant amounts of dielectric relaxation data are available today. For the below
analysis we included data for 53 organic glass-forming liquids, altogether 429 different
spectra (each liquid has several spectra referring to different temperatures). The data
sets were collected from leading groups and supplemented by own data. The liquids in
study are listed in Table 13.1.

The analysis is based on data for the dielectric loss as a function of frequency at different
temperatures. The analysis focuses on the main (alpha) dielectric loss peak, because
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Figure 13.2 An example of how we selected the subset of data points to be included in the
analysis. The data points used for the fits go from the inflection point on the low-frequency
side of the alpha peak to the inflection point on the high-frequency side.

the one-parameter relaxation functions can only fit a single loss peak. Moreover, since
the SE function predicts a loss that in a log-log plot has no inflection points, we fitted
the data’s low-frequency inflection point below the loss-peak frequency to the high-
frequency-inflection point. As an example, Fig. 13.2 shows dielectric relaxation data
for di-iso-butyl phthalate at different temperatures in a log-log plot (blue curves, upper
panel). At high temperatures (the spectra to the right) one observes an increase of
the loss at low frequencies; this is due to the commonly observed DC conduction.
At low temperatures the beta process is visible. The data range for fitting must be
limited to exclude both phenomena, which is obtained by fitting from low-frequency
to high-frequency inflection point. The lower panel of Fig. 13.2 shows the numerical
point-by-point slope of the data, i.e.

α =
d log ε′′

d logω
. (13.5)

From this we determined the relevant frequency range at each temperature, marked by
the black symbols in both panels.

The logarithmic derivative is also the key the to determining the minimum slope [64, 65,
74], defined as the minimum of the α in Eq. (13.5) on the high frequency side of the loss
peak. For most liquids there is so little noise in the spectrum that even the numerical
derivative is smooth. But for a some liquids (typically those with a relatively weak
dielectric relaxation strength) the derivative is so noisy that just picking the minimum
of the numerical derivative would not give a reasonable value. We show an example,
cumene (IsoPB) at 130K, in Fig. 13.3. To avoid these erroneous αmin values we
introduced a smoothing of the curve by a moving point average, averaging over 3 point
of either side of the current point. This is shown as the pink full line in the figure. We
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Figure 13.3 Procedure to find the minimum slope of the dielectric loss. Top panel show
the data in a log-log plots. Bottom panel shows the numerical derivative. Just taking the
minimum of the derivative would obviously give a wrong minimum slope due to noise scatter.
The full line is a moving average of the derivative and the minimum of this will yield a
“correct” minimum slope. We have marked this value by the dashed line.

now set αmin equal to the minimum of the smoothed derivative (on the high frequency
side of the dielectric loss), but only if the neighboring values are close. Otherwise, this
point is discarded and the new minimum value is chosen and so on until all demands
are met.

The minimum slope, αmin, is a measure of the true high frequency power law behavior
of the spectrum.

13.3 Details of the fitting routines

When fitting an equation to data, one often has different choices to make, that may
influence the results. First choice we have already made, namely what data-points to
include in the analysis. The next important choice to make is what function we want
to minimize. In our case there are two rather different options: we can either minimize
the mean squared distance from fit to data logarithmically or linearly. The first option
will focus on the asymptotic low- and high-frequency behavior and the second will focus
mainly on the peak area. To minimize the influence of additional (beta) processes our
initial incentive was to do the linear fit, but in the end we did both.

All fitting routines were performed with the ’fminsearch’ function in MatLab which
uses a simplex search method. We found this algorithm to give the most stable results.

In the case of dielectric relaxation, the normalized relaxation function R(t) gives the
relaxation to equilibrium as function of time after application of a constant electric
field. In general, from R(t) the complex frequency-dependent dielectric constant ε(ω)
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is given by

ε(ω) = ε∞ + ∆ε

[
L
{
−dR(t)

dt

}]
(ω) (13.6)

= ε∞ + ∆ε

(
1− iω

∫ ∞

0

R(t) exp(−iωt) dt
)

(13.7)

where ω is the angular frequency, [Lf ] the Laplace transform operator, ε∞ is the high-
frequency loss, and ∆ε the dielectric loss strength.

For calculating the Laplace transform accurately when R(t) is the stretched exponential
relaxation function, which may be numerically tricky, we used Wuttke’s numerical C-
routine libkww [77].

For calculating the Laplace transform whenR(t) is the exponential
√
t function, we used

a combination of the semi-analytical Laplace transform and a numerical integration
method (details can be found in Appendix E). The semi-analytical expression is given
by a rather complicated expression involving the complex errorfunction:

ε(ω) =ε∞ + ∆ε

[
1

C2

1

1 + iωτ

− 1

2C2

√
π

√
1 + iωτ

3 exp

(
1

4(1 + iωτ)

)
erfc

(
1

2
√

1 + iωτ

)

+
1

2

√
π√

1 + iωτ
exp

(
1

4(1 + iωτ)

)
erfc

(
1

2
√

1 + iωτ

)]
.

(13.8)

With a rational approximation for the complex errorfunction this gives the correct
Laplace transform for values of C < 5.

13.4 Comparing fits to data

Before presenting the overall picture that compares the SE relaxation function to the
exponential

√
t, the CD, and the GA functions, Fig. 13.4 gives examples of fits of these

functions to dielectric loss data. To demonstrate the wide range of behaviors that a
successful fitting function must capture, the figure shows the spectrum with the highest
αmin (top), the lowest αmin (bottom), and the spectrum with αmin closest to 1/2.

In general all 4 four functions show impressive fits for most liquids. For the few cases
where dc-conductivity severely interferes with the low frequency power-law (ε′′ ∝ ω),
e.g. for DCHMS, isoeugenol, and 246MTH or if the beta-relaxation mixes with the
alpha, e.g. in TolPyr at high temperatures (shown in the top of Fig. 13.4), the fits
are relatively poor. This is of course to be expected since all four function predicts
an asymmetric shape of the imaginary part of the dielectric constant with a limiting
high-frequency power-law exponent equal to 1 and a flatter high-frequency side.

In these cases the SE function usually outperforms the other fitting functions. But
this does not necessarily mean that the SE function is a better function; since all four
functions aim at fitting the “true” alpha process, the fact that SE is able to capture
both beta relaxation and DC-conduction interfering with the alpha process just means
that it is flexible.
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Figure 13.4 Examples of fits. We have plotted the spectrum with the highest |αmin| (top),
the lowest |αmin| (bottom), and the spectrum with |αmin| closest to 1/2.

To quantify the quality of the fits we used the standard deviation formula

σ2 =
1

N − n
N∑

i=1

(
ε′′fit,i − ε′′data,i
ε′′data,max

)2

(13.9)

(13.10)

where N is the number data points and n = 1(3?) is the number of degrees of freedom
(i.e. number of free fitting parameters).

Figure 13.5 compares the fits of the four fitting functions for all 429 spectra as well as
average for the 53 liquids. We show both the results from linear fitting (top) and results
from the fitting logarithmically (bottom). In all plots the we have sorted spectra/liquids
according to quality of the fits.

The conclusions that can be drawn from this analysis are

• the results are surprisingly similar for the logarithmic and the linear fit
• the CD and the GA functions show roughly the same overall fitting ability
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Figure 13.5 Quality of the fits of four different one-parameter relaxation function (Eq. (13.1
- 13.4)) to dielectric relaxation spectra arranged in increasing order. Top and bottom, left:
results for each spectrum fitted linearly and logarithmically, respectively. Top and bottom,
right: linear and logarithmic fitting results averaged for each liquid. Label on the y-axes σlin
/ σlog refer to the fitting method (linear or logarithmic).

• the performance of the exponential
√
t and the SE functions is significantly better

and roughly the same for the two

But clearly, there are also a number of spectra/liquids for which the SE function fits
significantly better. They all lie in the end of the relatively poor fits and they are
primarily the very broad spectra. An example of such a spectrum is TolPyr at 131K
shown in the top of Fig. 13.4. In this case, however, the broad spectral shape is not
intrinsic to the alpha relaxation, but due to an intense beta process. At lower temper-
atures where the alpha and beta processes are well separated, this liquid approaches
ε′′ ∝ ω−1/2 for f > fmax.

From the analysis of quality of the fits it should be noted that the exponential
√
t

function gives good fits even to data that are relatively broad (with minimum slope
αmin < 0.4). In fact, Fig. 13.6 shows that there is very little correlation at all between
the quality of the fits (both linear and logarithmic) of any of the fitting functions and
αmin, i.e. the asymptotic high frequency power law. One would not a priori expect
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Figure 13.6 Correlations – or the lack of – between the αmin and quality of the fits. Contrary
to intuition there seems to be almost no correlation between quality of the fits and the
limiting high frequency power law; all functions fit more or less equally well in the whole
αmin-range – both in the linear and logarithmic fitting procedure.

this because the exponential
√
t function (and the GA function for that matter) by

construction has an asymptotic high-frequency slope of −1/2. But over the fitting
range chosen (from inflection point to inflection point in the log-log plot of the dielectric
loss) the exponential

√
t function is able to fit even relatively broad loss peaks. It would

make little sense to expand the fitting range, because it is likely that beyond the high-
frequency inflection point the main relaxation process is influenced by one or more
additional high-frequency relaxation processes.

13.5 Final remarks and conclusions

We have presented fitting results for two relaxation functions with simple expressions
in the time domain and two functions with simple expressions in the frequency domain.
It seems that the functions that are given in the time domain fit the data better than
the ones given in the frequency domain. If this is just a curious coincidence or if there
is some meaning to that is unclear.
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Figure 13.7 The correlation between the fitted β-parameters of the CD and SE functions and
αmin. Both CD and SE functions seem to compensate for being too narrow and too broad,
respectively, by adjusting the β-parameter.

As shown in Fig. 13.6 there is very little correlation between the asymptotic high
frequency behavior of the liquid and the fitting ability of any of the functions. The
standard deviations are spread from 10−3 − 10−1 in the whole range of αmins. This is
even the case for the logarithmic fits, which emphasizes the high- and low frequency
asymptotic behavior of the liquids, where one would naively expect that the CD and
SE functions would have a clear advantage over the GA and exponential

√
t function.

This may partly be explained by the fact that the functions are fitted to relatively few
data points around the peak. Thus the shape-parameter of the SE function βSE (and
the CD function for that matter) is really just adjusting the width of the peak and not
fitting the asymptotic behavior or the tail. Support for this interpretation is found in
Fig. 13.7, where the fitted values of βSE and βCD is plotted versus the minimum slope
for each fitted spectrum. The figure shows that while there is some correlation between
the asymptotic high-frequency powerlaw behavior of the spectrum and the fits, βSE is
always higher than the minimum slope and βCD is systematically lower.

In conclusion, the stretched exponential function in this analysis did not stand out as
an exceptionally good fitting function. The SE function does not fit data much better
than other single-parameter fitting functions. In fact, the exponential

√
t function –

maybe a little surprising – performed as well as the SE function. This questions whether
there is any fundamental significance of β parameter in the stretched exponential – the
most important role of the β is merely, it seems, to adjust the width of the relaxation
spectrum.
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Liquid Abbreviation Reference
1,2-propanediol (propylene-glycol) PG [65]
1,3-propane-diol 13PD [65]
2-methyl-tetrahydrofuran MTHF [65]
2,3-dimethyl-pentane 23DMP [78]
2,3-epoxy-propyl-phenylether 23EPPE [65]
2,4,6-trimethyl-heptane 246TMH [78]
2-methyl-pentane-2,4-diol 2MP24D [65]
2-phenyl-5-acetomethyl-5-ethyl-1,3-dioxocyclohexane APAED [65]
3-flouroaniline 3FAN [79]
3-methyl-heptane 3MH [78]
3-methyl-pentane 3MP [78]
3-methyl-phosphate 3MPh [80]
4-methyl-heptane 4MH [78]
4,7,10-trioxatridecane-1,13-diamine TODDA [65]
4-tertbutyl-pyridine 4TBP [80]
5-phenyl-4-ether 5PPE this work
α-phenyl-o-cresol PoC [65]
benzophenone BP [81]
biphenyl-2yl-isobutylate IB2BF [65]
butyronitrile Butyronitrile [82]
cyclo-octanol CO [83]
dicyclohexyl-2-methyl succinate DCMMS [84]
dicyclohexyl-methyl-2-methyl succinate DCHMS [65]
dibutyl-ammonium-fomide DBAF [85]
dibutyl phtalate DBP [65]
diethyl phtalate DEP [65]
diglycidyl-ether of bisphenol DGEBA [86]
di-iso-butyl phtalate DisoBP [65]
dioctyl phtalate DOP [65]
dimethyl phtalate DMP this work
dioctyl phtalate DOP [65]
dipropylene-dimethyl-glycol-dimethyl-ether DPGDME [65]
ethylene-glycol EG [87]
glycerol glycerol [64]
isoeugenol Isoeugenol [65]
isopropyl-bezene (cumene) IsoPB [65]
m-tricresyl-phosphate mTCP [88]
methyl-m-toluate MMT [65]
n-ε-methyl-caprolactam nMC [65]
n-propyl-benzene nPB [65]
orto-carborane ortoCarborane [89]
pentachloronitrobenzene PCB [90]
polypropylene-glycol PPG [64]
propylene-carbonate PC [91]
sucrose-benzoate SB [92]
tetramethyl-tetraphenyl-trisiloxane (dc704) DC704 [74]
toluene-pyridine mixture TolPyr [64]
tricresyl-phosphate TCP [65]
triphenyl-ethylene TPE [74]
triphenyl phosphite TPP [64]
tripropylene glycol TPG this work
tris-naphtyl-benzene TNB [93]
xylitol Xylitol [65]

Table 13.1 List of all liquids studied providing the relevant references.
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14 Summary and outlook

In the introduction the “big questions” of the field was stated in the form of the three
non’s: non-Arrhenius temperature dependence of the relaxation time, non-exponential
relaxation, and the non-linearity of the relaxation upon even small temperature steps.
This thesis has touched upon all of these topics, so it would be appropriate to sum up
how (in my view) this work has contributed to a resolution of these questions.

Non-Arrhenius temperature dependence of the relaxation time: The standard fitting
function for fitting the non-Arrhenius data is the VFT equation. Originally this
equation was introduced as a convenient fit to data, but since then several theories
and models have produced similar formulas, indicating a fundamental significance
of the divergence temperature T0. The analysis in Part II of this thesis of a
large set of relaxation time data does however not favor the VFT equation over
other fitting functions without dynamic divergences at a finite temperature. This
strongly suggest that theorists should look in other directions.

Non-exponential relaxation: It was conjectured by Olsen et al [1] that an asymptotic
high frequency powerlaw with exponent −1/2 may be generic to the alpha relax-
ation once it is well separated from other processes. This conjecture was further
strengthened by the work of Nielsen et al [2], who for a large body of dielectric
data showed the prevalence of the square root.
Here a new fitting function (the exponential

√
t relaxation function) was suggested

that combines the short time
√
t relaxation with a long time exponential tail. This

function has a generic high frequency loss and an adjustable width. The long time
exponential decay may be intuitively rationalized in the following way: at long
times (beyond the alpha relaxation time) the molecular structure is continuously
changing and it is difficult to imagine that there would be any “memory” left.
With no memory, the relaxation must terminate exponentially.
Fitting the exponential

√
t relaxation function to a large set of equilibrium di-

electric data, as well as other single parameter fitting functions, showed that
this overall gave a good description of data, even spectra with asymptotic high
frequency power law with exponents well below or above 1/2. This study also
questions the fundamental significance of the stretched exponential function (and
the associated β shape parameter), since the SE did not stand out as an excep-
tionally good fitting function.

[1] N. B. Olsen, T. Christensen, and J. C. Dyre. Time-temperature superposition in viscous liquids.
Physical Review Letters, 86(7):1271-1274, 2001

[2] A. I. Nielsen, T. Christensen, B. Jakobsen, K. Niss, N. B. Olsen, R. Richert, and J. C. Dyre.
Prevalence of the approximate

√
t relaxation for the dielectric alpha process in viscous organic

liquids. Journal of Chemical Physics, 130:154508, 2009
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Non-linearity: In chapter 12 a series of “ideal aging experiments” was analyzed in
term of the Tool-Narayanaswamy formalism. The result confirms – as numerous
other experiments on glasses – that the structural non-linear relaxation can be
linearized in terms of the reduced time, the internal clock. We believe however
that it is the first time that this has been shown directly without any assumptions
of fictive temperatures or explicit evaluation of the reduced time.
It was further shown that – at least for the studied liquids – the internal clock
apparently has a real physical meaning. This was inferred by the fact that assum-
ing proportionality of the generalized dielectric relaxation rate and the structural
relaxation rate lead to linearization of the structural relaxation. This implies
that the TN formalism may have a deeper theoretical foundation.

In addition to these “traditional” questions, the careful mechanical measurements (as
described in Part I) have contributed to the first experimental test of a prediction of
the theory of strongly correlating liquids.

14.1 Outlook

The following is a list of open questions and obvious continuation of the present work:

A: The observed similarities of the bulk and shear modulus relaxation is quite intrigu-
ing and similar measurements should be carried out on more substances. Obviously,
we would like to know how general this is. Is it linked to TTS? Or to a single-
order-parameter-ness? What about the β-process? The β-process has so far not
been observed in a bulk modulus measurement, and documenting it is interesting
in itself.

B: The isochronal or dynamic Cauchy relation found for DC704 should be checked in
other liquids. Temperatures must of course be carefully matched such that bulk and
shear moduli are measured at the same relaxation times. We suggest the following
procedure: bulk and shear measurements are carried out at convenient tempera-
tures. The relaxation times/loss peak freuqencies for the two quantities are plotted
and via this plot the loss peaks of the bulk modulus is projected horizontally onto
the shear curve, and the corresponding temperatures for a shear measurement with
the same peak position can be found.

C: The aging experiments presented in chapter 12 indicate that the (structural) re-
laxation in liquids terminates exponentially. This is very interesting and should be
examined closer. Measurements with even higher resolution than those presented
in chapter 12 should be able to resolve whether the structural relaxation at long
times is in fact exponential.
Another – more empirical – way of testing the exponential cut off is to use the new
empirical function (the exponential

√
t) in the TN model to fit data from cross-over

experiments. This experiment i particularly sensitive to functional form of the re-
laxation.

D: Pursuing the modelling of the “longitudinal” transducer is probably worth the ef-
fort. It would be extremely valuable to have a third independent measurement of
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the mechanical properties. In [A] and [B] we would depend on accurate measure-
ments not only with respect to noise, but also absolute values measured.

E: We showed that for five different response functions the decoupling of relaxation
times was temperature independent down to Tg in two liquids and we conjectured
that this may be due to the fact that the studied liquids belongs to the class of
strongly correlating liquids. The connection between the proportionality between
certain combinations of thermo-mechanical response functions and proportionality
of the relaxation time of all other responses should to be justified theoretically.
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A Energy bonds and linear response

In the following we give a very brief introduction to linear response theory and the use
of electrical networks as a modelling tool for both mechanical, electrical and thermal.

A.1 Linear response

When we perturb a system usually the system reacts in some way, that can be measured.
We define the input and the output by ϕ and γ. A linear response is defined by

γ(t) =

∫ t

−∞
R(t− t′)dϕ(t′) =

∫ t

−∞
R(t− t′)ϕ̇(t′) dt′ (A.1)

where R(t) is the systems response or relaxation function. This function can be mea-
sured directly if the input is a Heaviside step input.

By a change of variables (τ = t− t′) this is equivalent to

γ(t) =

∫ ∞

0

R(τ)ϕ̇(t− τ) dτ . (A.2)

The FD theorem ensures (if we choose the input and measured output as a conjugate
pair of variables) that whenever a perturbation is linear then the measured response is
directly proportional to the mean squared fluctuations in equilibrium of the measured
quantity.

If the input is harmonic ϕ(t) = Re
{
ϕ0e

iωt
}
then the output will also be harmonic,

γ(t) = Re
{
γ0e

iωt
}
. Then by insertion we get

γ0e
iωt =

∫ ∞

0

R(τ)
d

dt

(
ϕ0e

iω(t−τ)
)
dτ = iωϕ0e

iωt

∫ ∞

0

R(τ)eiωτ dτ (A.3)

and we see that γ0/ϕ0 = iω
∫∞

0
R(τ)eiωτ dτ . The response function in the frequency

domain is thus the Laplace transform of the derivative of the time domain response
function.

A.2 Energy bond graphs

Energy bond graphs is a powerful modelling tool (for a thorough introduction see
Christiansen [1, 2]). It is a generalization of the analogues there are between mechanical
and electrical networks to embrace all kinds of linear response (and even – with some
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modification – non-linear) situations. Throughout this thesis the electrical elements
will be used to depict the models (also mechanical models) used although a more
general set of elements and flow-charts has been developed [1, 2].

An energy bond is a set of conjugate variable, i.e. two quantities whose product has
dimension of energy pr time. Examples of energy bond pairs include the thermody-
namic pairs temperature & entropy (T, S) and volume & pressure (V, p), but it could
also be electrical voltage & current (U, I).

For this ultrashort tutorial we will adopt the notation of Christiansen [1] and define
all properties in terms of a generalized voltage denoted by e and a generalized current
denoted by f , which could be any of the above pairs. The e variable is characterized
by being invariant under time-reversal, while f variable changes sign. From the e
and f variables we may integrate to find the generalized momentum p =

∫
e dt and

generalized charge q =
∫
f dt.

The possible response function using one of these variables as input and measuring the
other is listed in the table below.

e p q f

e x x compliance, J̃ admittance, Ỹ

p x x admittance, Ỹ lightness, F̃

q stiffness, S̃ impedance, Z̃ x x

f impedance, Z̃ inertance, M̃ x x

All these response functions are mathematically equivalent. For the complex response
functions (i.e. in the frequency domain) it is easy to go from one response function to
another

Z̃ =
e

f
=

1

f/e
=

1

Ỹ
(A.4)

since integration and differentiation in the frequency-domain reduces to multiplying or
dividing by the Laplace-frequency, s = iω

Z̃ = sM̃ =
1

s
S̃, Ỹ = sJ̃ =

1

s
F̃ (A.5)

A.2.1 The electrical analogue

The most common building blocks of an electrical networks are the resistor R giving
the proportionality between voltage (e) and current (f), the capacitor C giving the
proportionality between voltage (e) and charge (q), and the inductor L giving the
proportionality between voltage (e) and charge acceleration (df/dt).

With these rules we can easily work out what the impedance, admittance, etc. are of
the building blocks of these networks
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Ỹ J̃ Z̃ S̃

inductor, L 1

sL

1

s2L
sL s2L

resistor, R 1

R

1

sR
R sR

capacitor C sC C
1

sC

1

C

In an electrical network the impedance is added of elements in series and admittance
is added for elements in parallel.
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B Temperature calibration and stability

The temperature stability in the cryostats are of course very important since the prop-
erties of super-cooled liquids are extremely temperature dependent.

We have been working on two different set ups, that we internally have labelled CRYO
3 and CRYO 5. CRYO 3 is a nitrogen cooled cryostat that has to be refilled manually
every day, where as CRYO 5 has a cooling pump system that works continuously (a
“refrigerator cryostat”).

Here we will show some measurements documenting the temperature stability of the
two cryostats, and we will show how the absolute temperature of the two cryostats
compare, i.e. if the calibration of them is identical or if there are differences.

B.1 Temperature stability of CRYO 3

Beside the overall temperature stability of the cryostat, it is for the nitrogen cryostat
interesting to know how much refilling of nitrogen influences the temperature.

Using a NTC resistor as a thermometer (REF) we tested the temperature stability of
nitrogen cryostat that was used for many of the measurements presented in this thesis.

Initially we filled up the nitrogen chamber at room temperature to see how this affects
the temperature inside the cryostat. In Fig. B.1 the result is shown. Initially, a few
large oscillations with an amplitude of almost 0.3K is seen, then the amplitude of the
oscillations decrease and after 30 minutes the temperature inside the cryostat is stable
within 10mK.

Fig. B.2 shows a quench from 295K to 275K. The resulting cooling rate is close to
constant. As the final temperature is approached there are a few oscillations and after
20 minutes the temperature is stable in the cryostat chamber.

Together Fig. B.1 and B.2 show that the initial filling of nitrogen is quite dramatic
and takes longer time to adjust than a quench large quench in temperature once the
whole set-up has adjusted to the nitrogen fill.

So what happens when we refill the nitrogen chamber during a measurement? Fig.
B.3 shows an example of that, and evidently a refill during a measurement can be felt
inside the cryostat chamber, but it is a modest effect that last only a couple of minutes
and has a maximum amplitude of ∼ 50mK.

The last measurement was a long time stability check of the temperature. The result is
shown in Fig. B.4. Over a period of 50 hours the temperature is stable within ∼ 30mK
with oscillations on many timescales, but most evidently is a very slow oscillation with
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Figure B.1 Temperature as a function of
time after the initial nitrogen filling of the
cryostats nitrogen chamber.
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Figure B.2 Ramping from ambient tem-
perature to 275K. The set temperature is
reached within 20 minutes and completely
stable within 30 minutes. The inset show
a zoom at the final approach.
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Figure B.3 The temperature was sta-
bilized at 275K, and at t ≈ 6min the
nitrogen chamber is refilled. The refill has
a small and short-lived influence on the
temperature.
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Figure B.4 Long time measurement of
the temperature stability of CRYO 3
(nitrogen cryostat).

a period of almost 40 hours. Apparently, the tank did not run out of nitrogen in the 50
hours this measurement lasted. It is however likely that the tank would not last this
long at a lower set temperature.

B.2 Temperature stability of CRYO 5

Fig. B.5 show the temperature variation in CRYO 5 over a period of 24 hours measured
using the same method as above. The temperature of this cryostat is extremely stable:
except for a few spikes in ∆T of less than 10mK, the temperature is stable within a
few mK for the entire period with no slow oscillations. The standard deviation for this
measurement i 1mK(!), more than 10 times better than the nitrogen cryostat. This
is quite impressive even though it is easier to keep the temperature stable at room
temperature than below.

The measurement was carried out by Bo jakobsen.
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Figure B.5 Long time temperature stability of CRYO 5. The temperature in this cryostat is
extremely stable. Except for a few spikes in ∆T of less than 10mK, the temperature is stable
within a few mK. The measurement was carried out by Bo jakobsen.

B.3 Temperature calibration between CRYO 3 and CRYO 5

A clever way of comparing the absolute temperature calibration of the two cryostats
is to use a dielectric measurement of some liquid. Since the dielectric relaxation is
extremely temperature dependent, such a measurement will give a very precise measure
of the temperature.

I used 5-PPE (a very convenient choice) as a probe, and measured a full temperature
cycle in CRYO 5. Then I moved the holder with the filled dielectric cell attached to
CRYO 3 and repeated the measurement. The result is a collection of curves that should
be identical if the absolute temperature calibration for the two cryostats is the same.
If this is not the case, the two measurements will be shifted.

Figure B.6 show the dielectric loss spectrum for 5-PPE measured in CRYO 3 (red)
and CRYO 5 (blue). The exact same thermal cycle was measured in both cryostats
and the plots show that the absolute temperature calibration for the two cryostats is
not identical. To the left the dielectric loss spectra are shown as measured. The blue
curves are shifted slightly to the left of the red curve. To the left we show the same
curves but now the red curves have been shifted 0.13 decades to the right to make
them overlap with the blue curves. This works to some degree but the overlap is not
perfect at high temperatures. This could either be due the non-Arrheniusness of the
liquid, but it could also be because the difference in calibrated absolute temperature
is not the same.

To make a qualitative statement of the differences in temperature calibration we plot
the loss peaks against the temperature to see how much we need to shift the tempera-
ture axis to make this overlap. Top panel of Fig. B.7 show the loss peak frequencies as
a function of temperature for both measurements without shift. In the bottom panel
the measurement in CRYO 3 (red) is shifted 0.35K up, which makes the two curve
overlap completely. We thus conclude that the temperature calibration shift between
CRYO 3 and CRYO 5 is constant (at least down to 245K).

The conclusion is that for a quite large range of temperatures it is safe to just make a
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Figure B.7 Top panel: loss peak frequencies as a function of temperature. Bottom panel:
same as top only with the red curve shifted +0.35K to make the two curves collapse.

shift along the frequency axis, but the shift is truly in the temperature.



C Theory of the piezo-electric transducer
discs

C.1 Derivation of the equations

The equation are set up in cylindrical coordinates (r, φ, z). These refer – in the neigh-
borhood of r = (r cosφ)ex + (r sinφ)ey + zez – to the radial er, the azimuthal eφ and
the axial ez unit vectors. A point in the material lies at r before the displacement and
at r′ after. The displacement field is u(r) = r′ − r = urer + uφeφ + uzez. The strain
tensor then becomes

εrr =
∂ur
∂r

, εφφ =
1

r

∂uφ
∂φ

+
ur
r
, ezz =

∂uz
∂z

,

εφz =
1

2

(
1

r

∂uz
∂φ

+
∂uφ
∂z

)
, εrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
,

εrφ =
1

2

(
∂uφ
∂r
− uφ

r
+

1

r

∂ur
∂φ

)
(C.1)

The cylindical geometry gives uφ = 0 and independence of ur and uz on φ, and thus
we have

εrr =
∂ur
∂r

, εφφ =
ur
r
, ezz =

∂uz
∂z

,

εφz = εrφ = 0, εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

) (C.2)

The components ezz and erz are not vanishing but they do not enter the problem.

The elastoelectric compliance matrix of a piezoceramic with axial symmetry along the
pole axis has the same form as that of a crystal class 6mm. This has the favorable
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property of a decoupling into four parts, namely
(
εφz
Dφ

)
=

(
s44 d15

d15 εT11

)(
σφz
Eφ

)
(C.3)

(
εrz
Dr

)
=

(
s44 d15

d15 εT11

)(
σrz
Er

)
(C.4)

εrφ = 2(s11 − s12)σrφ (C.5)



εrr
εφφ
εzz
Dz


 =




s11 s12 s13 d13

s12 s11 s13 d13

s13 s13 s33 d33

d13 d13 d33 εT33







σrr
σφφ
σzz
Ez


 (C.6)

where the superscript T on the dielectric constant indicates constant tension. A change
among the variables in eq. (C.6) can thus be made without involving the coefficients
of eqs. (C.3-C.5)

A further simplification can be made as the piezoceramic disc is free to move in the
z direction, i.e. σzz = 0 on the surface. Also the gradient ∂/∂zuzz will be zero at
frequencies well below the first thickness resonance, and we have uzz = 0 throughout the
pz-disc. The ratio between the first thickness resonance and the first radial resonance
is approximately R/ξ = 20 which means that this condition holds even at the lowest
radial resonances. Thus we will only consider the following relations



εrr
εφφ
Dz


 =



s11 s12 d13

s12 s11 d13

d13 d13 εT33





σrr
σφφ
Ez


 (C.7)

If we instead choose the input variables to be εrr, εφφ and Ez, then


σrr
σφφ
Dz


 =



c11 c12 −e13

c12 c11 −e13

e13 e13 εS33





εrr
εφφ
Ez


 (C.8)

where the superscript S indicates constant strain in the r and φ directions and constant
tension in the z direction. Denoting Poissons’ ratio by p = s12/s11 and the planar
coupling factor by [3, p. 291]

kp =

(
2d2

33

εT33(s11 + s12)

)1/2

(C.9)

we can express the new matrix entries in terms of the old in the following way

c11 =
1

s11 + ps12
, c11 =

p

s11 + ps12
,

e13 =
d13

s11 + s12
, εs33 = εT33(1− k2

p)

(C.10)

The coupling factor kp is a dimensionless measure of the strength of the piezo-electric
effect. A value close to one means strong coupling between the electrical and the
mechanical properties.
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The measured quantity is the capacitance of the pz disc, Cm = Q/U , where U = Ezξ
and Q is given by integrating

Q =

∫ R0

0

2πrDz(r) d. (C.11)

One limit is the special case where the ceramic is free to move, i.e. there are no
internal stresses in the disc. We call this the free capacitance, Cf , and it is defined by
σrr = σφφ = σzz = 0 and thus becomes

Cf =
Q

U
=

∫ R0

0
2πrDz(r) dr

Ezξ
=

∫ R0

0
2πrεT33Ez dr

Ezξ

=
πεT33

ξ

∫ R0

0

2r dr = πεT33

R2
0

ξ
.

(C.12)

Likewise we can define the clamped capacitance, i.e. where the disc is not able to move
radially or transversely, while the stress in the z-direction remains zero. The clamped
capacitance is defined by εrr = εφφ = 0 and σzz = 0 and becomes

Ccl = πεS33

R2
0

ξ
. (C.13)

Combining the expressions for Cf and Ccl with Eq. (C.10) we have

Ccl
Cf

=
εS33

εT33

= 1− k2
p (C.14)

In between those limiting scenarios we must integrate the full expression for Dz

Q =

∫ R0

0

2πrDz(r) dr =

∫ R0

0

2πr
(
e13εrr + e13εφφ + εS33Ez

)
dr (C.15)

Substituting the strains with the displacement field expressions in Eq. (C.2) we obtain

Q =

∫ R0

0

2πr

(
e13

∂ur
∂r

+ e13
ur
r

+ εS33Ez

)
dr

= 2πe13

(∫ R0

0

r
∂ur
∂r

dr +

∫ R0

0

r
ur
r
dr

)
+ εS33EzπR

2
0

(C.16)

Partial integration of the first integral finally brings us to

Q = 2πe13

(
R0ur(R0)−

∫ R0

0

ur dr +

∫ R0

0

r
ur
r
dr

)
+ εS33EzπR

2
0

= 2πe13R0ur(R0) + εS33EzπR
2
0

(C.17)

The measured capacitance of the pz disc may then be written as

Cm =
Q

U
=

Q

Ezξ
=

2πe13R0ur(R0) + εS33EzπR
2
0

Ezξ

=
2πe13R0

Ezξ
ur(R0) + εS33π

R2
0

ξ
=

2πe13R0

Ezξ
ur(R0) + Ccl

(C.18)
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We introduce the dimensionless quantity F ≡ Cm−Ccl

Cf−Ccl
, and rewrite it with the expres-

sion of Eq. (C.14)

F =
Cm/Ccl − 1

Cf/Ccl − 1
=

Cm/Ccl − 1

1/(1− k2
p)− 1

=
Cm/Ccl − 1

1/(1− k2
p)− 1

=
Cm/Ccl − 1

k2
p/(1− k2

p)
=

(
Cm
Ccl
− 1

)
1− k2

p

k2
p

(C.19)

Using the expression for Cm (Eq. (C.18)) and Ccl (Eq. (C.13)), we now arrive at the
following expression for F

F =

2πe13R0

Ezξ
ur(R0)

πεS33
R2

0

ξ

1− k2
p

k2
p

=
2e13

εS33EzR0
ur(R0)

1− k2
p

k2
p

(C.20)

Substituting Eq. (C.10) for εS33 and e13 and Eq. (C.9) for kp we end up with

F =
2e13

εT33(1− k2
p)EzR0

ur(R0)
1− k2

p

k2
p

=
2e13

εT33EzR0
ur(R0)

1

k2
p

=
2 d13
s11+s12

εT33EzR0
ur(R0)

εT33(s11 + s12)

2d2
13

=
1

EzR0d13
ur(R0)

(C.21)

By Eq. C.20 F is given by the measured capacitance and it now remains to find the
displacement at the edge as a function of the rigidity of the liquid.

We will now consider a differential element of the pz disc (see Fig. C.1). The resulting
force pr. volume transmitted through the surfaces is the divergence of the stress-tensor.
The expression for this divergence in cylindrical coordiantes is

∇ · σ =
1

r

∂

∂r
(rσrr)−

1

r
σφφ +

1

r

∂

∂φ
σrφ +

∂

∂z
σrz (C.22)

where the third term in our case is zero since by Eq. (C.5) σrφ ∝ εrφ = 0. Setting this
equal to the density times the (radial) acceleration we arrive at the radial equation of
motion for the disc

1

r

∂

∂r
(rσrr)−

1

r
σφφ +

∂

∂z
σrz = ρ

∂2

∂t2
ur (C.23)

The tangential stress σrz on the free side(s) is zero and −σl on the sides that are
in contact with the liquid. Because the disc is thin ξ � R0 the gradient ∂

∂zσrz is
approximated by −σl/ξ.
In the following a harmonic time-variation in Ẽz = Eze

iωt and ũr = ure
iωt and ur and

Ez will from now on refer to the amplitude of these fields.

1

r

∂

∂r
(rσrr)−

1

r
σφφ −

1

ξ
σl = −ω2ρur (C.24)

Using Eq. (C.8), i.e.

σrr = c11εrr + c12εφφ − e13Ez

σφφ = c12εrr + c11εφφ − e13Ez
(C.25)
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Figure C.1 A sketch of the pz disc seen from the side and from the top. The shades areas
represent a differential element of the disc and the arrows shows the stresses that are acting
on the surfaces of this element. The thickness of the disc is ξ and the radius R0.

combined with Eq. (C.2), i.e.

εrr =
∂ur
∂r

, εφφ =
ur
r

(C.26)

we can rewrite Eq. (C.24) purely in terms of the displacement

−ρω2ur =
1

r

∂

∂r

(
r

(
c11

∂ur
∂r

+ c12
ur
r
− e13Ez

))
− 1

r

(
c12

∂ur
∂r

+ c11
ur
r
− e13Ez

)
− 1

ξ
σl

= c11
∂2ur
∂r2

+ c12
1

r2

(
r
∂ur
∂r
− ur

)
− 0 +

1

r

(
c11

∂ur
∂r

+ c12
ur
r
− e13Ez

)

− 1

r

(
c12

∂ur
∂r

+ c11
ur
r
− e13Ez

)
− 1

ξ
σl

(C.27)

where most of the terms cancel out and we end up with

c11

(
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

)
− 1

ξ
σl = −ρω2ur (C.28)

To make the equations a little more compact we define the differential operator P

P = r2

(
∂

∂r

)2

+ r
∂

∂r
− 1 (C.29)
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The equations of motion for differential element of the discs between r and r+ dr (see
Fig. C.2)

c11P [u1]− σ1
r2

ξ1
= −ω2r2ρ1u1

c11P [u2]− (σ+
2 + σ−2 )

r2

ξ2
= −ω2r2ρ2u2

c11P [u3]− σ3
r2

ξ3
= −ω2r2ρ3u3

(C.30)

where in principle the thickness of the pz-discs ξ and the distance between discs d could
differ, but in practice we will assume these quantities to be the same for all discs and
gaps.

Now we need to express the stress from the liquid σl (which of course will be different for
the shear transducer compared to the longitudinal transducer), apply the appropriate
boundary conditions and finally solve the equations.

C.2 Solving the equations for the shear transducer

In Fig. C.2 we show a cross-section of a differential element between r and r+dr of the
three disc construction for the PSG. In this geometry, there will be a plane in the liquid
that remains unperturbed by the deformation imposed by the pz-discs (illustrated with
red dash-dotted lines in Fig. C.2) at 1/3 of the layer thickness, d/3. This plane can be
regarded as an infinitely rigid support, and the problem of finding the dependence of
the measured electrical capacitance on the liquid properties can be mapped onto a one-
disc device (with 3/2 of the capacitance of a single disc) and infinitely rigid support.

In this case we only have to solve one equation

P [ur] +

(
ρr2ω2

c11

)
ur −

r2

c11ξ
σl = 0 (C.31)

Now we assume that the deformation of the liquid is pure shear and only the component
εliqrz is nonzero, i.e. that the volume change in the deformation is negligible

We then have
σl = 2G(ω)εliqrz = G(ω)

ur
d

(C.32)

where G is the shear modulus of the liquid. Inserting this into Eq. (C.31)

P [ur] + r2

(
ρω2

c11
− G(ω)

c11dξ

)
ur = 0. (C.33)

The boundary conditions of this differential equation are zero displacement at the
center ur(0) = 0 and zero stress at the edge σrr(R0) = 0. Using Eqs. C.2 and C.8 this
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r + dr

Before:

After:

r + u(r)

Figure C.2 A cross-section of a differential element between r and r + dr of the three disc
construction for the PSG, shown before and after a field is applied to the discs.

can be written in terms of displacement

σrr = c11εrr + c12εφφ − e13Ez

=
1

s11 + ps12
εrr +

p

s11 + ps12
εφφ −

d13

s11 + s12
Ez

=
1

s11 + ps12

∂ur
∂r

+
p

s11 + ps12

ur
r
− d13

s11 + s12
Ez

(C.34)

which then gives

∂ur
∂r

(R0) +
p

R0
ur =

d13(s11 + ps12)

s11 + s12
Ez = d13(1 + p)Ez. (C.35)

The problem becomes dimensionless with the following two definitions

x = r/R0, e(x) =
1

(1 + p)d13EzR0
u(R0x) (C.36)

which gives

e′(x) = d
dx

(
1

(1 + p)d13EzR0
u(R0x)

)

=
1

(1 + p)d13EzR0
u′(R0x)R0 =

1

(1 + p)d13Ez
u′(R0x)

e′′(x) =
R0

(1 + p)d13Ez
u′′(R0x)

(C.37)
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The characteristic quantities is defined as follows

modulus: Gc =
c11dξ

R2
0

(C.38)

inertance: Mc = ρdξ (C.39)

frequency: ωc =

√
Gc
Mc

=

√
c11

ρR2
0

(C.40)

together with

V =
G(ω)

Gc
, S =

(
ω

ωc

)2

, k2 = S − V (C.41)

and Eq. C.33 becomes a first order Bessel differential equation

0 = P [ur] + r2

(
ρω2

c11
− G(ω)

c11dξ

)
ur = P [ur] +

r2

R2
0

(
R2

0ρω
2

c11
− R2

0G(ω)

c11dξ

)
ur

=
1

(1 + p)d13EzR0
P [ur] + x2 1

(1 + p)d13EzR0

(
ω2

ω2
c

− G(ω)

Gc

)
ur

=
1

(1 + p)d13EzR0

(
r2 ∂

2

∂r2
ur + r

∂

∂r
ur − ur

)
+ k2x2e(x)

=
1

(1 + p)d13EzR0

(
r2 ∂

2

∂x2
ur

(
dx

dr

)2

+ r
∂

∂x
ur
dx

dr
− ur

)
+ k2x2e(x)

= x2e′′(x) + xe′(x)− e(x) + k2x2e(x) = x2e′′(x) + e′(x) + (k2x2 − 1)e(x)

(C.42)

with the boundary conditions

e(0) = 0, e′(1) + pe(1) = 1 (C.43)

In this formulation the dimensionless measured capacitance in Eq. (C.20) becomes

F (ω) = (1 + p)e(1) (C.44)

The general solution to this differential equation

e(x) = AJ1(kx) +BY1(kx) (C.45)

where Jn and Yn are a Bessel functions of the first order (first and second kind re-
spectively). Applying the first boundary condition reveals B = 0, while the second
boundary condition gives

A = [kJ ′1(k) + pJ1(k)]
−1 (C.46)

Through recurrence formulas for Bessel functions the following general expression for
the derivative is found

J ′n(x) = Jn−1(x)− n

x
Jn(x) (C.47)

and a can thus be expressed

A =

[
k

(
J0(k)− 1

k
J1(k)

)
+ pJ1(k)

]−1

= [kJ0(k) + (p− 1)J1(k)]
−1 (C.48)
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Thus the measured capacitance can be written

Cm = Ccl

[
(1 + p)

J1(k)

kJ0(k) + (p− 1)J1(k)

k2
p

1− k2
p

+ 1

]
(C.49)

where k is given from Eq. (C.38)-(C.41).
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D Nonlinear optimization

This is a note based on [4, 5] on some technical and mathematical issues of doing fits
of models to data.

Quite generally a model y is some function of the input x and the parameters θ

y = f(x; θ) . (D.1)

Often such a mathematical model is used to predict something, i.e. when we know
the parameters, we can predict the outcome of a certain input. But often we are
interested in solving the inverse problem: given the input and the output, what were
the parameters? This kind of problem is often ill-posed, i.e. there may be many equally
good solutions and they may not be stable.

If we write the data Y and the associated model output y can be written as column
vectors

Y = (Y (x1), Y (x2), . . . , Y (xN ))
T

y = (y(x1), y(x2), . . . , y(xN ))
T

(D.2)

we can estimate the parameters by minimizing the least squares cost between the
computed and measured values of the model output. The least squares cost (which
also approximate the model variance) is given by

σ2 =
1

N − n
N∑

l=1

|y(xl)− Y (xl)|2 (D.3)

where N is the number of observations and n is the number of parameters.

To ensure that this procedure is meaningful we can check two things: is the model
sensitive to the parameters? And are the parameters correlated?

D.1 Parameter sensitivity

The sensitivity of the model output y to the model parameters θ can be predicted from
the matrix

S =
∂y

∂θ
=

(
∂y

∂θ1

∂y

∂θ2
. . .

∂y

∂θn

)
. (D.4)

If the absolute values of the parameters are very different (i.e. differs by orders of
magnitude) the columns of this matrix becomes comparable if one instead uses the
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logarithmic derivatives

S =
∂ ln y

∂ ln θ
=

(
∂ ln y

∂ ln θ1

∂ ln y

∂ ln θ2
. . .

∂ ln y

∂ ln θn

)
. (D.5)

If the elements in one column is close to zero the model is insensitive to that parameter.

D.2 Correlations between parameters

If 2 parameters in a model are correlated (in a sense that will be defined below) then it
is not possible to determine a unique value of these parameters. A very simple example
of such a correlation would be a linear model in this form

y = (θ1 + θ2)x. (D.6)

In this case it is obvious that only the sum of the parameters can be determined –
not the actual values of θ1 and θ2. In other cases it might be more difficult to asses
whether to parameters are correlated or not.

A standard tool for quantifying the “correlatedness” of parameters is using the covari-
ance matrix

C =
(
STS

)−1
. (D.7)

The correlation matrix c is then obtained as follows

ci,j =
Ci,j√
Ci,iCj,j

(D.8)

where −1 ≤ ci,j ≤ 1. c is a symmetric matrix with ones in the diagonal. Two
parameters are correlated if |ci,j | ∼ 1.



E Analytical and numerical Laplace
transforms

Definition of the Laplace transform:

[Lf ] (s) =

∫ ∞

0

e−stf(t) dt =: F (s). (E.1)

When we use the Laplace transforms presented here, we will with no further hesitation
use s = iω

General rules for the Laplace transform

linearity: [L(af + bg)] (s) = a [Lf ] (s) + b [Lg] (s) (E.2)

differentiation:
[
L d
dt
f

]
(s) = sF (s)− f(0) (E.3)

convolution: [L(f ◦ g)] (s) = F (s)G(s) (E.4)

Laplace transforms of some special functions
[
Le−t/τ

]
(s) =

1

1 + sτ
(E.5)

E.1 Analytic transforms

E.1.1 The stretched exponential

The response function in the frequency domain corresponding to a relaxation function
in the time domain is given by the Laplace transform of the derivative of the relaxation
function.

In general there is no analytical solution for the stretched exponential, R(t) = exp
{
−
(
t
τ

)β}.
However, for β = 0.5 it is possible to arrive at a semi-analytical expression

[LR] (s) =

∫ ∞

0

e−ste−
√
t/τ dt (E.6)

Change of variables, ξ =
√
t/τ ⇒ dξ = − 1

2
√
t/τ

dt

[LR] (s) = −2

∫ ∞

0

ξe−sτξ
2

e−ξ dξ (E.7)
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Now we re-write this

[LR] (s) = −2

∫ ∞

0

ξe−sτξ
2−ξ dξ (E.8)

= −2

[∫ ∞

0

ξe−sτξ
2−ξ dξ +

1

2sτ

∫ ∞

0

e−sτξ
2−ξ dξ − 1

2sτ

∫ ∞

0

e−sτξ
2−ξ dξ

]

(E.9)

= −2

[∫ ∞

0

(
ξ +

1

2sτ

)
e−sτξ

2−ξ dξ − 1

2sτ

∫ ∞

0

e−sτξ
2−ξ dξ

]
(E.10)

= −2

[
1

2sτ

∫ ∞

0

(2sτξ + 1) e−sτξ
2−ξ dξ − 1

2sτ

∫ ∞

0

e−sτξ
2−ξ dξ

]
(E.11)

= − 1

sτ

∫ ∞

0

(2sτξ + 1) e−sτξ
2−ξ dξ +

1

sτ

∫ ∞

0

e−sτξ
2−ξ dξ (E.12)

The second part of this integral is a standard definite integral and can be looked
up in tables. The first part of this sum can be solved with a change of variables,
y = sτξ2 + ξ ⇒ dy = (2sτξ + 1)dξ, to give

− 1

sτ

∫ ∞

0

(2sτξ + 1) e−sτξ
2

e−ξ dξ = − 1

sτ

∫ ∞

0

e−y dy =
1

sτ
(E.13)

In total we obtain

[LR] (s) =
1

sτ

[
1 +

1

2

√
π

sτ
e1/4sτerfc

(
1√
4sτ

)]
(E.14)

E.1.2 The derivative of the stretched exponential

Normally we are not interested in the Laplace transform of the relaxation function,
R(t), but rather the negative derivative of this

[
L
(
− d
dtR

)]
(s) =

∫ ∞

0

e−st
e−
√
t/τ

2
√
t/τ

dt (E.15)

Change of variables, ξ =
√
t/τ ⇒ dξ = − 1

2
√
t/τ

dt

[
L
(
− d
dtR

)]
(s) = −

∫ ∞

0

e−sτξ
2

e−ξ dξ (E.16)

This integral is a standard definite integral (same as above)
[
L
(
− d
dtR

)]
(s) = −1

2

√
π

sτ
e1/4sτerfc

(
1√
4sτ

)
. (E.17)

As a check, we can try solving this with the rule of differentiation
[
L
(
− d
dtR

)]
(s) = 1− sτ [LR] (E.18)

= 1− sτ
{

1

sτ

[
1 +

1

2

√
π

sτ
e1/4sτerfc

(
1√
4sτ

)]}
(E.19)

= −1

2

√
π

sτ
e1/4sτerfc

(
1√
4sτ

)
. (E.20)
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and have established that the two methods arrive at the same expression.

E.1.3 The exponential
√
t relaxation function

The exponential
√
t relaxation function

R(t) = e−C
√
t/τ−t/τ ⇒ d

dtR = −e−C
√
t/τ−t/τ

(
C

2
√
t/τ

+ 1

)
(E.21)

This is the stretched exponential multiplied by a simple exponential. This function too
has a semi-analytical expression that can be derived on the basis of the above.

[
L d
dtr
]

(s) = −
∫ ∞

0

e−ste−C
√
t/τ−t/τ

(
C

2
√
t/τ

+ 1

)
dt (E.22)

= −C
∫ ∞

0

e−st
e−C
√
t/τ−t/τ

2
√
t/τ

dt−
∫ ∞

0

e−ste−C
√
t/τ−t/τ dt (E.23)

Change of variable, ξ =
√
t/τ gives

[
L d
dtr
]

(s) = −C
∫ ∞

0

e−sτξ
2

e−Cξ−ξ
2

dξ −
∫ ∞

0

e−sτξ
2

e−Cξ−ξ
2

2ξ dξ (E.24)

Denoting s̃ = sτ + 1 we simplify this to obtain

[
L d
dtr
]

(s) = −C
∫ ∞

0

e−s̃ξ
2−Cξ dξ − 2

∫ ∞

0

ξe−s̃ξ
2−Cξ dξ (E.25)

First part of this integral we already know and the second part may also be looked up
in standard tables. So at last we arrive at

[
L d
dtr
]

(s) =
C

2

√
π

s̃
e1/4s̃erfc

(
C2

√
4s̃

)
− 2

∫ ∞

0

ξe−s̃ξ
2−Cξ dξ (E.26)

E.2 Numerical transforms

A straight-forward way to obtain a Laplace transform is using the FFT (Fast Fourier
Transform) defined in MatLab. This gives reasonable curves, but has severe problems
in the high- and low-frequency limits. The disadvantage of such an approach is that
the whole curve is given at once; it is not possible to calculate the transform at a given
frequency – which is what we want for fitting purposes.

E.2.1 ’Sum-of-exponentials’ method

A mathematical theorem (“Bernsteins Theorem”) states that function that are com-
pletely monotone may be written as a (possibly infinite) sum of exponentials

f(t) =

∫ ∞

0

G(ln τ)e−t/τ d ln τ (E.27)
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The advantage of that with respect to the Laplace transform is obvious: the Laplace
transform is a linear operation and thus the transform of a sum of exponentials, will
be a sum of the transform of the exponential function (Eq. E.5). This gives a simple
expression

F (s) = [Lf ] (s) =

[
L
(∫ ∞

0

G(ln τ)e−t/τ d ln τ

)]
(E.28)

=

∫ ∞

0

G(ln τ)
[
Le−t/τ

]
(s) d ln τ (E.29)

=

∫ ∞

0

G(ln τ)
1

1 + sτ
d ln τ (E.30)

Bello et al [6] have compiled a list of this distribution of relaxation times for some
of the popular fitting functions. In the case of the stretched exponential in general,
R(t) = exp

[
− (t/τ0)

β
]
the expression is somewhat complicated

G(ln τ) =
1

π

∫ ∞

0

e−xe−u cos(πβ) sin(u sin(πβ)) dx (E.31)

where u =
(
xτ
τ0

)β
. For β = 1/2 the expression is very simple

G(ln τ) =

(
τ

4πτ0

)1/2

. (E.32)

This expression can now be used as a basis to calculate the Laplace transform of the
exponential

√
t relaxation function. Maggi [7] has done this, and the result is

G(ln τ) = Θ(τ0 − τ)
1

N
τ0

4πτ(τ0 − τ)

√
C2τ

π(τ0 − τ)
exp

{
− C2τ

4(τ0 − τ)

}
(E.33)

where Θ(x) is the Heaviside step-function and N is normalization factor

N =

∫ τ0

0

τ0
4πτ(τ0 − τ)

√
C2τ

π(τ0 − τ)
exp

{
− C2τ

4(τ0 − τ)

}
dτ. (E.34)
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The physics of the ultraviscous liquid phase preceding glass formation continues to pose major problems that remain unsolved. It is
actively debated, for instance, whether the marked increase of the relaxation time reflects an underlying phase transition to a state
of infinite relaxation time. To elucidate the empirical evidence for this intriguing scenario, some of the most accurate relaxation-
time data available for any class of ultraviscous liquids—those obtained by dielectric relaxation experiments on organic liquids
just above the glass transition—were compiled. Analysis of data for 42 liquids shows that there is no compelling evidence for the
Vogel–Fulcher–Tammann (VFT) prediction that the relaxation time diverges at a finite temperature. We conclude that theories with a
dynamic divergence of the VFT form lack a direct experimental basis.

All liquids may be supercooled. In some cases, the liquid crystallizes
spontaneously. In other cases, a marked increase in viscosity and
relaxation time is observed on continued cooling, and the liquid
eventually solidifies into a glass—a frozen liquid. Which of the
two scenarios that prevails depends on the cooling rate. The
ultraviscous liquid phase preceding glass formation has universal
physical properties, independent of the nature of the chemical
bonds involved: metal bonds, ionic bonds, covalent bonds, van der
Waals bonds or hydrogen bonds. The universalities and the lack
of understanding of the basic phenomenology continue to make
this research field attractive to physicists, chemists and materials
scientists alike.

The universal features1–7 that characterize ultraviscous
supercooled liquids relate, in particular, to the time dependence
of relaxation functions and to the temperature dependence of the
relaxation time. The former is not our focus here; it is reflected
in the fact that relaxation functions are generally well fitted by the
so-called stretched exponential function. The focus below is on
the relaxation time, which increases markedly on cooling into the
ultraviscous phase, sometimes by more than a factor of ten when
temperature is lowered by just 1%. Figure 1 shows the relaxation
time as a function of temperature for some typical molecular
liquids. This figure raises the question: Does the relaxation time
diverge at finite temperatures or only as T → 0?

The average relaxation time τ is generally non-Arrhenius. That
is, on cooling, τ almost always increases faster than predicted
by the well-known Arrhenius equation. This is the mathematical
expression that characterizes, for example, the temperature
dependence of a chemical reaction time in terms of an activation
energy. For ultraviscous liquids, if the temperature-dependent
activation energy �E(T) is defined by the Arrhenius expression

τ(T) = τ0 exp

�
�E(T)

kBT

�

, (1)

it is generally found that �E(T) increases significantly on cooling.
To the best of our knowledge, there are no liquids where �E
decreases, which is in itself a striking fact.
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Figure 1 Relaxation time as a function of temperature for typical organic

liquids supercooled into the ultraviscous phase. The relaxation time was

determined as the inverse dielectric loss-peak frequency, identified by fitting data in

a log–log plot around the maximum with a parabola. If a linear scale were used, the

relaxation time would increase almost vertically on cooling; even on a log scale, the

increase is marked. The question investigated in this article is whether or not there

is reason to believe that the relaxation time diverges at some finite temperature. The

full lines are drawn as guides to the eye. Table 1 explains the liquid abbreviations.

THE VFT EQUATION

The function most widely used to fit relaxation-time data is the
Vogel–Fulcher–Tammann (VFT) equation dating back to the 1920s
(refs 8–10):

τ = τ0 exp

�
A

T −T0

�

(T0 < T). (2)
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Figure 2 Relaxation time data identified from dielectric loss peaks for all of the

42 organic ultraviscous liquids used in the analysis. Both panels show the

logarithm of the dielectric relaxation time as a function of inverse temperature. A

straight line in this plot signals an Arrhenius temperature dependence. The liquids all

exhibit the non-Arrhenius temperature dependence of the relaxation time that

characterizes ultraviscous liquids. The symbols are explained in Table 1.

This corresponds to an activation energy that increases on cooling
as �E ∝ T/(T − T0). Although the VFT equation has few
adjustable parameters, it generally gives quite good fits to data.
The coefficients of the VFT equation were considered in the
landmark paper published in 1955 by Williams, Landel and Ferry11

that discussed the non-Arrhenius problem in terms of the free-
volume model. In the 1970s, there were reports that the VFT
equation breaks down at temperatures with long relaxation times
(large viscosities)12,13. These ‘early warnings’ were to some extent
forgotten or repressed, perhaps because probing the relaxation
time accurately through viscosity measurements is difficult at
high viscosities.

Experimentalists often regard the VFT equation as just a
convenient fit to data12. Many theorists, on the other hand, were
inspired by the VFT equation to develop theories predicting a phase
transition at T0 to a state with infinite relaxation time

14. The first
such approach was the famous Adam–Gibbs entropy model from
1965 predicting a second-order phase transition at T =T0 to a state
of zero configurational entropy and infinite relaxation time15,16, a
unique ‘ideal glass’. A number of simplifying assumptions go into
the Adam–Gibbs formalism, and in 1997 it was argued by DiMarzio
and Yang17 that even if the Adam–Gibbs idea of an underlying
phase transition is accepted, the relaxation time remains finite at
the transition temperature. Very recently, mathematically rigorous
theorems derived by Eckmann and Procaccia18 show that for
two-dimensional soft-sphere mixtures, at least, the configurational
entropy stays positive for T > 0.

Leading theorists such as Edwards19,20, Anderson21 and, more
recently, Bouchaud and Biroli in 2004 (ref. 22) and Lubchenko
and Wolynes in 2007 (ref. 23) have developed dynamic divergence
scenarios far beyond Adam and Gibbs’. Although there are differing
opinions from other famous theorists24–27, it remains a popular idea
that the marked slowing down on cooling reflects an underlying
phase transition to a state of infinite relaxation time. The fact that
data are usually well fitted by the VFT equation has reinforced
this idea over many years28. Our aim is to provide an in-depth
investigation of the evidence for dynamic divergences of the VFT
form. Before detailing the data analysis, it should be noted that

Table 1 Liquids included in the analysis. The name of each liquid, its abbreviation

and the symbol used in the figures are listed. More details (including references,

temperature, frequency intervals and some further information) are provided in

the Supplementary Information.

Liquid Abbreviation Symbol

1,2-propandiol (propylene-glycol) PG
2-ethyl-hexylamine EH
2-methyl-tetrahydrofurane MTHF
2-phenyl-5-acetomethyl-5-ethyl-1,3-dioxocyclohexane AFEH
3,3,4,4-benzophenonetetracarboxylic dianhydride BPC
3-fluoro-aniline FAN
3-phenyl-1-propanol 3Ph1P
3-styrene 3Sty
5-polyphenyl-ether 5-PPE
benzophenone BePh
biphenyl-2yl-isobutylate BP2IB
butyronitrile BN
cresolphthalein-dimethylether KDE
decahydroisoquinoline DHIQ
di-iso-butyl-phtalate dIBP
dibutyl-ammonium-formide dBAF
dibutyl-phtalate DBP
dicyclohexyl-methyl-2-methylsuccinate DCHMMS
diethyl-phtalate DEP
diglycidyl-ether-of-bisphenol A (epoxy-resin) ER
dimethyl-phtalate DMP
dioctyl-phtalate DOP
dipropylene-glycol DPG
dipropylene-glycol-dimethyl-ether DPGDME
glycerol Gly
isopropyl-benzene Cum
m-tricresyl-phosphate mTCP
m-toluene mTol
o-terphenyl OTP
perhydroisoquinoline PHIQ
phenolphthalein-dimethylether PDE
phenyl-salicylate (salol) Sal
polypropylene-glycol PPG

pyridine–toluene mixture PT
squalane Sqa
sucrose-benzonate SB
tetraphenyl-tetramethyl-trisiloxane DC704
tricresyl-phosphate TCP
triphenyl-ethylene TPE
tripropylene-glycol TPG
trisnaphthylbenzene tNB
xylitol Xyl

support for the idea of a dynamic divergence traditionally came
from several papers reporting near equality of the VFT fitting
parameter T0 and the Kauzmann temperature TK, the temperature
where the liquid phase entropy by extrapolation below the glass
transition becomes identical to the crystal phase entropy29–31. In
2003, however, Tanaka presented a compilation of data showing
that T0 = TK is not confirmed by experiment

32.
As is evident from the above, an important question of

contemporary glass science is the following: Is there experimental
evidence for the dynamic divergence predicted by the VFT
equation? Answering this is important, because if there is an
underlying dynamic divergence, this obviously explains the marked
relaxation-time increase on cooling. By its very nature the question
is subtle, however, because if the equilibrium liquid relaxation time
diverges at some finite temperature, it is impossible to equilibrate
the liquid at or close to that temperature. This means that no
experiment can conclusively prove the existence of a dynamic
divergence. To cut this science–philosophical Gordian knot, we take
the following pragmatic viewpoint: the conjecture of a diverging

2 nature physics ADVANCE ONLINE PUBLICATION www.nature.com/naturephysics
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Figure 3 The VFT and Avramov equations compared with data. a, Examples of fits with the VFT equation (solid lines) and the Avramov equation (dashed lines).

b, Standard deviation from fits to data of the two equations. The x axis represents the 42 liquids sorted in descending order of standard deviation for each of the two fitting

functions; thus, a given position on the x axis generally corresponds to two different liquids. On average, the VFT equation fits data better than does the Avramov equation.

relaxation time of VFT form will be regarded as probably correct
if—and only if—the VFT equation fits data considerably better
than do other mathematically simple functions with the same
number of fitting parameters and no dynamic divergence. To
investigate this, data for a large number of liquids are needed.

DATA ANALYSIS

Accurate data are required to assess whether or not the VFT
prediction of a diverging relaxation time is confirmed by
experiment. Dielectric relaxation measurements give the most
precise relaxation-time data, far more accurate than data from
other relaxation processes or from viscosity measurements. For
practical reasons, the best dielectric data for ultraviscous liquids are
for organic liquids; such liquids are often easily supercooled and
quite convenient to work with. Monoalcohols were omitted from
the analysis because their dominant dielectric relaxation process
does not relate to the calorimetric glass transition33.

To quantify how well the VFT equation fits data, we compared
the VFT equation with another popular fitting function34–39 that is
now known as the Avramov equation:

τ(T) = τ0 exp

�
B

Tn

�

. (3)

Like the VFT equation, the Avramov equation has two parameters
in addition to the prefactor τ0, but it has no dynamic divergence.
The prefactor is usually regarded as a free parameter, but we chose
to fix it to τ0 = 10−14 s (ref. 40). The below conclusions are not
sensitive to the exact value of τ0 if it is insisted that it should have
a physically reasonable value, that is, be in (or just slightly outside)
the range 10−14–10−13 s.

At any given temperature, from the dielectric loss as a function
of frequency, we define the liquid relaxation time τ as the inverse
loss-peak frequency. The last of these is identified by fitting loss
data as a function of log frequency close to the maximum loss
with a parabola. Figure 2 shows all data analysed. All liquids exhibit
the characteristic non-Arrhenius behaviour with a relaxation time
that increases stronger on cooling than predicted by the Arrhenius
equation (that is, equation (1) with temperature-independent
activation energy). A list of all liquids included in the analysis and
their corresponding symbols is given in Table 1; more details are
provided in the Supplementary Information.

The fitting region was restricted to relaxation times between
1 µs and 1,000 s. This was done to avoid comparing different
types of dynamic behaviour—otherwise there is the risk that we
ultimately test the two equations’ ability to interpolate between
two different dynamics. The lower limit (1 µs) was chosen to
ensure that the dynamics are well within the ‘landscape dominated’
domain41,42. The upper limit (1,000 s) was chosen to ensure that
all data are true equilibrium data. A further requirement was that
only data sets covering at least four decades in time measured at
five or more temperatures were included in the analysis. Out of
an initial collection of data for 62 liquids, 42 met these demands.
The liquids represent some of the most commonly studied organic
glass formers; their dielectric properties were measured by leading
groups in the field. These data were supplemented by some new
measurements of ours.

Equations (2) and (3) were fitted to data using the least-squares
method. The procedures for selecting data and the subsequent
fitting procedures were automated through MatLab routines.
Examples of fits are shown in Fig. 3a with VFT fits as solid
lines and Avramov fits as dashed lines. Both equations fit well
with little visible difference. For a quantitative comparison of the
two fitting functions, we used the standard deviation formula,
σ2 = 1/(N − n)

�
i(log10(τfit,i) − log10(τdata,i))

2, where N is the
number of data points and n = 2 is the number of degrees of
freedom. Figure 3b shows σVFT and σAvramov for all liquids, where
the σ values for clarity are sorted in descending order for both
fits. The VFT equation generally fits data better than does the
Avramov equation.

Inspecting the fits closely—in Fig. 3a as well as those not
shown—reveals that deviations are systematic. Thus, highly non-
Arrhenius liquids, that is, data sets with large curvature, are
generally poorly fitted by the Avramov equation. Apparently, the
Avramov equation is not able to ‘bend’ enough to capture the
curvature of these data sets. Is that a signal of the dynamic
divergence predicted by the VFT equation? To investigate this
possibility, we calculated how the activation energy changes with
temperature using the temperature index defined43 by

I = −
dln�E

dlnT
. (4)

The temperature index quantifies the activation-energy
temperature dependence in a way that is independent of the
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Figure 4 Temperature indices. This quantity (equation (4)) measures how fast the

activation energy increases on cooling; it is plotted as a function of temperature.

a, Temperature indices for all liquids. With few exceptions, the temperature index

increases with decreasing temperature. This explains why the VFT equation fits data

better than does the Avramov equation, which predicts a temperature-independent

index. b, Temperature indices for the eight liquids where the Avramov equation

(upper panel), respectively the VFT equation (lower panel), fits best. The full lines

give the VFT-predicted temperature indices (equation (5)), the dashed–dotted and

dashed lines, respectively, give the predictions of the two fitting functions FF1 and

FF2 that do not have dynamic divergences (equations (6) and (7)). In both

subfigures, the black circles mark the glass-transition temperature for each liquid.

unit system, like the Grüneisen parameter of solid-state physics
quantifies the effects of thermal expansion. If for instance the
temperature index is four, lowering the temperature by 1% leads
to a 4% increase of the activation energy. If the glass transition
temperature is defined by τ(Tg) = 100 s, the temperature index
is related to Angell’s fragility m ≡ d log10(τ)/d(Tg/T)|Tg by
m = c(1+ I(Tg)), where c = log10(τ(Tg)/τ0) = 16 (ref. 43).

For the Avramov equation, the temperature index is constant,
IAvramov = n−1. For the VFT equation, we find

IVFT =
T0

T −T0

. (5)

σ

VFT

FF1

FF2

τ0 = 10–13 s τ0 = 10–14 s 

0

0.1
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0.3

0.4

Worst fit Best fit Worst fit Best fit

Figure 5 Standard deviation from fits to data of the VFT equation and two

alternative fitting functions with the same number of parameters but no

dynamic divergence, FF1 and FF2 of equations (6) and (7). The x axis represents

the liquids sorted in descending order of standard deviation for each fitting function.

For both choices of physically reasonable prefactors, the three functions fit equally

well. The worst-fit outlier is perhydroisoquinoline, one of the most fragile

(non-Arrhenius) liquids in the collection (compare Fig. 1).

Thus, the VFT temperature index increases on cooling and diverges
at T = T0. Figure 4a shows temperature indices for all 42 liquids
as functions of temperature. For the vast majority of liquids,
the temperature index increases with decreasing temperature.
This explains why the VFT equation fits data better than the
Avramov equation.

The temperature index is also useful for shedding light on
how strong the evidence for a dynamic divergence is. Figure 4b
(upper panel) shows the actual and the VFT-predicted temperature
indices for the eight liquids that are best fitted by the Avramov
equation; the lower panel shows those liquids that are best
fitted by the VFT equation. The data are not inconsistent with
the dynamic divergence predicted by the VFT equation, but we
cannot reasonably say that there is compelling evidence for a
divergent temperature index as predicted by the VFT equation. The
dashed–dotted and dashed lines are the temperature indices of the
two below fitting functions.

We proceed to compare the VFT function to two alternative
fitting functions with temperature indices that increase on cooling,
but without divergence at a non-zero temperature. Fitting functions
one and two (FF1 and FF2) reflect the following temperature
indices: I = (T1/T)2 and I = (T2 − T)/T (T < T2), respectively.
Integrating these expressions via equation (4) leads to

�E(T) ∝ exp

�
T 2
1

2T 2

�

(FF1), (6)

�E(T) ∝ T exp

�
T2

T

�

(FF2). (7)

Figure 5 shows the standard deviations from fitting these two
functions to data compared with the VFT equation. The panels
show results from two different prefactors, τ0 = 10−13 s and
τ0 = 10−14 s. In both cases the three functions fit equally well.

OUTLOOK

The analysis was limited to non-polymeric systems because the
polymer glass transition may be fundamentally different from the
liquid–glass transition. The VFT equation was often used also
for the polymer glass transition, however, where it is generally

4 nature physics ADVANCE ONLINE PUBLICATION www.nature.com/naturephysics
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known as the Williams–Landel–Ferry equation11. A clever way to
extend the range of relaxation times beyond those obtainable by
linear relaxation experiments is to consider results from ageing
experiments. Studies by McKenna, Simon, Plazek and co-workers
mainly on polymeric systems show that the VFT prediction is not
followed when systems are aged into equilibrium by annealing
for sufficiently long time slightly below the glass-transition
temperature44–47. Although the accuracy of these experiments is
not comparable to that of dielectric relaxation experiments on
the metastable equilibrium phase, it was nevertheless possible to
conclude that the relaxation times deviate from the VFT equation
by always increasing less markedly when lowering temperature than
predicted by the VFT equation. These results are fully consistent
with the above conclusion.

It is not possible to rule out that there is a dynamic divergence
of the VFT form, but our findings give no indications of such
a divergence. It is instructive to compare the situation to that
of a second-order phase transition. This is associated with a
dynamic divergence where the (maximum) relaxation time diverges
as an inverse power law of the temperature distance to the
transition temperature (critical slowing down). Thus, right at
the phase transition, the relaxation time is infinite. Although it
is not possible to experimentally definitively prove this dynamic
divergence, nobody doubts it. This is because (1) the predicted
mathematical form is supported by experiment, (2) the dynamic
critical exponents fit theoretical predictions and (3) there is
a fundamental understanding of what is going on and why
relaxations slow down when the transition is approached. For
ultraviscous liquids, there is no such generally agreed simple and
universal model. Here, the logic was traditionally reversed. The
observation that data are well fitted by the VFT equation was
used to justify a search for models with a dynamic divergence.
Our findings indicate that this is probably not a fruitful route.
Thus, with Occam’s razor in mind—‘it is vain to do with more
what can be done with fewer’—we suggest that in the search
for the correct theory for ultraviscous liquid dynamics, theories
not predicting a dynamic divergence of the VFT form should be
focused on.

Received 22 February 2008; accepted 24 June 2008; published 27 July 2008.
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36. Bässler, H. Viscous flow in supercooled liquids analyzed in terms of transport theory for random

media with energetic disorder. Phys. Rev. Lett. 58, 767–770 (1987).
37. Litovitz, T. A. Temperature dependence of the viscosity of associated liquids. J. Chem. Phys. 7,

1088–1089 (1952).
38. Barlow, A. J. & Lamb, J. The visco-elastic behaviour of lubricating oils under cyclic shearing stress.

Proc. R. Soc. A 253, 52–69 (1959).
39. Barlow, A. J., Lamb, J. & Matheson, A. J. Viscous behaviour of supercooled liquids. Proc. R. Soc. A

292, 322–342 (1966).
40. Stickel, F., Fischer, E. W. & Richert, R. Dynamics of glass-forming liquids. I . Temperature-derivative

analysis of dielectric data. J. Chem. Phys. 102, 6251–6257 (1995).
41. Stillinger, F. H. A topographic view of supercooled liquid and glass formation. Science 267,

1935–1939 (1995).
42. Schrøder, T. B., Sastry, S., Dyre, J. C. & Glotzer, S. C. Crossover to potential energy landscape

dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 22, 9834–9840 (2000).
43. Dyre, J. C. & Olsen, N. B. Landscape equivalent of the shoving model. Phys. Rev. B 69, 042501 (2004).
44. O’Connell, P. A. & McKenna, G. B. Arrhenius-like temperature dependence of the segmental

relaxation below Tg . J. Chem. Phys. 110, 11054–11060 (1999).
45. Shi, X. F., Mandanici, A. & McKenna, G. B. Shear stress relaxation and physical aging study on simple

glass-forming materials. J. Chem. Phys. 125, 174507 (2005).
46. Simon, S. L., Sobieski, J. W. & Plazek, D. J. Volume and enthalpy recovery of polystyrene. Polymer 42,

2555–2567 (2001).
47. Echeverria, I., Kolek, P. L., Plazek, D. J. & Simon, S. L. Enthalpy recovery, creep and creep-recovery

measurements during physical aging of amorphous selenium. J. Non-Cryst. Solids 324,
242–255 (2003).

Supplementary Information accompanies this paper on www.nature.com/naturephysics.

Acknowledgements
For kindly providing data to this study, we are indebted to S. Benkhof, T. Blochowicz, T. Christensen,
L. F. del Castillo, R. Diaz-Calleja, L.-T. Duong, K. Duvvuri, G. Eska, C. Gainaru, A. Garcia-Bernabe,
S. Hensel-Bielowka, W. Huang, N. Ito, B. Jakobsen, E. Kaminska, M. Koehler, A. Kudlik, A. Loidl,
P. Lunkenheimer, D. V. Matyushov, M. Mierzwa, P. Medick, K. L. Ngai, K. Niss, V. N. Novikov,
M. Paluch, S. Pawlus, L. C. Pardo, S. Putselyk, E. L. Quitevis, J. R. Rajian, R. Richert, A. Rivera,
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This paper critically discusses the entropy model proposed by Adam and Gibbs in 1965 for the dramatic

temperature dependence of glass-forming liquids’ average relaxation time, which is one of the most influ-

ential models during the last four decades. We discuss the Adam–Gibbs model’s theoretical bases as well

as its reported experimental model confirmations; in the process of doing this a number of problems with

the model are identified.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Any liquid forms a glass when supercooled rapidly enough to

avoid crystallization [1–15]. Glass formation is an example of the

‘falling-out-of-equilibrium’ that takes place for any system the

relaxation time of which exceeds laboratory time scales [16]. This

phenomenon does not in itself present subtle scientific questions,

in our opinion, although there may well be interesting relaxations

taking place at Tg affecting details of the glass structure [17]. The

ultraviscous liquid in metastable equilibrium above Tg , on the

other hand, does present fundamental scientific challenges. The

two most important questions relating to the ultraviscous liquid

phase preceding glass formation are: (1) What causes the non-

exponential relaxations usually observed? (2) What causes the

non-Arrhenius temperature dependence of the average (alpha)

relaxation time s? This paper addresses one of the classical an-

swers to the latter question.

Most viscous liquids require temperature dependence of the

activation energy DE ¼ DEðTÞ if the Arrhenius expression is

accepted,

sðTÞ ¼ s0 exp
DEðTÞ

kBT

� �

: ð1Þ

Molten pure silica and a few other liquids have almost temperature-

independent activation energy, but for all other liquids the activa-

tion energy increases upon cooling. An unbiased measure of how

fast the activation energy increases is the ‘temperature index’ de-

fined [18] by I ¼ �d lnDE=d ln T P 0. The standard measure of the

degree of non-Arrhenius behavior is Angell’s fragility m defined

by m ¼ d logs=dðTg=TÞjT¼Tg [19–21], a quantity that however only

refers to liquid properties right at Tg . If the glass transition temper-

ature (by definition) is taken as the temperature where s ¼ 100 s

and s0 ¼ 10�14 s, Arrhenius behavior corresponds to m ¼ 16. In

the index terminology Arrhenius behavior corresponds to I ¼ 0.

Generally, the following relation allows one to calculate the fragility

from the index at Tg: m ¼ 16½1þ IðTgÞ� [18].

In the broad research field ‘viscous liquids and the glass transi-

tion’ there is no general agreement about the origin of the non-

Arrhenius behavior of viscous liquids. It may well be that no sim-

ple, universally valid model or theory exists, but many workers

in the field including ourselves prefer to think that such a model

exists. This is a reasonable assumption, because ultraviscous liq-

uids approaching the glass transition have physical properties that

do not depend on whether the liquid is bonded by covalent bonds,

ionic bonds, van der Waals bonds, hydrogen bonds, or metallic

bonds [1–15] (we prefer to exclude the often studied polymer glass

transition because it is not a liquid–glass transition, but it is note-

worthy that this transition has several properties in common with

the liquid–glass transition).

Whenever an important scientific problem is unsolved, there is

usually not one, but many models allegedly solving the problem.

The non-Arrhenius behavior of glass-forming liquids is no excep-

tion. Classical phenomenological models relate the relaxation time

to other macroscopic liquid properties, like the configurational en-

tropy [22,23], the free volume [24–27], the energy [6,17,28–32], or

the high-frequency elastic constants [33–37]. More recently, these

were supplemented by models that have more fundamental basis

like, e.g., the mode-coupling theory [13,38], the random-first-or-

der-transition theory (RFOT) [39,40], energy-landscape based

models [41–45], frustration-based approaches [46], the entropic

barrier hopping theory [47], kinetically constrained models

[48,49], etc.
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This paper deals with one of the most popular classical models,

the Adam–Gibbs entropy model [23]. We first briefly review the

model and how it was traditionally supported by experiment (Sec-

tion 2). In Section 3 critiques of the model are presented, relating to

both the model’s theoretical basis and its experimental validation.

Many of these arguments have been made before, but we felt it

would be useful to collect them into one paper. Section 4

concludes.

2. The Adam–Gibbs entropy model

2.1. Assumptions and model prediction

According to the Adam–Gibbs model the liquid’s relaxation

time is controlled by the configurational entropy ScðTÞ. This quan-

tity is defined by subtracting the vibrational entropy, SvibðTÞ, from

the entropy S: ScðTÞ ¼ SðTÞ � SvibðTÞ. This separation of entropy into

two contributions is much in the spirit of the energy landscape

paradigm that was subsequently formulated by Goldstein [41]

and Stillinger [50], where vibrations around a potential energy

minimum (an inherent state) are occasionally interrupted by ther-

mally activated transitions to another minimum.

The Adam–Gibbs model’s activation energy obeys

DEðTÞ /
1

ScðTÞ
: ð2Þ

This is justified as follows. Any molecular rearrangement is a ther-

mally activated transition that involves all molecules of a ‘coopera-

tively rearranging region.’ Such a region is defined as a ‘subsystem

of the sample which, upon a sufficient fluctuation in energy (or,

more correctly, enthalpy), can rearrange into another configuration

independently of its environment.’ Three crucial ideas/assumptions

go into the model: (1) The activation energy is proportional to re-

gion volume. This is justified by writing the change in Gibbs free en-

ergy upon activation as a chemical potential change Dl times

volume and assuming that ‘in a good approximation the depen-

dence of Dl on temperature and region volume can be neglected.’

(2) There is a lower limit to the size of a cooperatively rearranging

region since it must have at least two configurations ‘available to it,

one in which the region resides before the transition and another

one to which it may move.’ (3) The cooperatively rearranging re-

gions are ‘independent and equivalent subsystems,’ i.e., there are

only insignificant interactions of any given region with its

surroundings.

2.2. The model’s attractive scenario

The Adam–Gibbs model connects two of the most fundamental

concepts of physics: Entropy and Time. The model is aesthetically

attractive by having this property – the only other quantitative con-

nection of entropy and time that we can think of is that of black

hole thermodynamics as theorized by Hawking and others (the fact

that entropy cannot decrease for an isolated system is a qualitative

entropy-time connection). The entropy model has the further

beauty of connecting the observed dramatic slowing down to the

Kauzmann paradox and the theory of phase transitions. Recall that

the Kauzmann paradox is the observation that the supercooled

liquid’s excess entropy Sexc (the liquid entropy minus the crystal

entropy at the same temperature) extrapolates to zero at a temper-

ature TK not far below Tg [3]. Unless something rather dramatic

happens invalidating this extrapolation, the liquid’s entropy would

fall below the crystal’s if the liquid could be equilibrated close to

and below TK . But if – as usually done – the excess entropy is

identified with the configurational entropy (a point returned to

below),

SexcðTÞ ffi ScðTÞ; ð3Þ

the Adam–Gibbs (AG) model solves the Kauzmann paradox: By Eq.

(2) the relaxation time diverges to infinity as the liquid is cooled to-

wards TK . This means that the liquid cannot equilibrate close to TK ,

implying that the glass transition must take place above TK , no mat-

ter how slowly the liquid is cooled.

Based on Eq. (3) the AG model presents a scenario that predicts

an underlying phase transition to a state of zero configurational

entropy and infinite relaxation time. Thus the model explains the

dramatic relaxation-time increase as a consequence of the ap-

proach to a phase transition. The predicted slowing down extends

over a broader temperature range and is much more dramatic than

the usual critical slowing down for second order phase transitions

where s / jT � Tcj
�x [51], but the idea is the same. In this way, the

paradigm of second order phase transitions comes into play for the

glass transition problem.

The above explains the AG model’s attraction in general, theo-

retical terms. Its main attraction, however, is probably the fact that

it appears to explain experiments. We shall not detail the evidence

for this here, but refer the reader to the several excellent reviews

[8,10,11,52]. In many cases the experimental evidence for the AG

model relates it to the Vogel–Fulcher–Tammann (VFT) empirical

equation for the relaxation time:

sðTÞ ¼ s0 exp
A

T � T0

� �

: ð4Þ

Close to TK the configurational entropy ScðTÞ may be expanded to

first order: ScðTÞ / T � TK , implying that to lowest order the AG

model predicts

TK ¼ T0: ð5Þ

This prediction has been compared to experiment on many liquids.

The general picture reported in numerous papers is that the AG

model is obeyed for most, if not all systems studied [52,53]. These

include chemically quite different systems with widely differing

glass transition temperatures.

3. Critiques of the AG entropy model

3.1. Model assumptions

As mentioned, the three basic assumptions of the AG model are:

(1) The activation energy is proportional to the region volume,

DEðTÞ / V regðTÞ. (2) A region must have at least two configurations,

i.e., its configurational entropy is larger than kB ln 2; (3) The ‘region

assumption’ that regions are independent and equivalent subsys-

tems of the liquid. None of points (1)–(3) are compelling: Molecu-

lar rearrangements take place in almost perfect crystals via

diffusing vacancies or interstitials, and in a plastic crystal, for in-

stance, one might well have molecular reorientations happening

without either Assumption (1) or (2) being obeyed. This is also

an example where Assumption (3) breaks down. Even if Assump-

tion (3) holds, however, it is not necessary that a region must have

a minimum configurational entropy in order to allow for transi-

tions; also for a low configurational entropy a region would have

many states ‘available to it’ if differing energies are allowed for.

Assumption (1), which is responsible for the non-Arrhenius

behavior and the relaxation time divergence as T ! TK , was justi-

fied by the suggestion that the chemical potential difference be-

tween initial and transition state (barrier) is region-size

independent. The question is how well defined a chemical poten-

tial difference is for this situation particularly in view of the small

region sizes inferred from experiment that makes it difficult to jus-

tify ignoring the interactions with the surroundings, see below.
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Finally, returning to the region Assumption (3) we note that it

can only be justified if regions are very large. As an analogue, note

that even for rather large ‘regions,’ nucleation theory must take

into account interactions with the surrounding liquid in order to

arrive at realistic predictions. It is not clear why the same should

not be done in the Adam–Gibbs theory; indeed, this is done in

the more sophisticated RFOT entropy model of Wolynes and

coworkers [39,40].

Suppose that we nevertheless accept Assumptions (1)–(3) and

go ahead by comparing to experiment. When this is done one typ-

ically arrives at regions containing 4–8 molecules [11,54] close to

the glass transition. At higher temperatures regions must be even

smaller, because it is the increasing regions size upon cooling that

is responsible for the non-Arrhenius behavior. The small region

sizes of experiment presents a serious challenge to the AG entropy

model, because such small regions cannot reasonably be regarded

as independent with region-region interactions that may be ig-

nored; every molecule must interact with molecules of other re-

gions as much as with the molecules within its region.

Suppose that one nevertheless accepts the AG idea that the

configurational entropy controls the relaxation time’s tempera-

ture dependence and also accepts Eq. (3) that allows for the en-

tropy model to be tested in experiment. Then, as mentioned, the

relaxation time becomes infinite at TK where the equilibrium

state of the liquid has zero configurational entropy – the ‘ideal

glass’ state [55,56]. This state cannot be reached experimentally,

of course, but one may still ask what is its nature. A state of

zero entropy is unique like a perfect crystal, so one would ex-

pect that some simple description of it can be given. Except

for the random close packing of hard spheres (the uniqueness

of which is questioned), we are not aware of attempts to de-

scribe the ideal glassy state in structural terms. This does not

rule out that such a description exists, but one would imagine

it to be fairly simple (like a quasi-crystal) and thus to have been

identified long ago.

3.2. The AG entropy model’s experimental validation

Despite the above arguments, suppose that we accept the AG

entropy model’s prediction Eq. (2). Unfortunately, configurational

entropy cannot be measured. For many years this problem was

solved by arguing as follows: ‘‘The vibrational properties of glass

and crystal are very similar, and very similar to the liquid’s high-

frequency vibrational properties (i.e., on time scales much shorter

than those of the alpha (main) relaxation time). Since the crystal-

line state has practically zero configurational entropy, the crystal

entropy provides a good estimate of the liquid’s vibrational entro-

py. Thus by subtracting crystal entropy from liquid entropy one

finds the liquid’s configurational entropy (Eq. (3))”.

There is now a growing recognition that the above reasoning is

problematic [15,57–59]. Dating back to the 1950s, in fact, it was

known from sound velocity measurements that the liquid’s high-

frequency sound velocity is generally much more temperature

dependent than that of the crystal or glass phases [5,60,61]. It is

easy to understand why this is so if one adopts the simple-minded

assumption that the high-frequency sound velocity is a function of

density: The thermal expansion coefficient is generally consider-

ably larger in the liquid than in the solid phases (crystal or glass).

In this simple approach, the vibrational entropy is a (logarithmic)

function of the vibrational force constants that determine the

high-frequency sound velocity, so the vibrational entropy is con-

siderably more temperature dependent in the liquid than in the

crystal. This severely weakens Eq. (3). An illustration of the prob-

lem with Eq. (3) is the fact that it is not generally true that a liquid

must have larger entropy than the same temperature crystal: Both

in the cases involving so-called inverse melting [62,63] and for the

classical hard sphere system, the crystalline phase has larger

entropy than the liquid.

Suppose that we nevertheless accept Eq. (3). Then at the Kauz-

mann temperature TK there is a second order phase transition to

the ideal glassy state – if the liquid has the infinite time needed

to equilibrate. But TK is identified by extrapolation, and one may

well question how reliable the extrapolation is. This question

arises, in particular, if one accepts that Tg is close to a genuine

phase transition as predicted by the AG model. It seems quite pos-

sible that the liquid entropy may ‘bend over’ and stay above the

crystalline entropy right down to zero temperature [64–66]. This

would imply TK ¼ 0.

Suppose that we nevertheless accept that data conform to Eq.

(5) – the intriguing connection of a purely dynamic temperature

(T0) with a purely thermodynamic one (TK). Very recently the

VFT equation’s predicted divergence was questioned in a paper

that compiled accurate data for the dielectric relaxation time’s

temperature dependence for 42 organic liquids [67]. The conclu-

sion was that, while the VFT equation does work well as a mathe-

matically simple representation of data, there is no evidence for

any dynamic divergence; in other words, there is no evidence that

T0 exists [68].

Suppose that we nevertheless accept both the extrapolation

usually carried out in order to identify TK and the existence of

the VFT T0. Then a simple experimental test of the entropy model

is the prediction Eq. (5). Numerous papers published the last 30

years have reported confirmation of Eq. (5); indeed this appears

to be one of the strongest experimental arguments for the AG en-

tropy model. In 2003, however, Tanaka compiled a large amount of

data and concluded that Eq. (5) is disobeyed [69].

4. Concluding remarks

The classical Adam–Gibbs scenario presents several challenges.

Thus if entropy is the variable controlling the relaxation time, it

seems that more advanced approaches are needed. There are, how-

ever, alternatives like the elastic models that date back to the

1940s [15]. According to the shoving model [15,33], one of the

elastic models, the activation energy is proportional to the instan-

taneous shear modulus G1. This quantity is quite temperature

dependent in viscous liquids, in fact precisely enough to explain

the non-Arrhenius behavior [70]. Since G1 cannot diverge, there

is no underlying phase transition, so the elastic model scenario dif-

fers qualitatively from that of the AG entropy model.
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Physical aging of molecular glasses studied by a device allowing for rapid
thermal equilibration
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Aging to the equilibrium liquid state of organic glasses is studied. The glasses were prepared by

cooling the liquid to temperatures just below the glass transition. Aging following a temperature

jump was studied by measuring the dielectric loss at a fixed frequency using a microregulator in

which temperature is controlled by means of a Peltier element. Compared to conventional

equipment, the new device adds almost two orders of magnitude to the span of observable aging

times. Data for the following five glass-forming liquids are presented: dibutyl phthalate, diethyl

phthalate, 2,3-epoxy propyl-phenyl-ether, 5-polyphenyl-ether, and triphenyl phosphite. The aging

data were analyzed using the Tool–Narayanaswamy formalism. The following features are found for

all five liquids: �1� The liquid has an “internal clock,” a fact that is established by showing that aging

is controlled by the same material time that controls the dielectric properties. �2� There are no

so-called expansion gaps between the long-time limits of the relaxation rates following up and down

jumps to the same temperature. �3� At long times, the structural relaxation appears to follow a

simple exponential decay. �4� For small temperature steps, the rate of the long-time exponential

structural relaxation is identical to that of the long-time decay of the dipole autocorrelation

function. © 2010 American Institute of Physics. �doi:10.1063/1.3487646�

I. INTRODUCTION

The change of materials properties over time is referred

to as aging. Aging phenomena often involve chemical deg-

radation, but there are also several instances of purely physi-

cal property changes. Understanding physical aging is impor-

tant for many materials applications. Moreover, physical

aging presents fundamental scientific challenges and pro-

vides valuable insight into materials properties. This paper

shows that by utilizing the Peltier thermoelectric effect,

physical aging may be studied at considerably shorter times

than has so far been possible. The new setup adds almost two

decades to the span of aging times compared to what may be

obtained by conventional equipment in the same observation

time.

A prime example of aging is that of a viscous liquid’s

physical properties relaxing slowly towards equilibrium

when a perturbation is applied to the equilibrated liquid close

to its glass transition. In equilibrium, a liquid’s properties do

not change with time, of course �the fact that the liquids

studied below are supercooled and thus technically only in

quasiequilibrium is not important because no crystallization

was observed�. If the temperature is changed, properties

gradually adjust themselves to new equilibrium values. If the

temperature is lowered, a glass is produced; recall that by

definition, a glass is nothing but a highly viscous liquid that

has not yet had time to equilibrate.
1–6

Any glass ages toward

the equilibrium liquid state. This state can only be reached

on laboratory time scales, however, if the glass is kept just

below the glass transition temperature; contrary to popular

myth, windows do not flow observably.

Aging is a nonlinear phenomenon. This is because the

aging rate is structure dependent and itself evolves with time

when the structure changes as equilibrium is gradually

approached.
7–16

Thus, aging studies provide information be-

yond that obtained by linear-response experiments such as,

e.g., dielectric relaxation measurements. There are good rea-

sons to believe that on the microscopic level, aging is

heterogeneous;
17–19

the below analysis is, however, entirely

macroscopic and does not discuss possible microscopic in-

terpretations of the observed aging phenomena �see, e.g.,

Refs. 20 and 21�.
A typical aging experiment consists of a temperature

step, i.e., a rapid decrease or increase of temperature to a

new, constant value. Ideally, such a temperature step should

be instantaneous; more precisely, the new temperature should

be established as constant in time and homogeneous through-

out the sample before any structural relaxation has taken

place. If this is achieved and if sufficient time is available, it

is possible to monitor the complete relaxation to equilibrium

of the physical property being probed. An experimental pro-

tocol that measures the complete relaxation curve will be

referred to as an “ideal aging experiment.”
22

What are the requirements for an ideal aging experi-

ment? First, there should be good temperature control and

the setup should allow for rapid thermal equilibration follow-

ing a temperature jump. Second, a physical observable is

needed that may be monitored quickly and accurately and
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which, preferably, changes significantly even for small tem-

perature changes. The latter property allows for studying ag-

ing following temperature jumps that are of order just 1% in

absolute units, which is enough for most ultraviscous liquids

to become highly nonlinear. The organic liquids studied in

this paper have glass transition temperatures in the region

170–200 K and most temperature jumps are 1 or 2 K jumps.

In current state-of-the-art aging experiments, the charac-

teristic thermal equilibration time � is at least 100 s if � is

defined from the long-time thermal-diffusion-limited ap-

proach to equilibrium �exp�−t /��. This reflects the fact that

heat conduction is a notoriously slow process. Experience

shows that in order to monitor an almost complete aging

curve, at least four decades of time must be covered; for

instance, the typical aging function exp�−K�t� decays from

97% to 3% over four decades of time. Thus with present

methods, one needs at least of order 100 s�104=106 s for

an almost ideal temperature down-jump experiment. This is

more than a week. Clearly, much is to be gained if it were

possible to equilibrate sample temperatures faster.

In order to make possible faster temperature-jump ex-

periments, we designed a dielectric cell based on a Peltier

thermoelectric element by means of which the heat flow is

controlled via electrical currents �Fig. 1�.23
The characteristic

thermal equilibration time of the microregulator is 2 s. This

is almost a factor of a hundred times faster than that of con-

ventional equipment, which usually involves much larger

heat diffusion lengths; our liquid layer is 50 �m thick and

the use of a Peltier element minimizes heat diffusion lengths

outside of the liquid layer. In the microregulator, the tem-

perature may be kept constant over weeks, keeping fluctua-

tions below 100 �K.
23,24

For monitoring aging we chose to measure the dielectric

loss �the negative imaginary part of the dielectric constant� at

a fixed frequency. With modern equipment, this quantity may

be measured quickly and accurately; our electronics setup is

detailed in Ref. 24. Moreover, for a viscous liquid of mol-

ecules with a permanent dipole moment, a frequency range

exists in which the dielectric loss changes considerably for

small temperature variations. The dielectric loss was used

previously for monitoring aging by several groups, e.g., by

Johari,
25

Schlosser and Schönhals,
26

Alegria et al.,
27–29

Le-

heny et al.,
30,31

Cangialosi et al.,
32

Lunkenheimer et al.,
33–35

D’Angelo et al.,
36

and Serghei and Kremer.
37

This paper presents ideal aging experiments on five or-

ganic liquids with both temperature up and down jumps

�Sec. II�. As mentioned, the temperature jumps are of order

1% and, aging is monitored by measuring the dielectric loss

at a fixed frequency in the hertz range. In Sec. III we give a

mathematical formulation of the reduced time concept. This

is sometimes referred to as the material time or, perhaps

more intuitively appealing, the time measured on an “inter-

nal” clock, i.e., a clock with clock rate varying with tempera-

ture and with the annealing state of the sample. We here

follow Narayanaswamy’s
38

seminal paper from 1971 and go

into some detail in order to make the text easier to read for

nonexperts in aging. In Sec. IV a new test of the existence of

an internal clock is proposed. In contrast to most earlier

works, this test makes no assumptions regarding which quan-

tity controls the internal clock’s rate or the mathematical

form of the relaxation function. This section demonstrates

that all five liquids have internal clocks. Section V extends

the data analysis in order to study whether the long-time

relaxation is stretched or simple exponential. Section VI

shows that within the experimental uncertainties, the long-

time simple exponential structural relaxation has the same

rate as the long-time exponential decay of the dipole auto-

correlation function. Finally, Sec. VII gives a summary and a

few concluding remarks. A discussion of noise and system-

atic errors in the data analysis is given in the Appendix.

II. EXPERIMENTAL RESULTS AND INITIAL DATA
ANALYSIS

The experimental setup is detailed in Refs. 23 and 24,

which describe the microregulator, the surrounding cryostat,

and the electronics used for measuring the frequency-

dependent dielectric response. We studied aging of the fol-

lowing five organic liquids: dibutyl phthalate �“DBP”�, di-

ethyl phthalate �“DEP”�, 2,3-epoxy propyl-phenyl-ether

�“2,3-epoxy”�, 5-polyphenyl-ether �“5-PPE”�, and triphenyl

phosphite �“TPP”�. These liquids are all excellent glass

formers. In order to ensure complete equilibrium before each

measurement, the sample was kept at the temperature in

question until there were no detectable changes of the dielec-

tric properties.

Aging was studied by monitoring how the dielectric loss

at a fixed frequency ���f� develops as a function of time

following a temperature jump. In order to avoid the liquid

aging significantly during the measurement of a single fre-

quency response data point, the monitoring frequency f must

be considerably higher than the inverse structural relaxation

time, which is of order of the inverse main �alpha� loss-peak

frequency; thus the monitoring frequency must be much

larger than the loss-peak frequency. For the data analysis of

Secs. III and IV to apply, however, f must also be sufficiently

below any contribution�s� from potential beta processes.

These constraints vary with the liquid and the selected tem-

perature range, and the choice of f was optimized for each

liquid. For all five liquids the optimal f is in the Hertz range.

Measurements consist of consecutive temperature jumps

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

Microregulator

Control System

TemperaturePeltier element

Dielectric cell
+

Copper base

Electrode pin NTC thermistor

−

PEEK posts

� � � � � � � � �

DC current

� � � � � � � � �

FIG. 1. Schematic drawing of the dielectric measuring cell with the micro-

regulator. The liquid is deposited in the �50 �m� gap between the disks of

the dielectric cell. The Peltier element heats or cools the dielectric cell,

depending on the direction of the electrical current powering the element.

The current is controlled by an analog temperature-control system that re-

ceives temperature feedback information from an NTC thermistor embedded

in one disk of the dielectric cell. A stainless steel electrode pin keeps the cell

pressed against the Peltier element and provides electrical connection to one

of the disks. The dielectric measuring cell is placed in the main cryostat.

Details of the setup are described in Refs. 23 and 24.
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of �usually� 1 or 2 K, in most cases with two down/up jumps

followed by two up/down jumps. This is illustrated in Fig. 2,

which in Fig. 2�b� shows the raw data obtained for DEP.

Here f =1 Hz and the temperature jumps are 1 K. The tem-

perature protocol ensures that data are obtained for one up

and one down jump to the same temperature. The duration of

each measurement varies with the relaxation time of the liq-

uid in question at the measured temperatures. A time-

consuming part of the experiment is the initial aging to com-

plete equilibrium at the target temperature just below the

calorimetric glass transition temperature, which in most

cases required weeks of annealing. In all cases, care was

taken to ensure that the loss at one temperature was moni-

tored until the sample had reached equilibrium; only there-

after was temperature changed to a new value. The Appendix

discusses possible sources of errors in the experiments.

Figures 3�a�–3�f� show the data on which the paper is

based. Two data sets were included for DBP, with aging

monitored at different frequencies. Note that aging for down

jumps to a given temperature is faster than for an up jump to

the same temperature �compare, e.g., the two jumps to 200 K

in Fig. 3�f��. This is the so-called fictive-temperature effect

described already by Tool
39

in the 1940s, an effect which

comes from the fact that the relaxation rate is structure de-

pendent and itself evolves with time: A down jump is

“autoretarded”
8

because as the structure ages, the aging rate

decreases. In contrast, an up jump is “autoaccelerated” be-

cause as the structure ages, the aging rate increases.
8

These

are nonlinear effects that are characteristic for structural re-

laxation of single-component systems �but not, e.g., for ag-

ing involving composition fluctuations in binary systems�.
The fictive-temperature effect is clearly visible in Fig. 3,

which shows that even relatively small temperature jumps

are highly nonlinear, reflecting the fact that the equilibrium

relaxation time is strongly temperature dependent for glass-

forming liquids.

For any experiment monitoring the relaxation of some

quantity toward its equilibrium value, the normalized relax-

ation function R�t� is defined by subtracting the long-time

�equilibrium� limit of the quantity in question and subse-

quently normalizing by the overall relaxation strength.
12,38

In

the DEP case, for instance, for which the quantity monitored

is log ���f=1 Hz�, for a temperature jump from T1 to T2

starting from equilibrium the normalized relaxation function

is given by

R�t� =
log ���1 Hz,T2,t� − log ���1 Hz,T2,t → ��

log ���1 Hz,T1,t = 0� − log ���1 Hz,T2,t → ��
. �1�

The Kovacs–McKenna �KM� relaxation rate ��t� is

defined
8,13

by

��t� � −
d ln R

dt
= −

1

R

dR

dt
. �2�

The KM relaxation rate gives the relative change of the re-

laxation function with time and has the convenient property

of being independent of the normalization. For a simple ex-

ponential relaxation function R�t�=exp�−t /��, the KM relax-

ation rate is constant: ��t�=1 /�. In general, the KM relax-

ation rate changes with time. For both for temperature up and

down jumps, we found that ��t� decreases with time �for

large up jumps this does not have to be the case�. A popular

analytical fitting function is the stretched exponential R�t�
=exp�−�t /���� �0���1�; this function has ��t�= �� /��
��t /���−1 that decreases monotonically to zero as t→�.

Taking DBP as an example, Fig. 4�a� shows as functions

of time the normalized relaxation functions for all six tem-

perature jumps of Figs. 3�a� and 3�b�. Figure 4�b� shows the

corresponding KM relaxation rates. At long times there is

considerable noise in the KM rate because this quantity is

difficult to determine by numerical differentiation when the

noise becomes comparable to R�t�.41
In order to eliminate

unreliable long-time ��t� data points, we introduced a cutoff

at 0.5% from equilibrium for all data sets. Despite the long-

time noise, it is clear that for up and down jumps ending at

the same temperature �175, 176, or 177 K�, the KM relax-

ation rates eventually approach the same number. This shows

that there is no so-called expansion gap as Kovacs
8

proposed

in 1963 based on experiments monitoring relaxation by mea-

suring volume changes. Figure 4�c� gives a parametrized plot

of �R�t� , log���t��� which, except for the normalization of R

introduced here, was the data representation originally used

by Kovacs.
8

Again, it is clear that up and down jumps to the

same temperature approach the same KM relaxation rate at

v
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FIG. 2. A typical measurement. �a� Schematic representation of the protocol

in which the sample is first aged to complete equilibrium at a temperature

slightly below the calorimetric glass transition temperature Tg, a process that

typically takes weeks, followed by two down temperature jumps and two up

temperature jumps. �b� Data from measurements for DEP following this

protocol, jumping from 184 to 183 K, further to 182 K, back to 183 K, and

finally to 184 K. The dielectric loss �� was measured as a function of time

at the frequency f=1 Hz. The duration of the measurement depends on the

temperature range, i.e., how long it takes to equilibrate the sample fully after

a temperature jump. Following this procedure, we know the relaxation func-

tions as well as the equilibrium values of the dielectric losses at the tem-

peratures in question. Throughout this paper log refers to the logarithm with

base 10.
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long times �R→0�. The existence of an expansion gap has

been a matter of debate.
41–44

Kolla and Simon
22

recently con-

cluded, however, that there is no expansion gap for t→�;

they attributed the reported expansion gap to the fact that

Kovacs was unable to examine departures from equilibrium

that were small enough to show the convergence of time

scales. Our findings confirm this.

III. THE INTERNAL CLOCK HYPOTHESIS

For interpreting the data we use the Tool–

Narayanaswamy �TN� formalism, which dates back to Tool’s

works in the 1940s and matured with Narayanaswamy’s

seminal paper from 1971.
12,38,39,45

The TN formalism inter-

prets aging in terms of a so-called material time. The main

feature of the TN formalism is that it describes aging in

terms of a linear convolution integral, even when the aging is

highly nonlinear. The formalism generally works well, al-

though from a fundamental point of view it is still somewhat

of a mystery why this is.

Lunkenheimer and co-workers
33–35

recently studied ag-

ing also by monitoring the dielectric loss. They found that

the relaxation curves R�t� to a good approximation may be

described by a stretched-exponential relaxation function

which, as a new feature, introduces a time-dependent char-

acteristic time ��t� :R�t�=exp�−�t /��t����. Interestingly, the

nonlinear stretching exponent � was found to be identical to

that derived from the linear dielectric relaxation function.

This is a novel approach to aging studies. However, it does

not lend any obvious physical interpretation to ��t�, which

has the appearance of an averaged relaxation time represent-

ing the entire aging process until time t.

The TN approach’s material time may be thought of as

time measured on a clock with rate changing as sample prop-

erties evolve with time. The material time is analogous to the

proper time concept of relativity theory, the reading on a

clock following a �possibly accelerated� observer’s world

line; from an inertial system one would say that the clock

rate varies with the observer’s velocity, but the moving ob-

server would dispute this. The existence of a material time is

an old idea that predates Narayanaswamy; thus the well-

known time-temperature superposition concept may be re-

garded as a “linear” internal clock hypothesis. Naraya-

naswamy’s brilliant insight was to generalize this to describe

aging, which is a highly nonlinear phenomenon.
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FIG. 3. Monitoring aging by measur-

ing the dielectric loss at a fixed fre-

quency. This figure presents the full

set of data on which the paper’s analy-

sis is based �Ref. 40�. The data are

given in log-log �base 10� plots show-

ing the dielectric loss as a function of

time. In all cases, the starting situation

�“t=0”� is that of thermal equilibrium,

a condition that is ensured by anneal-

ing for such a long time that no ob-

servable change is seen in the dielec-

tric loss. �a� DBP. A series of

measurements at f=0.18 Hz, stepping

1 K from 177 K and 175 K to 176 K,

as well as the reverse. �b� DBP step-

ping from 175 to 177 K and back, this

time monitored at f=1 Hz. �c� DEP

�f=1 Hz�. �d� 2,3-epoxy �f=1 Hz�.
�e� 5-PPE �f=1 Hz�. �f� TPP �f
=1 Hz�.
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The material time, which will be denoted by t̃, is time

measured using a unit that itself evolves with time. If the

structural clock rate is denoted by �s�t�, the material time t̃ is

defined
12,22,38,39,41–45

by

dt̃ = �s�t�dt . �3�

This means that

t̃�t� = �
−�

t

�s�t�dt , �4�

where the lower bound is, of course, arbitrary. The TN for-

malism is standard for interpreting aging experiments and

used routinely in industry for predicting aging effects.
46–48

Nevertheless, it is not known whether—and in which

sense—the internal clock exists, or if it should merely be

regarded as a convenient mathematical construction.

According to the TN formalism, for all temperature

jumps applied to a given system in equilibrium—small or

large, up or down—the normalized relaxation function is a

unique function of the material time that has passed since the

jump was initiated at t̃=0: R=R�t̃�. In applications of the TN

formalism, one often allows for different material times to

control the aging of different quantities �with also the func-

tion R�t̃� varying with which quantity that is being moni-

tored�. But if an internal clock really exists, a common ma-

terial time must control all relaxations. In particular, the

relaxation of the clock-rate activation energy itself during

aging must be controlled by the same material time that con-

trols the dielectric aging process �details are given below�. A

major point of this paper is to check against experiments the

consequences of assuming that an internal clock exists. The

next subsections develop a theory for testing this.

Determining the structural clock rate �s�t� in the TN for-

malisms usually involves some mathematical modeling, fit-

ting of data, or assumption regarding what controls the

relaxation.
9,12,38,49

In Sec. IV we develop a test of the internal

clock hypothesis which does not require such procedures, but

proceeds directly from data without explicitly determining

t̃�t�. First, however, it is necessary to define precisely both

the dielectric relaxation rate in an out-of-equilibrium situa-

tion and the structural relaxation clock rate.

A. Defining the dielectric relaxation rate for
out-of-equilibrium situations

The five liquids studied all obey time-temperature super-

position �TTS� for their main �alpha� process to a good ap-

proximation. Moreover, they all have a high-frequency decay

of the loss that to a good approximation may be described by

a power-law ���f�� f��, where � is close to 1/2. It was con-

jectured some time ago that a high-frequency exponent of

�1/2 reflects the generic properties of the pure alpha process

obeying TTS �i.e., whenever the influence of additional re-

laxation processes is negligible�,50
a conjecture that was

strengthened by a recent study involving more than 300 di-

electric spectra.
51

For the data analysis below, the exponent

� was identified as the minimum slope
51

of the log-log plot-

ted dielectric loss curve above the loss peak, evaluated at the

temperature where the loss peak is 0.1 Hz �Fig. 5�. The �
values thus obtained are listed in Table I.

The inverse power-law high-frequency dielectric loss,

compare Fig. 6�a�, is used to monitor the dielectric relaxation

rate �d�t� as the structure ages following a temperature

jumps. This is done by proceeding as follows. First, we de-

fine the dielectric relaxation rate for the equilibrium liquid �d

as the dielectric loss-peak angular frequency

�d � 2�fm, �5�

where fm is the loss-peak frequency. If the temperature is

lowered in a step experiment, the dielectric loss curve gradu-

ally moves to lower frequencies as the system ages and re-

laxes to equilibrium. How to define a dielectric relaxation

rate �d for this out-of-equilibrium situation? It is not possible

to continuously monitor the entire loss curve. This is because

the aging takes place on the same time scale as that of the
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FIG. 4. �a� Normalized relaxation functions for DBP as functions of log

�time�. �b� The KM relaxation rates � defined in Eq. �2� for these data, as

functions of log�time�. Up and down jumps ending at 176 K give the same

relaxation rate at long times, showing that there is no so-called expansion

gap as proposed by Kovacs in 1963 �Ref. 8�. �c� Parametrized plot of

�R�t� ,��t��. Again, it is seen that different temperature jumps to the same

temperature approach the same relaxation rate at long times �small R�.
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dielectric loss, implying that linear-response measurements

around the loss-peak frequency are not well defined �i.e., a

harmonic input does not result in a harmonic output�. To

circumvent this problem, the intuitive idea is that how much

the dielectric relaxation rate has changed may be determined

from how much the loss has changed at some fixed fre-

quency in the high-frequency power-law region �Fig. 6�c��.
Mathematically, this corresponds to defining �d�t� from the

high-frequency equilibrium expression as follows:

���f ,t� � �f/�d�t��
−�. �6�

Thus by probing the dielectric loss at the fixed frequency f ,

the dielectric relaxation rate may be determined during aging

from

log �d�t� =
1

�
log ���f ,t� + A . �7�

The calibration constant A is found by using equilibrium data

from higher temperatures where the loss peak is within the

observable frequency range.

It should be emphasized that it is not a new idea to

monitor aging by measurements at a frequency much larger

than the reciprocal structural relaxation time; for instance,

Struik
11

long ago discussed the proper protocols for doing

this.

Although the above ideas seem straightforward, from a

fundamental point of view one may question the validity of

the concept of a dielectric relaxation rate in a situation where

the structure ages on the same time scale as the dipoles relax.

In order to specify the precise assumptions needed to justify
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FIG. 5. �a� Illustration of the procedure used to determine the inverse

power-law exponent �, which is identified as the minimum slope of the

dielectric loss curve in a log-log plot at the temperature where the loss-peak

frequency is 0.1 Hz �blue dotted curve�. The red data points give the nu-

merical slopes of this curve and the red dashed curve is a parabola fitted to

the bottom points of the slope; the analytic minimum of the parabola deter-

mines the minimum slope �Ref. 51�. �b� The loss-peak frequencies deter-

mined from the equilibrium spectra �green� and the predicted peak positions

using Eq. �7� �corresponding to �d� at different measuring frequencies. The

curves line up at low temperatures, showing that this procedure determines

the correct loss-peak frequency.

TABLE I. The high-frequency slopes � used in the data analysis.

DBP DEP 2,3-epoxy 5-PPE TPP

� 0.506 0.483 0.550 0.507 0.495
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FIG. 6. �a� Dielectric loss spectra for DBP above Tg �i.e., equilibrium data�.
�b� TTS plot of the same spectra illustrating that the high-frequency wing of

the alpha �main� process approaches a slope of �1/2 as the temperature is

lowered �Refs. 50 and 51�. All five liquids have high-frequency slopes close

to �1/2, but this fact is not important for the analysis. �c� Illustration of how

one utilizes the fact that the loss varies as f�� at high frequencies to measure

the dielectric loss-peak frequency that by definition gives the dielectric

clock rate during aging �Eq. �7��.

174514-6 Hecksher et al. J. Chem. Phys. 133, 174514 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

274 Reprint of publications



defining �d�t� via Eq. �7�, we reason as follows. According to

linear-response theory, for a system in thermal equilibrium

the measured output is calculated from a convolution integral

involving the input before the measuring time. A convenient

way to summarize TTS for the equilibrium liquid is to for-

mulate the convolution integral in terms of a dielectric “ma-

terial” time t̃: If �d is the equilibrium liquid’s dielectric re-

laxation rate �Eq. �5��, the dielectric material time is defined

from the actual time t by

t̃ = �dt . �8�

In terms of t̃, since in a standard dielectric experiment the

input variable is the electric field E and the output is the

displacement vector D, the convolution integral is of the

form

D�t̃� = �
0

�

E�t̃ − t̃����t̃��dt̃�. �9�

Equation �9� describes TTS because it implies that except for

an overall time/frequency scaling, the same frequency-

dependent dielectric constant is observed at different tem-

peratures �we ignore the temperature dependence of the over-

all loss, an approximation which introduces a relative error

into the data treatment well below 1% over the range of

temperatures studied�.
In Eq. �9�, which applies at equilibrium whenever TTS is

obeyed, the dielectric material time is defined from the actual

time by scaling with �d �Eq. �8��. In the out-of-equilibrium

situation following a temperature jump, the simplest assump-

tion is that Eq. �9� also applies, but with a generalized di-

electric material time involving a time-dependent dielectric

relaxation rate �d�t�, i.e.,

dt̃ = �d�t�dt . �10�

As the system gradually equilibrates at the new temperature,

the dielectric relaxation rate �d�t� approaches the equilibrium

liquid’s loss-peak angular frequency at the new temperature.

The equilibrium liquid’s power-law dielectric loss ��� f−�

applies in a range of frequencies obeying f� fm. Since by

Eq. �9� ���̃�=�0
���t̃��exp�−i�̃t̃��dt̃�, where �̃=� /�d, the

equilibrium liquid’s loss obeys ����̃−� for �̃�1. By the

mathematical Tauberian theorem, this implies that ��t̃��

� �t̃���−1 whenever t̃��1. The proposed generalization of Eq.

�9� to out-of-equilibrium situations now mathematically im-

plies that the dielectric relaxation rate �d�t� is given by Eq.

�6�. In summary, assuming the simplest generalization of

TTS to out-of-equilibrium situations, a generalized dielectric

relaxation rate has been defined; moreover, we have shown

how to measure it by monitoring the high-frequency dielec-

tric loss at a fixed frequency using the inverse power-law

approximation.

The idea of determining an out-of-equilibrium relaxation

rate directly from experimental data instead of via modeling

is mathematically equivalent to the so-called time-aging time

superposition.
29,52–55

This is traditionally
43,56–58

implemented

by first using the short-time response of, for instance, a me-

chanical perturbation to take a “snap-shot” of the structure

during a volume-recovery experiment. These curves are then

shifted horizontally on the time axes in order to determine

the aging-time shift factors, �Tf
. Assuming time-aging time

superposition, the shift factors are proportional to the struc-

tural relaxation time. Thus, the reduced time is found via an

equation equivalent to Eq. �10�, t̃=�0
t �aTf

�t���−1dt.
59

In Sec. III B, we relate �d�t� to the TN structural relax-

ation clock rate �s�t�, but first the latter quantity needs to be

defined precisely.

B. Defining the structural relaxation clock rate

The structural relaxation clock rate �s�t� determines the

structural relaxation’s material time in the TN formalism.

Just as was the case for the generalized dielectric relaxation

rate, it is not a priori obvious that any �s�t� may be defined;

the test of the existence of �s�t� is whether a consistent de-

scription is arrived at by assuming its existence. Assuming

for the moment that this is the case, we define the structural

relaxation clock rate’s time-dependent activation �free� en-

ergy E�t� by writing

�s�t� = �0e
−E�t�/kBT��0 = 1014 s−1� . �11�

The activation energy E�t� depends on the structure and

evolves during the structural relaxation. Consider the case of

structural relaxation induced by a general temperature varia-

tion. According to the TN formalism, the aging of the acti-

vation energy is described by a linear convolution integral

over the temperature history involving a material time t̃s de-

fined by the analog of Eq. �10�,

dt̃s = �s�t�dt . �12�

Including for convenience the inverse temperature in the be-

low equation, the linear convolution integral for the activa-

tion energy’s evolution induced by a temperature variation

T�t�=T0+�T�t� is given by an expression of the form

��E/kBT��t̃s� = �
0

�

�T�t̃s − t̃s����t̃s��dt̃s�. �13�

C. Assuming the existence of an internal clock

A main purpose of this paper is to investigate the conse-

quences of assuming that an internal clock exists. This as-

sumption implies that the same material time controls dielec-

tric aging via Eq. �9� and aging of the structural relaxation

clock rate via Eqs. �11� and �13�, i.e., that for any aging

experiment one has

�s�t� � �d�t� . �14�

A clock works by counting repeated physical processes, and

two clocks measure the same physical time if the number of

ticks counted by the clocks are proportional for all time in-

tervals. Thus both the above-defined clock rates �d and �s are

defined only up to a proportionality: The physical content of

Eqs. �9� and �13� is invariant if the reduced times are rede-

fined by multiplying by some number. Nevertheless, Eq. �14�
is not trivial; thus Eqs. �9� and �13� may both apply with

different definitions of the reduced time. As mentioned, the

TN formalism is often used assuming that different physical
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quantities �e.g., volume and enthalpy� relax with rates that

are not proportional.
12

If Eq. �14� applies, we find via Eqs. �6� and �11� that

after a temperature jump to temperature T the logarithm of

the measured loss is given by

ln ���f ,t� = − �
E�t�

kBT
+ C �15�

and that this quantity relaxes controlled by a material time

whose rate may be determined from Eq. �7�. We proceed to

derive a test of this prediction.

IV. A TEST FOR THE EXISTENCE OF AN INTERNAL
CLOCK

In this section we show that the existence of an internal

clock, i.e., the assumption that the dielectric clock rate is

proportional to the structural relaxation clock rate �Eq. �14��
can be tested without evaluating t̃ explicitly and without fit-

ting data to analytical functions.

First, we define a dimensionless KM relaxation rate by

replacing time in Eq. �2� by the reduced structural relaxation

time

�̃ � −
d ln R

dt̃s
. �16�

According to the TN formalism, for all temperature jumps

R�t̃s� is the same function of t̃s. This implies that �̃�t̃s� is the

same for all jumps. By eliminating t̃s, �̃ is a unique function

of R

�̃ = ��R� . �17�

Thus, one way of testing whether the TN formalism applies

is to check whether �̃ is indeed a unique function of the

normalized relaxation function for different temperature

jumps. To do this we express the dimensionless KM relax-

ation rate in terms of the real-unit KM relaxation rate

�̃�t̃� = −
d ln R

dt

dt

dt̃s
=

��t�

�s�t�
. �18�

If an internal clock exists, �s�t� may be evaluated from its

proportionality to the dielectric relaxation rate Eq. �14�,
which is accessible via Eq. �7�. Note that the unknown pro-

portionality constant in Eq. �14� is irrelevant because, as

mentioned, clock rates are only defined up to a proportion-

ality constant �in Sec. VI we discuss the possibility of abso-

lute calibration of the structural and dielectric clock rates�. In

summary, if �s�t���d�t�, via Eq. �18� �̃ may be calculated

directly from a temperature-jump experiment’s data, since

��t� and �d�t� are both determined from ln ���f , t� via Eqs.

�2� and �7�, respectively.

Defining the proportionality constant between the two

rates to be unity, �s�t�=�d�t�, the results for the KM relax-

ation rates ��R� and the dimensionless KM relaxation rates

�̃�R� are plotted in Fig. 7. For all five liquids the results are

consistent with the internal clock hypothesis. Even the 4 K

down jump for TPP—corresponding to a clock-rate change

of almost two orders of magnitude—falls nicely onto the

master curve. The spread in KM relaxation rates as R�0 is

approached at long times reflects the already mentioned fact

that relaxation rates cannot be determined reliably by nu-

merical differentiation when the noise becomes comparable

to the distance to equilibrium.

Once the existence of an internal clock has been demon-

strated, it is natural to evaluate the reduced time t̃ explicitly

by integration in order to determine R�t̃�. As shown in Fig. 8,

this gives the data collapse predicted by the TN formalism.

For the numerical integration, one must either include short-

time transient points, where the sample still undergoes tem-

perature equilibration, or omit the initial measurements. The

error introduced from this uncertainty influences all values of

t̃. This is one reason to prefer the “direct” test of the internal

clock hypothesis of Fig. 7; another reason is that the direct

test is simpler by not evaluating the material time t̃.

V. LONG-TIME ASYMPTOTIC BEHAVIOR OF THE
STRUCTURAL RELAXATION

Inspecting the shape of the dimensionless KM relaxation

rate as a function of the normalized relaxation function in

Fig. 7 shows that the aging is not exponential because that

would imply a constant KM relaxation rate. The stretched-

exponential function exp�−t̃�� is commonly used for fitting

relaxation functions. It is difficult to get reliable data on the

long-time behavior of structural relaxations, but our data al-

low one to get such data with fair accuracy. Figure 7 shows

that �̃�R�→Const. at long times �R→0� for all five liquids.

This is also evident from the DBP data for which Fig. 9�a�
shows the dimensionless Kovacs plots, a stretched exponen-

tial �red line�, and Eq. �20� �blue line� with the values of the

fit parameters listed in Table II. The KM relaxation rate for

the same data is shown in Fig. 9�b�, where a test of the fit by

the stretched-exponential relaxation function �red straight

line� is again included. Although the data become noisy at

long times, they indicate a bend over at long times that is not

consistent with the stretched-exponential relaxation function;

the KM relaxation rates appear to approach a finite value at

long times. The blue curve in Fig. 9�b� is the “exponential
�t” relaxation function detailed below �Eq. �20��.

The fact that the KM relaxation rates appear to converge

to finite values means that the relaxation function at long

times follows a simple exponential decay. To model this

mathematically with as few parameters as possible, we fitted

the data to the following “exponential �t” relaxation func-

tion, which retains features of a stretched exponential with

exponent 1/2 but has a long-time simple exponential

decay:
48,60

R�t̃� = exp�− A − Bt̃ − Ct̃1/2� . �19�

Here A, B, and C are fitting parameters. The number A re-

flects the fact that due to fast relaxations, the normalized

relaxation function R does not start at unity at the shortest

experimentally accessible times. The case B=0 gives a

stretched exponential with exponent 1/2 and the C=0 case

gives an ordinary exponential decay. At short times one has

R�t̃��1−A−Ct̃1/2, which justifies the name “exponential �t
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relaxation function” �see Ref. 51 and references therein to �t
relaxation in other contexts�. Equation �19� may be rewritten

as

R�t̃� = exp�− a − bt̃ − c�bt̃�1/2� , �20�

where a=A, b=B, and c=C /�B. Recast in this form, it is

clear that b merely adjusts the time scale and that c is the

only genuine shape parameter. Table III quantifies how well

analytical relaxation functions fit data, concluding that Eq.

�20� fits data somewhat better than the standard stretched

exponential relaxation function.

VI. CALIBRATING THE DIELECTRIC CLOCK RATE

The results obtained so far may be summarized as fol-

lows. The TN formalism predicts that the dimensionless KM

relaxation rate �Eq. �16�� is a unique function of R for the

relaxation toward equilibrium following any temperature

jump. This can be tested only, however, if one is able to

determine the structural relaxation clock rate �s�t�. This can

be done either by some assumption about the clock rate’s

structure dependence, a commonly used procedure, or, as

above, by the internal clock hypothesis �s�t���d�t�, where

the dielectric relaxation rate is determined from data via Eq.
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FIG. 7. Kovacs-McKenna �KM� relaxation rates � and its dimensionless version �̃�t̃�=��t� /�d�t� �defined in Eq. �16� and calculated from data via the internal

clock hypothesis �s�t�=�d�t�� as functions of the normalized relaxation functions R for the five liquids. For each liquid, the upper subfigure shows ��R� and

the lower subfigure shows �̃�R�. In all cases there is data collapse of �̃�R� within experimental errors. This confirms the existence of an internal clock for these

liquids.
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�7�. The data do collapse as predicted by the internal clock

hypothesis, confirming the existence of such a clock for all

five liquids.

As emphasized, a clock rate is determined only up to a

proportionality constant, i.e., two clocks measure the same

physical time if their numbers of “ticks” are proportional for

all time intervals. Still, one may ask whether some sort of

absolute calibration of the dielectric and structural relaxation

clock rates is possible. We defined the dielectric relaxation

rate in equilibrium �d as the dielectric angular loss-peak fre-

quency �Eq. �5��. This is convenient because the loss-peak

frequency can easily be determined accurately. A character-

istic feature of the dielectric losses of supercooled organic

liquids is their pronounced asymmetry. Whereas the loss de-

cays as a nontrivial power-law above the loss-peak fre-

quency, at low frequencies the loss almost follows the Debye

function ���������. Via the fluctuation-dissipation theorem,

the low-frequency behavior corresponds to a simple expo-

nential long-time decay of the equilibrium dipole autocorre-

lation function. Inspired by the recent work of Gainaru et

al.,
61

it is obvious to ask whether redefining �d to be the rate

of this long-time decay and assuming equality in Eq. �14�

would imply that �̃→1 asymptotically at long times. In

other words: Is the long-time exponential structural relax-

ation clock rate equal to the exponential long-time decay of

the equilibrium dipole autocorrelation function? Because the

liquids studied here all obey TTS, such a recalibration of �d

corresponds to multiplying each liquid’s equilibrium �d �Eq.

�5�� by a fixed constant. This is illustrated in Fig. 10.

For each liquid, the recalibration constant is obtained as

follows. Assuming Eq. �20� for the equilibrium dipole auto-

correlation function, the liquid’s dielectric loss was fitted by

the Laplace transform of the negative time-derivative of this

function �which interestingly provides an excellent fit to the

dielectric data of all five liquids �compare Fig. 10�b��, a fit

that is better than that of standard single-parameter fitting

functions�. In Fig. 11 we show the result of applying this

recalibration of the dielectric relaxation rate in the analysis

of Sec. IV. Within experimental uncertainties, all recalibrated

KM relaxation rates converge to one at long times �R→0�.

This suggests an underlying unity in the description of aging

for the liquids examined in this paper.
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strating TN data collapse by plotting
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insets show the normalized relaxation

functions plotted against real time
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VII. CONCLUDING REMARKS

We have shown how the internal clock hypothesis can be

checked in a test that neither involves free parameters nor the

fitting of data to some mathematical expression. The test is

based on assuming the standard Tool–Narayanaswamy for-

malism for structural relaxation studied by monitoring the

liquids’ dielectric loss at a fixed frequency in the Hertz

range, following temperature up and down jumps. Based on

data for five organic liquids we conclude that within the ex-

perimental uncertainties �1� all liquids age consistent with

the TN formalism; �2� all liquids have an internal clock; �3�
no liquid exhibits an expansion gap; �4� all liquids appear to

have exponential long-time relaxation; and �5� the long-time

structural relaxation clock rate equals that of the long-time

simple exponential decay of the dipole autocorrelation func-

tion.

Our finding that the liquids appears to have exponential

long-time relaxation is consistent with several classical vis-

coelastic and aging models, for instance, the famous Kovacs-

Aklonis-Hutchinson-Ramos �KAHR� model
59

based on a

box distribution of relaxation times, which implies the exis-

tence of a longest relaxation time and thus an exponential

long-time relaxation. It is also worth emphasizing that, in

contrast to reports for other materials �e.g., oxide glasses� for

which there is evidence that the material clock does not tick

the same way for all processes, the data presented here are

consistent with the existence of a unique material time. We

have shown that the structural relaxation rate is proportional

to the dielectric relaxation rate for five organic supercooled

TABLE II. Values of fitted parameters of Eq. �20�.

DBP DEP 2,3-epoxy 5-PPE TPP

a 0.42 0.46 0.37 0.35 0.33

b 0.11 0.04 0.06 0.13 0.02

c 3.1 5.1 4.7 2.6 6.2

TABLE III. Test of how well the two functions fit data, where superscript

“exp�t” is the exponential �t relaxation function of Eq. �20� and superscript

“str exp” is the stretched-exponential relaxation function. The quality of the

fits is measured via the standard mean-square deviation � for fitting, respec-

tively, log�R� as a function of time and log��� as a function of time. The

exponential �t relaxation function provides a somewhat better fit than does

the stretched exponential.

DBP DEP 2,3-epoxy 5-PPE TPP

�log�R�
exp�t 0.041 0.029 0.042 0.023 0.026

�log�R�
str exp 0.043 0.030 0.042 0.026 0.026

�
log��˜ �

exp�t
0.052 0.028 0.081 0.172 0.111

�
log��˜ �

str exp
0.074 0.037 0.092 0.186 0.116
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the rate of the long-time exponential decay of the dipole autocorrelation

function giving the low-frequency Debye behavior. �b� Normalized Cole–

Cole plot of the dielectric loss of DEP �black dots� vs that of the exponential
�t relaxation function �Eq. �20�� used to fit the dielectric data at the follow-

ing temperatures: 206, 207, 208, 209, 210, and 211 K �blue dashed line�.
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function.
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liquids. The fact that the structural relaxation was monitored

by measuring the dielectric loss is, in our opinion, not im-

portant. Nevertheless, it would be interesting to study, for

instance, volume relaxation for the same liquids to investi-

gate whether there is really a common material clock for

these liquids. We finally note that in contrast to the well-

known Tool-Narayanaswamy-Moynihan �TNM� formalism

of Moynihan et al.,
9

the analysis applied here does not re-

quire one or more fictive temperatures. In this sense our ap-

proach is closer in spirit to the KAHR approach �which is

known, however, to be mathematically equivalent to the

TNM formalism�.
The emphasis of the data analysis was on using data

directly without having to fit to analytical functions. This is

why we determine the dielectric clock rate from the loss-

peak angular frequency �Eq. �5�� and the exponent � as the

minimum slope of the dielectric loss at the temperature

where the loss-peak frequency is 0.1 Hz �Table I�. If this

purist approach is relaxed a bit, however, further interesting

features appear. Thus if the dielectric clock rate is instead

determined from the dielectric loss’ low-frequency Debye-

like behavior, all KM relaxation rates converge to unity at

long times �Fig. 11�. Moreover, since the minimum slopes

are not completely temperature independent, but converge to

the �in Ref. 51� conjectured generic value of �1/2 at the

lowest temperatures �Fig. 12�, one may ask what happens if

the exponent � of Eq. �7� is replaced by �1/2. The result of

repeating the entire analysis with this high-frequency expo-

nent is shown in Fig. 13. The main effect is to lift the 2,3-

epoxy data, the liquid whose exponent � was furthest from

�1/2. Since the long-time structural relaxation clock rate, if

identical to the redefined dielectric relaxation rate, should

approach the latter from above, this figure is consistent with

the conclusion that the two rates are identical.

By modern microengineering it should be possible to

extend aging experiments to even shorter times, thus making

it realistic to perform a series of ideal temperature-jump ex-

periments over just hours. When this is eventually realized, it

is not unlikely that aging studies could become routine on

par with, e.g., present-day dielectric measurements.
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APPENDIX: SYSTEMATIC ERRORS AND NOISE

We discuss here the some sources of errors of the data

and the analysis. For a general and systematic analysis of

errors and noise of the measurement, we refer to Refs. 23

and 24.

The geometry of the measuring cell �disk radius much

larger than disk separation� introduces an extremely slow

radial contraction which in equilibrium dielectric measure-

ments can be neglected. For aging experiments it poses a
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FIG. 12. The slopes of the equilibrium log-log plotted dielectric losses at the

measuring frequencies as functions of temperature. The aging interval is

marked with a blue dashed line. There is a temperature window where the

slope is almost constant. In this way, the measuring frequency and tempera-

ture jumps can be fine-tuned such that the proposed method for determining

the clock rate applies.
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relaxation rate. This procedure “lifts” the curves of Fig. 7 such that the

dimensionless KM relaxation rates all terminate at approximately one at

long times �R→0�.

R

lo
g

Γ̃
∗

DBP
DEP
2,3-epoxy
5-PPE
TPP

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

FIG. 13. Dimensionless Kovacs plots including data for all temperature

jumps of the five liquids, using the alternative calibration of the dielectric

relaxation rate corresponding to scaling data with the long-time dielectric

relaxation rate and assuming for all liquids the high-frequency exponent of

the dielectric loss �1/2 �Ref. 51�.
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problem because it introduces a small drift at long times,

which distorts the curve shape of the aging relaxation func-

tion and complicates the determination of the value ap-

proached at long times. In Fig. 14 a zoom of the tail of the

�upper� DBP data from Fig. 3�b� is shown. The drift is small

but clearly visible. After a temperature step, the curve should

level off to a constant �equilibrium� value; instead the curve

appears slightly slanted. The drift coming from the initial

quench may be reduced by annealing for a long time before

starting a measurement, which we did �typically over several

weeks�. A further source of error is that in some cases a small

overshoot is observed when approaching equilibrium. We do

not currently have an explanation for this, but it may be due

to something other than the drift. Whenever a small drift or

an overshoot was present, we chose to cut the data shortly

after reaching the maximum/minimum and ���t→�� was ad-

justed accordingly. This is illustrated in Fig. 14 where the

���t→�� is marked by a horizontal dashed line and the cut-

offs by a vertical dashed line.

The signal-to-noise ratio depends on the �dielectric� re-

laxation strength �corresponding to the absolute level of the

dielectric loss� of the liquids studied. Thus, there is more

noise in the data for TPP and 5-PPE, which have relatively

small dielectric relaxation strengths, than for DBP, DEP, and

2,3-epoxy, which have larger relaxation strengths.

Although the precision of a dielectric measurement is

high with barely any visible noise in the relaxation curve, we

still encountered noise problems when taking the numerical

derivatives of these curves. Averaging over even few data

points distorts the curve shapes at short times, but it is nec-

essary �and also less problematic� to average over more data

points in the long-time tails of these curves. To deal with this

problem, we designed an algorithm to average over a number

of data points that increases with aging time, i.e., no averag-

ing of the first data points and averaging over 8 �in the case

of DBP and 2,3-epoxy� or 16 �in the case of DEP, 5-PPE, and

TPP� data points in the tail. This procedure is illustrated in

Fig. 15.

In Fig. 12 we show the slope of the equilibrium dielec-

tric loss at the measuring frequencies of the aging experi-

ment as a function of temperature. The temperature intervals

used in the aging experiments are marked with a light blue

line. For each frequency there is a temperature window

where the slope is constant �close to �1/2�. In this way the

measuring frequency and temperature jumps can be fine-

tuned such that the proposed method for finding the clock

rate is valid. The graphs show that not all measurements

were carried out in the optimal regions. The slopes vary in

the aging temperature interval studied for some of the liquids

and they are not entirely identical to the value above Tg.

Thus the conditions for the proposed method for determining

the clock rate are not rigorously fulfilled in all cases. How-

ever, one will still obtain data collapse using a slightly incor-

rect inverse power-law exponent since the error made is the

same for all data points. The error simply results in a vertical

shift of the curves in Fig. 7 and a horizontal shift in Fig. 8.

Note finally that a slight variation of the power-law exponent

in the measured temperature interval will influence the shape

of the master curve and may explain why the data collapse is

not perfect.
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In order to describe relaxation the thermodynamic coefficient
1

βS
=

∂V

∂S

� �

p
can be generalized into a complex

frequency-dependent cross response function. We explore theoretically the possibility of measuring
1

βS
ωð Þ for a

supercooled liquid near the glass transition. This is done by placing a thermistor in themiddle of the liquidwhich

itself is contained in a spherical piezoelectric shell. The piezoelectric voltage response to a thermal power

generated in the thermistor is found to be proportional to
1

βS
ωð Þ but factors pertaining to heat diffusion

and adiabatic compressibility κS(ω) do also intervene.We estimate ameasurable piezoelectric voltage of 1 mV to

be generated at 1 Hz for a heating power of 0.3 mW. Togetherwith κS(ω) and the longitudinal specific heat cl(ω)

which may also be found in the same setup a complete triple of thermoviscoelastic response functions may be

determined when supplemented with shear modulus data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The recent finding [1] that a class of liquids — the strongly

correlating liquids — may be described by a single “order” parameter

makes it urgent to devise methods that measure thermal and

mechanical relaxation and their interconnection. It would be an

advantage if they can be measured in the same setup on the same

sample. The classical Prigogine–Defay test of a one “order” parameter

description has recently been rigorously reformulated for the equilib-

rium liquid in terms of (four) Dynamic Prigogine–Defay ratios [2]. One

of these, ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)
2 is from an experimental

viewpoint the easiest to access. It contains the complex frequency-

dependent specific heat cp(ω), adiabatic compressibility κS(ω) and

adiabatic pressure coefficient βS(ω)≡(δp(ω)/δT(ω))S. We can mea-

sure κS(ω) by the so-called piezoelectric bulkmodulus gauge (PBG) [3].

The PBG is a hollow sphere with a thin wall of a piezoelectric ceramic

material. Pressure/volume changes of a contained liquid are detectable

due to the piezoelectric effect. In the middle of the PBG we have now

added a thermistor by which we can measure the longitudinal heat

capacity cl(ω) via the effusivity [4,5]. In this paper we study

theoretically what can be deduced by combining the two sensors, i.e.

how does the expansion of the liquid upon heating in the centre affect

the piezoelectric shell.

2. Thermomechanical response of a differential volume element

The thermal interaction with matter is described in terms of the

conjugated variables temperature, T and entropy, S. We name the

interaction as an energy bond. It is a scalar bond since the variables are

scalars. The mechanical interaction is described in terms of the strain

and stress tensors but this interaction can be separated in a pure scalar

part by the trace of these tensors and the deviatoric traceless part of

these tensors. The conjugated variables of the scalar mechanical

energy bondmay then be taken as volume, V andminus pressure,−p.

The deviatoric parts of the strain and stress tensors describe shear

deformations and are not coupled to the scalar parts for symmetry

reasons (The Curie–Prigogine principle [6–8]) but the scalar bonds

however are coupled. The response δS and δV to perturbations δT and

−δp defines the constitutive properties of matter:

dV = V0 = −κTdp + αpdT ð1Þ

dS= V0 = −αpdp +
1

T0
cpdT ð2Þ

Since the perturbations excite thermal and acoustical waves the

constitutive equations are defined for a differential volume element,

V0 of a linear dimension, R much smaller than the characteristic

thermal diffusion length and acoustical wave length associated with

the time scale of the perturbations (Figs. 1 and 2).

Eqs. (1) and (2) are valid in equilibrium thermodynamics. When it

comes to describing the relaxation of supercooled liquids they are

replaced with corresponding equations of linear irreversible thermo-

dynamics

dV tð Þ= V0 = −∫
t
−∞κT t−t′ð Þdp t′ð Þ + ∫

t
−∞αp t−t′ð ÞdT t′ð Þ ð3Þ

Journal of Non-Crystalline Solids xxx (2010) xxx–xxx

⁎ Corresponding author.

E-mail address: tec@ruc.dk (T. Christensen).

NOC-14892; No of Pages 5

0022-3093/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.jnoncrysol.2010.07.051

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

j ou rna l homepage: www.e lsev ie r.com/ locate / jnoncryso l

Please cite this article as: T. Christensen, et al., A combined measurement of thermal and mechanical relaxation, J. Non-Cryst. Solids (2010),

doi:10.1016/j.jnoncrysol.2010.07.051

F.4 Paper IV 283



dS tð Þ= V0 = −∫
t
−∞αp t−t′ð Þdp t′ð Þ + ∫

t
−∞

1

T0
cp t−t′ð ÞdT t′ð Þ ð4Þ

The thermodynamic coefficients are now replaced by response

functions. These relaxing response functions may be consider in the

frequency domain instead by defining e.g. the complex frequency-

dependent compressibility as:

κT ωð Þ = iω∫
∞
0 κT tð Þe

−iωt
dt: ð5Þ

Now dV,dS,dp and dT should be interpreted as the complex

amplitudes of harmonically varying perturbations and the constitutive

equations of linear irreversible thermodynamics (3) and (4) becomes

dV = V0 = −κT ωð Þdp + αp ωð ÞdT ð6Þ

dS= V0 = −αp ωð Þdp +
1

T0
cp ωð ÞdT ð7Þ

They can now be treated exactly like the equilibrium Eqs. (1) and

(2). The response functions like κT(ω) and cp(ω)/T0 pertaining to the

conjugated variables of a single energy bond are auto response

functions. αp(ω) on the other hand is a cross response function

connecting a variable from the thermal bond to a variable from the

mechanical bond. The three functions give a complete description of

the thermomechanical response. For relaxing system they are not

completely independent since the knowledge of the cross response

function and one of the auto response functions for all frequencies

makes it possible to calculate the other auto response function [9,10].

Moreover if the liquid relaxation is described by a single order

parameter the relaxational part of the triple of relaxation functions are

proportional and the dynamic Prigogine–Defay ratio [2]

ΛTp =
c″pκ″T

T0 α″p

� �
2

ð8Þ

is equal to 1.

There are three other different possibilities of pairs of independent

controlling variables than (dT,−dp), namely (dS,dV), (dS,−dp), (dT,dV)

leading to other triples of response functions and other variants of the

dynamic Prigogine–Defay ratio. It is thus convenient to introduce the

four auto response functions (connecting conjugated variables of the

same bond),

cV =
T

V

∂S

∂T

� �

V

; cp =
T

V

∂S

∂T

� �

p

κT = −
1

V

∂V

∂p

� �

T

; κS = −
1

V

∂V

∂p

� �

S

and the four cross response functions (connecting variables of

different bonds),

αp =
1

V

∂V

∂T

� �

p

= −
1

V

∂S

∂p

� �

T

;

1

αS

= −V
∂T

∂V

� �

S

= V
∂p

∂S

� �

V

;

βV =
∂p

∂T

� �

V

=
∂S

∂V

� �

T

;

1

βS
=

∂T

∂p

� �

S

=
∂V

∂S

� �

p

Strictly speaking – defining these 8 functions as partial derivatives –

they are at first just constant real thermodynamic coefficients but they

may be generalized into complex functions just like κT(ω), αp(ω) and

cp(ω) and they are thought of in this sense in the following. An extensive

table of relations between these functions is given in the appendix of

reference [4]. Here we just notice that βS is related to αp and cp by

1

T0βS
=

αp

cp
: ð9Þ

All of the response functions can be related to fluctuations of the

thermodynamic variables [11]. For example 1/βS is proportional to

correlations between temperature and volume fluctuations. It was

recently found [1] that a class of liquids — the strongly correlating

liquids — may be described by a single “order” parameter and it was

explicitly shown [12] by computer NVT simulations of the Kob–

Andersen binary Lennard–Jones system that

ΛTV ωð Þ = −

c″V
1

κT

� �
″

T0 β″Vð Þ2
ð10Þ

was 1 within 20%.

As we shall see it will probably be the triple T0/cp(ω),κS(ω),1/βS
that is experimentally easiest accessible and it will be the Sp-variant of

the Prigogine–Defay ratio

ΛSp = −

T0
cp

� �
″
κ″S

1

βS

� �
″

� �
2

ð11Þ

that shall test the one-parameter'ness of real liquids.

3. Thermomechanical response of a finite spherical volume element

When considering a real experiment with perturbations varying at a

frequency f=ω/(2π) it is not always possible to be in a situation of

homogeneous fields. The wavelength of sound λsound and the heat

diffusion length, |lD| may be comparable to or smaller than the sample

size R. If we consider frequencies below 1 kHz then roughly λsoundN1m

Fig. 1. The two scalar energetic interactions with a differential volume element.

Differential means that the wavelengths of the thermal and mechanical perturbations

are much longer than the dimensions of the volume element.

Fig. 2. Another response situation. Here entropy and pressure are the input variables

and marked on the energy bond nearest to the system. In Fig. (1) temperature and

pressure were the input variables.

2 T. Christensen et al. / Journal of Non-Crystalline Solids xxx (2010) xxx–xxx

Please cite this article as: T. Christensen, et al., A combined measurement of thermal and mechanical relaxation, J. Non-Cryst. Solids (2010),

doi:10.1016/j.jnoncrysol.2010.07.051

284 Reprint of publications



and for Rb1cm we can neglect mechanical waves i.e. neglect inertia in

the continuum description [4]. However the heat diffusion length,

j lD j = j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D = iωð Þ

p
j of a supercooled liquid with a typical heat diffusion

constant of D=0.1mm2/s varies from 4μm to 4mm when frequency

varies from 1 kHz to 1 mHz and thus heat diffusion cannot be neglected

for a sample size of 1 cm. By the coupling between the temperaturefield

and the strain field that αp induces, the strain and stress fields also

become inhomogeneous. This implies that even in spherical geometry

the two pressures, the radial δpr=−σrr and the mean (hydrostatic)

δp=−1/3(σrr+σθθ+σφφ) are not equal if shear modulus is compa-

rable to bulk modulus. When interacting mechanically with a sphere

through its surface we don't have access to δp but only to δpr. For this

reason shear modulus enters – via the boundary conditions – the

description of the thermomechanical response of a finite sphere

although it wasn't present in the thermomechanical response of a

differential volume element, Eqs. (6) and (7). Consider generally a finite

amount of liquid lying in between radii r1 and r2 depicted in Fig. 3. In the

inertia-free limit the general problem of the relation between the

variables, radial pressure, δpr, temperature change, δT, volume displace-

ment, δV and entropy displacement, δS at the two radii has been solved

[4] in the frequency domain in terms of a transfer matrix:

δpr
δT
δV
δS

0

B
B
@

1

C
C
A

r2

= T r2; r1ð Þ

δpr
δT
δV
δS

0

B
B
@

1

C
C
A

r1

ð12Þ

In general T is a complicated object. An interesting result was

found when two conditions hold: 1) frequencies are high enough to

be in the “thermally thick limit” with respect to r2, i.e. |lD|≪r2 and

2) r1≪r2: When studying in this case the combined response to

thermal stimuli at radius r1 and mechanical stimuli at radius r2 one

can neglect the mechanical boundary condition at r1 and the thermal

boundary condition at radius r2 ending up with a reduced transfer

matrix given as

δT
δS

� �

r1

=
iωZthT0V2κSβS iωZthT0βS

V2κSβS βS

� �
δpr
δV

� �

r2

; ð13Þ

where V2 =
4π

3
r32 and Zth is the thermal impedance,

Zth ωð Þ =
1

4πλr1 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωr21cl ωð Þ= λ

q� � ; ð14Þ

λ is the heat conductivity. The specific heat, cl entering the thermal

impedance is the so-called longitudinal specific heat. cl is the amount

of heat absorbed per Kelvin upon a temperature increment if the

associated expansion is forced to be longitudinal. This is in contrast to

the isobaric specific heat for which the expansion is isotropic. The

longitudinal specific heat can be related to the isochoric specific heat,

cV by [4]

cl =

1

κS
+

4

3
G

1

κT
+

4

3
G
cV ; ð15Þ

where G is shear modulus. Using the identities [4]

cp
cV

=
κT
κS

and κT−κS =
cp

T0β
2
S

ð16Þ

together with (15) the deviation between the longitudinal specific

heat and isobaric specific heat may be expressed by

1

cp
=

1

cl
−

1

T0β
2
S

4

3
G

1 +
4

3
GκS

: ð17Þ

This expression has the advantage of giving cp(ω) in terms of the

quantities cl(ω),κS(ω),βS(ω) and G(ω) that are possible to access

experimentally by our new device supplemented with the Piezoelec-

tric Shear modulus Gauge [13].

Eq. (13) is equivalent to equation (138) of reference [4]. The

determinant of (13) is zero although a transfer matrix relating proper

conjugated variables should have determinant 1. The reason is thatwe

are studying a limiting case where |iωZthT0V2κSβS
2|≫1. Thus the

inverse relation is

δpr
δV

� �

r2

=
βS −iωZthT0βS

−V2κSβS iωZthT0V2κSβS

� �
δT
δS

� �

r1

; ð18Þ

This is equivalent to equation (139) of reference [4], but there was

a typo: the common T0 factor in the matrix of that formula should be

deleted. The simplified transfer matrix can be represented by the

equivalent diagram of Fig. 4. The equivalent diagram is in a sense a

more correct description since it leads to a transfer matrix deviating

from Eq. (13) by a negligible term that however endows it with a

determinant of 1.

4. The combined experiment

The adiabatic compressibility κS(ω) can be measured using the

piezoelectric bulk modulus gauge (PBG) [3]. The PBG is a hollow

sphere of radius 1 cm with a thin wall of a piezoelectric ceramic

material. The thickness t is 0.5 mm. The sphere may be filled by a

liquid at elevated temperature, where it is fluent. The PBG transforms

the mechanical compliance of the liquid into an electric compliance

(the capacitance), that can be simply measured by an LCR-meter or by

other means. In order to make combined thermomechanical experi-

ments we have placed a thermistor in the middle of the PBG (see

Fig. 5). By the thermistor itself we can measure the longitudinal heat

capacity cl(ω) via the effusivity [5]. Combining the two devices makes

it, in principle, possible to get the cross response function 1/βS. That is,

nearly all ingredients of ΛSp can be found for the same sample in the

same device. However if cl(ω) differs significantly from cp(ω) [4] as

Fig. 3. Depiction of the four thermal and mechanical interactions at the boundaries at r1
and r2 in spherical geometry. Fig. 4. Equivalent diagram of the liquid.
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may be judged by Eq. (17) a supplementarymeasurement of the shear

modulus is needed. We may produce an oscillating heat current with

amplitude Pth by Joule heating in the thermistor and measure the

piezoelectric voltage Upz generated in the PBG as the liquid attempts

to expand. This voltage contain information on 1/βS=
∂V

∂S

� �

p
but it is

also dependent of the thermal interaction of the thermistor with the

liquid and the mechanical interaction of the liquid with the PBG. In

order to filter these factors out wemay look at the equivalent diagram,

Fig. 6 of the whole system. For simplicity we model the thermistor as

an ideal heat generator in parallel with its heat capacitance C0 of

approximately 5.5×10−5 J/K. (For a more detailed model of the

thermal structure of the thermistor, see reference [5]). In the

equivalence diagram in Fig. 6 the PBG consist of a mechanical

compliance, Cm, a transducer ratio, Tpz and an electric (clamped)

capacitance Ce. They can be expressed [3] in terms of the dielectric

constant, �33, the elastic compliance, (s11+ s12)/2 and the piezoelec-

tric constant, d13 of the piezoelectric material pz29 together with the

radius, r2 and shell thickness, t (see Table 1).

By the equivalence diagram one finds that the generated

piezoelectric voltage amplitude Upz measured by a voltmeter of high

impedance (Ipz=0) in response to a heat current amplitude Pth
generated in the thermistor becomes

Upz

Pth

� �

Ipz=0

=
Tpz
Ceiω

1

1 + C0iωZth ωð Þð Þ 1 + 1 + T2pz
Cm
Ce

� �
V2κS ωð Þ

Cm

� �

1

T0βS ωð Þ

ð19Þ

We see that in principle βS may be found by this third cross

experiment with a thermistor in the PBG. However the signal is also

influenced in its frequency dependence by the thermal impedance of

the liquid and the adiabatic compressibility but both of these can be

found by the experiments of the thermistor alone respectively the

PBG alone. The frequency dependence in the thermal impedance has a

characteristic diffusion time constant that is almost independent of

the change of cl at the glass transition whereas the factor containing

the compressibility of course will change the position of its

characteristic time scale as temperature is changed. It is interesting

to estimate this signal. At 1 Hz C0Zth is of the order of 1 and so is the

factor containing the compressibility. From the values in the Table 1

we find
Tpz
Ce
= 1011Vm−3. Typical values of the expansion coefficient

and the specific heat of a liquid are αp=5×10−4K−1 and cp=2×

106JK−1m−3 and thus
1

T0βS
=

αp

cp
= 2:5 × 10−10m3J−1. From this we

find
Tpz
Ce

1

T0βS
= 25V/J. Using a power amplitude Pth of 0.3 mW in order

to keep temperature change in the centre below 1 K we thus expect a

signal of the order of 1 mV at 1 Hz which is readily detectable.

5. Conclusion

Of the four dynamic Prigogine–Defay ratios one special namely,

ΛSp=−(T0/cp)″(κS)″ /((1/βS)″)
2 seems from an experimental view-

point to be the most directly accessible. By combining the devices of

the two techniques 1) measurement of the adiabatic compressibility

κS(ω) with the Piezoelectric Bulk modulus Gauge and 2) measure-

ment of the longitudinal specific heat cl(ω) by thermal effusion in

spherical geometry a third cross response function, 1/βS(ω) may be

measured. That is, nearly all ingredients of ΛSp could be found for the

same sample in the same device. However cl(ω) may differ from cp(ω)

[4], in which case a supplementary measurement of the shear

modulus is needed.
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Properties and lumped parameters of the piezoelectric bulk modulus gauge modeled in

Fig. 6.
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t 0.5×10−3 m

�33 26×10−9 F/m
s11 + s12

2
6×10−12 m2/N

d13 26×10−9 C/N

kp
d13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�33 s11 + s12ð Þ= 2
p 0.64

Cm
s11 + s12

2

4πr42
t

1.5×10−15 m3/Pa

Tpz
2d13

s11 + s12ð Þ

1

r2
4×103 C/m3

Ce �33 1−k2p

� �
4πr32
t

40×10−9 F
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Predicting the density-scaling exponent of a glass-forming liquid from Prigogine-Defay ratio
measurements

Ditte Gundermann1, Ulf R. Pedersen1,2, Tina Hecksher1, Nicholas Bailey1, Bo Jakobsen1,
Tage Christensen1, Niels B. Olsen1, Thomas B. Schrøder1, Daniel Fragiadakis3,
Riccardo Casalini3, C. Michael Roland3, Jeppe C. Dyre1, and Kristine Niss1

1DNRF Centre Glass and Time, IMFUFA, Department of Sciences,
Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark

2Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
3Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5342, USA

(Dated: November 22, 2010)

The fundamental question in glass-science is to understand the dramatic temperature and density
dependence of the relaxation time of glass-forming liquids. The recently established “density scal-
ing” provides an expression for the relative importance of temperature and density in controlling the
relaxation time. We demonstrate experimentally and theoretically that the density scaling exponent
can be found from thermoviscoelastic linear-response data at a single state point for approximately
single-parameter liquids. Consistent with this a compilation of all available literature data for the
Prigogine-Defay ratio shows that van der Waals bonded liquids and polymers are approximately
single-parameter liquids, whereas associative and network-forming liquids are not.

Many liquids are known to exhibit peculiar, some-
times even spectacular behavior. Water is a notorious
example with its many intriguing anomalies [1, 2]. This
raises the question: Do liquids exist with “simple” be-
havior and what characterizes such behavior? A re-
cent series of papers [3–7] proposed such a class of
liquids, “strongly correlating liquids”, which are effec-
tively single parameter liquids [8]. The possible exis-
tence of single parameter liquids [9] has important im-
plications, particularly for solving long-standing funda-
mental questions related to the glass-transition [10].
In this paper we present an experimental test of

a striking prediction for strongly correlating liquids,
namely that the density scaling exponent – characteriz-
ing how to scale density and temperature between dif-
ferent state points to have the relaxation time fall on
a master curve [11–15] – may be calculated from equi-
librium fluctuations at a single state point [7]. The
equilibrium fluctuations are probed via the fluctuation-
dissipation theorem, which relates linear-response func-
tions to fluctuations. The experiments were performed
on a van derWaals bonded and stable glass-forming liq-
uid, Tetramethyltetraphenyltrisiloxane (DC704), which
is a commercial silicon oil. The paper goes on to present
a reinterpretation of the classic Prigogine-Defay ratio,
showing that many other systems are strongly correlat-
ing, i.e. approximately single parameter liquids. All to-
gether, this paper suggests that van der Waals liquids
are strongly correlating, confirming the long-held gen-
eral view that these liquids are simpler than associated
liquids. In contrast, network-forming liquids like water,
glycerol, or silica are much more complex.
Temperature and volume both play important roles

for the viscous slowing down as the glass transition is
approached [16–18]. The first measurements of viscos-
ity under pressure date back to Bridgman [19], but only
during the last decade has a substantial amount of data

become available on viscous liquid dynamics at differ-
ent pressures (see, e.g., 11–15, and [20]). The most im-
portant experimental finding is probably density scaling,
i.e., that the temperature (T) and density (ρ) dependence
of the relaxation time for many liquids may be described
in terms of the single scaling variable ργscale/T [11–15].
This scaling is valid, e.g., for van der Waals liquids,
but not for hydrogen-bonded liquids [21]. A simple ex-
planation can be given for strongly correlating liquids.
Such liquids are characterized by an almost proportion-
ality between the isochoric fluctuations of the virial W
and the potential energyU [3–5]. Moreover strongly cor-
relating liquids have “isomorphs”, which are curves in
the phase diagram along which a number of properties
– including the dynamics – are almost invariant [7]. The
isomorph concept directly leads to density scaling: A
strongly correlating liquid’s isomorphs obey the equa-
tion ργisom/T = Const., for which γisom is determined
from the isochoric equilibrium fluctuations’ almost pro-
portionality between virial W and potential energy U,
∆W(t) ∼= γisom∆U(t). In particularly the relaxation time
is a function of ργisom/T. The predicted agreement be-
tween the exponent found from the fluctuations, γisom,
and the density scaling exponent, γscale, was verified
for some computer-simulated liquids [22, 23], but never
tested experimentally. Such a test is demanding, how-
ever, because it involves new and unique measurements
of frequency-dependent viscoelastic response functions.
Figure 1 (a) shows the dielectric relaxation time for

DC704 as a function of density for different isotherms
and data taken at the atmospheric pressure isobar. pVT-
data were used to calculate the density at the different
pressure-temperature points. Density scaling is demon-
strated in Fig 1 (b), showing that all data collapse onto
a master curve when plotted as a function of the scaling
variable Γ = T/ργscale (γscale = 6.1± 0.2).
Turning now to the isomorph prediction, the almost
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FIG. 1. (a) The dielectric relaxation time (τ = 1/ωmax) as a
function of density along different isotherms and along the at-
mospheric pressure isobar for DC704. (b) Relaxation time as
a function of ργscale/T for DC704 where γscale = 6.1 gives the
best collapse of the relaxation times.

proportionality of the equilibrium fluctuations ∆W(t) ∼=
γisom∆U(t) suggests the following expression for γisom

[7] (where sharp brackets indicate NVT ensemble aver-
ages)

γisom ≡ 〈∆W∆U〉
〈(∆U)2〉 . (1)

In order to find this quantity from linear thermovis-
coelastic measurements we reason as follows: The virial
and the potential energy give the configurational parts
of the pressure and energy, respectively. A character-
istic of viscous liquids is time-scale separation. Fluctu-
ations of the kinetic terms, which are related to vibra-
tions, decorrelate on a much faster time scale than the
fluctuations of configurational terms. Consequently, if
one averages the fluctuations in pressure and energy
over a time scale much longer than that of the vibra-
tions – but much shorter than the alpha relaxation time
– one gets the fluctuations of the configurational terms.

For such averages it follows that 〈∆W∆U〉 /
〈
(∆U)2

〉 ≃
V 〈∆p∆E〉 /

〈
(∆E)2

〉
. This brings us closer to something

that can be accessed experimentally, because fluctua-
tions in pressure and energy determine the thermovis-
coelastic linear-response functions via the fluctuation-

dissipation theorem: V 〈∆p∆E〉 /
〈
(∆E)2

〉
= (β

liquid
V −

βsolid
V )/(c

liquid
V − csolidV ), where βV = (∂P/∂T)V is the

pressure coefficient. The “solid” response is understood
here as the high-frequency (short-time) limit of the rel-
evant frequency-dependent linear-response of the equi-
librium liquid (still probing the system at times much
longer than phonon times). Thus

γisom =
βV(ω → 0)− βV(ω → ∞)

cV(ω → 0)− cV(ω → ∞)
. (2)

The two linear thermoviscoelastic response functions
βV(ω) and cV(ω) refer to constant-volume measure-
ments. Experiments, however, are usually performed
under constant pressure. This problem can be over-
come bymeasuring three independent thermoviscoelas-
tic dynamic response functions, subsequently calculat-
ing βV(ω) and cV(ω) using standard thermodynamic
relations (where the frequency-dependent versions of
theMaxwell relations are the corresponding Onsager re-
lations). A further complication is that even constant-
pressure conditions are difficult to obtain for ultra-
viscous liquids, because the sample thermal expansion
is often limited in some spatial directions [24]. This im-
plies that even cp(ω) is not measured directly; rather
it is the so-called longitudinal heat capacity cl(ω) that
is measured in most setups [24], and we also measure
αl(ω) instead of αp(ω). Fortunately knowledge of the
frequency-dependent shear modulus G(ω) allows one
to calculate cp(ω) from data. In summary, to arrive
at γisom we measured the following four frequency-
dependent linear thermoviscoelastic response functions:
The adiabatic bulk modulus Ks(ω), the longitudinal
heat capacity cl(ω), the longitudinal expansion coeffi-
cient αl(ω), and the shear modulus G(ω).
The (frequency-dependent) shear modulus was mea-

sured using a piezoelectric transducer [25], the adia-
batic bulk modulus with a similar technique [26], and
the longitudinal heat capacity was measured using the
3ω-method in a spherical geometry [27]. The expansion
coefficient was measured in the time domain using ca-
pacitative dilatometry [28, 29].
Examples of measured frequency-dependent linear

responses are shown in Fig. 2. In principle we need
only data at one state point to determine γisom from
Eq. 2. In practice, we used several temperatures to es-
timate reliably the temperature dependence of the solid
and liquid levels. This was done to be able to extrap-
olate the DC704 expansion coefficient, which was ob-
tained at lower temperatures than the other response
functions. The reference temperature used is T = 214 K.
This temperature is close to the calorimetric glass transi-
tion temperature of DC704, but it should be emphasized
that we measure the linear response of the equilibrium
liquid. The solid and liquid limits of βV(ω) and cV(ω)
were calculated from the high- and low-frequency limits
of the four measured thermoviscoelastic response func-
tions, respectively, by solving the following four equa-
tions with four unknowns (where all below quantities
are frequency-dependent and use is made of the relation
βV = αpKT):

cl =
1+ 4G

3KS

1+ 4G
3KT

cp αl =
αp

1+ 4G
3KT

cV = cp − Tα2
pKT KS = KT

cp

cV
. (3)

The values of the measured solid and liquid levels at the
reference temperature are reported in Tab. I. When sub-
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FIG. 2. Examples of frequency-dependent real and imaginary
parts of thermoviscoelastic response functions of DC704, il-
lustrating the experimental challenge associated with check-
ing the isomorph prediction. (a) The shear modulus, G(ω).
(b) The adiabatic bulk modulus, KS(ω). (c) The longitudinal
heat capacity, cl(ω). (d) The longitudinal expansion coeffi-
cient αl(ω), for which data were Laplace transformed in order
to give all data in the frequency representation although mea-
surements are in the time domain [29]. In order to place the
relaxation region in the observed frequency window, we show
data at a temperature that varies with response function.

stituted into Eq. (2) we find that the isomorph predic-
tion for the density scaling exponent of DC704 is γisom =
6.2± 2, in good agreement with the density-scaling ex-
ponent γscale6.1 ±0.2 (Fig. 1(b)). The uncertainty on
γisom is large because measuring the absolute values of
the frequency-dependent thermo-viscoelastic response
functions is still very challenging. However, even con-
sidering the large uncertainty on the predicted exponent
γisom, it is quite striking that it agrees with the expo-
nent found from density scaling. The agreement im-
plies that thermoviscoelastic linear-response measure-
ments at one single ambient-pressure state point can
be used to predict the density-scaling exponent which
descres the density and temperature dependence of re-
laxation times varying from the micro- to kilo-seconds,
measured at pressures up to 400 MPa over a 30 K tem-
perature range. This is a main conclusion of the present
paper.
The WU correlation coefficient of the NVT ensem-

ble, R = 〈∆W∆U〉 /
√
〈(∆U)2〉 〈(∆W)2〉, measures how

DC704 (214 K)

c
liq
l

[
106 J/(Km3)

]
1.65±0.15

csoll

[
106 J/(Km3)

]
1.35±0.05

K
liq
S

[
109Pa

]
4.0±0.05

Ksol
S

[
109Pa

]
5.2±0.05

α
liq
l

[
10−3K−1

]
0.45±0.04

αsoll

[
10−3K−1

]
0.1±0.01

Gliq
[
109Pa

]
0

Gsol
[
109Pa

]
1.1±0.05

Πlin
pT 1.1±0.3

Πlin
VT 1.2±0.6

R 0.92

γisom 6.2± 2

γscale 6.1± 0.2

TABLE I. The values of measured solid and liquid levels of
the thermo-mechanical response functions of DC704 at (214 K).
These data are used to calculate the predicted exponent γisom,
which is compared to the exponent found fromdensity scaling
γscale.

strong the WU correlations are in a liquid and therefore
gives a measure of how well we can expect it to follow
the isomorph theory. Expressing the R in terms of linear-
response functions one realizes that R is directly given

by the linear NVT Prigogine-Defay (PD) ratio [30], Πlin
VT:

R =
β
liq
V − βsol

V√
−(K

liq
T − Ksol

T )(c
liq
V − csolV )/T

=
1√
Πlin

VT

. (4)

The PD-ratio equals unity if the liquid is a single-
parameter liquid [9]. Thus a perfectly correlating liq-
uid is what was traditionally referred to as a single- pa-
rameter liquid [8]. Earlier studies of the PD-ratio gave
no physical interpretation of values different from unity,
even if these were close to one. The above interpretation
of the linear NVT-PD-ratio as given by the correlation
coefficient now shows that the PD-ratio provides a mea-
sure of how strongly correlating a given liquid is.
When the linear NVT PD-ratio is exactly unity, other

linear PD-ratios, e.g., the experimentally relevant lin-

ear NpT PD-ratio, are also one [30]. When Πlin
VT is not

strictly one, there is no such result, but by continuity we

surmise that Πlin
pT is close to unity if and only if Πlin

VT is.

For DC704we find Πlin
pT = 1.1± 0.3 and Πlin

VT = 1.2± 0.6,

consistent with this conjecture.
Neither the linear NVT-PD nor the linear NpT-PD ra-

tios have been reported prior to this study, but there are
numerous reports in the literature on the classic (NpT)
PD-ratio. This quantity is calculated using temperature-
extrapolated liquid and glassy static responses, where
the glassy response is defined from the low-temperature
(T < Tg) solid response rather than the high frequency
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FIG. 3. Literature values of the classical (NpT) Prigogine-

Defay ratios Πclassic
pT of 22 glass formers. Liquids are sorted

(along y-axis) with respect to (highest reported) value of the
ratio and includes inorganic glass formers (triangles pointing
up), hydrogen bond rich molecular liquids (squares), van der
Waals bonded molecular liquids (diamonds), polymers (cir-
cles), and a metallic alloy (triangle pointing down). The in-
verse square root of the classic NpT Prigogine-Defay ratio
gives an estimate for the correlation coefficient (lower x-axis).
Strong correlations are found in van der Waals bonded molec-
ular liquids and polymers. See the supplementary material for
references.

level of the equilibrium liquid:

Πclassic
pT ≡ (κ

liq
T (Tg)− κ

glass
T (Tg))(c

liq
p (Tg)− c

glass
p (Tg))

Tg(α
liq
p (Tg)− α

glass
p (Tg))2

.

(5)
Here κT = 1/KT is the isothermal compressibility and
"(Tg)" indicates an extrapolation to the glass transition
temperature. Although the classical PD-ratio is not re-
ally well-defined from a theoretical point of view [30],
it does provide an experimentally much easier route
for investigating strong correlations than measuring the
proper frequency-dependent linear thermoviscoelastic
response functions at one temperature. Thus in the lack
of linear PD-ratio data we compiled all available litera-
ture data on the classical PD-ratio.
Figure 3 shows the literature values for 22 glass for-

mers, including polymers, a metallic alloy, inorganic
and molecular liquids (both hydrogen-bond rich and
van der Waals bonded). The systems are sorted after
their PD-ratio. In analogy with the NVT case, we de-
fine an approximate correlation coefficient of the NpT
ensemble as the inverse square-root of the NpT PD-
ratio. Network-bonded inorganic glass formers such
as silica glasses and hydrogen-bond rich molecular liq-
uids (e.g., glycerol and glucose) have large PD-ratios,
whereas van der Waals bonded liquids, exemplified by
the two mixtures with o-terphenyl as the major con-
stituent and polymers, have PD-ratios close to one.
This confirms the conjecture that van der Waals bonded
liquids are strongly correlating, while associative and
network-forming liquids are not [5, 6]. It is interesting
also to compare propanol and glycerol, which have the
same backbone of three carbon atoms, but one and three
hydroxyl-groups respectively. Propanol with only one
hydroxyl group and therefore fewer hydrogen bonds
has a much smaller PD-ratio than glycerol. This pattern
is consistent with computer simulation results, where
strongly correlating liquids are found to be liquids with-
out directional bonding or competing interactions [4].
The glassy and liquid extrapolated response values

used to calculate the classic Prigogine-Defay ratio pro-
vides an alternative less well defined way of calculating
γisom [31]. Data of this type is scarce in literature and
we need samples where the density-scaling exponent is
also available. We did the analysis on a the data of a
mixture 67% o-terphenyl and 33% o-phenylphenol from
a nice paper by Takahara et al.[32]. This mixture is a

strongly correlating liquid with Πclassic
pT = 1.20 [32]. We

find γisom = 5.4± 1 compared to γscale = 6.2± 0.2 [13],
see supplementary material for details.
In summary, we presented the first experimental evi-

dence that a strongly correlating liquid exists and that it
obeys the isomorph predictions. Specifically, the scaling
exponent found from linear-response data agrees with
the exponent found from density scaling for a van der
Waals bonded silicone liquid. We moreover connected
the classical PD-ratiowith the correlation coefficient and
found that literature data support the general conjecture
that van der Waals bonded liquids are strongly correlat-
ing, whereas liquids with significant directional bond-
ing are not. These findings suggest that the liquids with
“simple” behavior are the strongly correlating liquids.
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