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Abstract

This thesis has two main conceptual parts: in a first part the isomorph
theory is discussed and used to describe the Lennard-Jones (LJ) system,
following the path traced by previous works from the Roskilde group, while
in the second part the theory is extended in different ways.

Chap. 2 and the starting sections of Chap. 3 correspond to the first
conceptual part. Here the isomorph theory is presented and then used to
describe the freezing and melting invariances and the empirical Andrade
equation for the freezing viscosity (which can also be thought as an invari-
ance), showing that the isomorph theory can justify why these invariances
hold and that they are not peculiarities of the freezing and melting processes.

At the same time Chap. 3 is also the start of the second conceptual
part because the isomorph theory is used here for the first time to formulate
predictions not along an isomorph but in its proximity, allowing for a precise
description of the freezing and melting line. These two works on freezing
and melting have been published in the first two companion papers. In
the end of the same chapter the first part of an unpublished work is also
presented. In this work a connection is suggested between the generalized
LJ system starting to behave Roskilde simply and a change in the behavior
of the scaling exponent γ.

In Chap. 4 the isomorph theory is used to establish the temperature
dependence of an isomorphic invariant quantity along an isochore, again
’going away from an isomorph’ and investigating the connection between
different isomorphs. This result has allowed the author to suggest a new
equation describing the viscosity of the LJ system accurately in the whole
Roskilde simple region.

Another extension of the theory is made by studying the LJ system
(as prototype of Roskilde simple liquid) in 2d, 3d and 4d, verifying that
the system conforms to hidden scale invariance (the symmetry consequence
of isomorph theory) better in higher dimensions. These results have been
published in the third companion paper and form the main matter of Chap.
5. In the same chapter the relation between the LJ system starting to behave
Roskilde simple and the behavior of the scaling exponent γ is studied in 2d
and 4d.

The thesis concludes with a work on a possible prototype non-simple
system, the Gaussian core model. This study is presented in Chap. 6. The
Gaussian core model exhibits strongly negative correlations and, for the
first time, the existence of isomorphs with negative scaling exponent γ is
reported, leading to a new application of the isomorph theory by including
the Gaussian core system in the wide class of Roskilde simple systems.
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Abstract in Danish

Denne afhandling falder i to konceptuelle dele: I den første del bliver isomorf-
teorien diskuteret og anvendt til at beskrive Lennard-Jones (LJ) systemet i
tr̊ad med tidligere arbejde udført af gruppen fra Roskilde Universitet, mens
den anden del udvider teorien p̊a forskellige vis.

Kap. 2 og starten af Kap. 3 svarer til den første del. Her bliver isomorf-
teorien præsenteret og derefter anvendt til at beskrive frysnings- og smelt-
ningsinvarians samt den empiriske Andrade-ligning for frysningsviskositet
(hvilket ligeledes kan betragtes som en invarians), hvilket viser, at isomorf-
teorien kan belyse hvorfor disse invarianser holder og, at de ikke er særlige
for frysning eller smeltning.

P̊a samme tid er Kap. 3 ogs̊a starten p̊a den anden konceptuelle del fordi
isomorfteorien bliver brugt her, for første gang, til at formulerer forudsigelser,
der ikke er langs en isomorf, men i dennes omkreds, hvilket tillader en præ-
cis beskrivelse af fryse- og smeltelinien. Disse to resultater om frysning og
smeltning er blevet publiceret i de to første ledsagne artikler. I slutningen
af samme kapitel bliver den første del af et upubliceret resultat præsenteret.
Her antydes en sammenhæng mellem det, at det generaliserede Lennard-
Jones system begynder at være Roskilde-simpelt og ændringen i opførslen
af skaleringseksponenten γ.

I Kap. 4 bliver isomorfteorien brugt til at etablere temperaturafhængighe-
den af en isomorft invariant størrelse langs en isokor, igen ”ikke langs en
isomorf“, og undersøge sammenhængen mellem forskellige isomorfer. Dette
resultat har gjort det muligt for forfatteren at fremsætte en ny formel, til
nøjagtig beskrivelse af viskositeten for LJ systemet i hele den Roskilde-simple
region.

En anden udvidelse af teorien kommer fra et studie af LJ systemet (som
en prototype for en Roskilde-simple væske) i 2d, 3d og 4d, hvor det ver-
ificeres at systemet overholder skjult skaleringsinvarians (den symmetriske
konsekvens af isomorfteorien) bedre i højere dimensioner. Disse resultater
er udgivet i den tredje ledsagne artikel og udgør hoveddelen af Kap. 5 sam-
men med en udvidelse af undersøgelsen om sammenhængen mellem det, at
LJ systemet begynder at opfører sig Roskilde-simpelt og opførslen af skaler-
ingseksponenten γ i 2d og 4d.

Afhandlingen konkluderes med et studie af en mulig prototype p̊a et ikke-
simple system, Gaussian core-modellen. Dette studie er præsenteret i Kap.
6. Gaussian core-modellen udviser stærk negativ korrelation og for første
gang rapporteres om eksistensen af isomorfer med negativ skaleringsekspo-
nent γ, hvilket medfører en ny anvendelse af isomorfteorien ved inklusion af
Gaussian core-systemet i den store klasse af Roskilde-simple systemer.
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1.2.2 Nosé-Hoover thermostat: NVT MD . . . . . . . . . . 10

1.2.3 CPUs and GPUs . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Rumd . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Isomorph Theory 13

2.1 Roskilde matter . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 General definition . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Isomorph invariants and isomorph shape . . . . . . . . . . . . 18

2.3.1 Estimating specific heat along an isomorph . . . . . . 22

2.3.2 Isomorph shape function h(ρ) from the pair potential 23

2.4 Differences and analogy between liquid state theories . . . . . 25

3 The Lennard-Jones model system and its isomorphs 29

3.1 Freezing and melting lines of the LJ system . . . . . . . . . . 30

3.1.1 Data and predictions for the freezing and melting lines 30

3.1.2 Invariances along the freezing and melting lines and
phase transition criteria . . . . . . . . . . . . . . . . . 33

3.1.3 Invariance of reduced viscosity and the Andrade equa-
tion for freezing viscosity . . . . . . . . . . . . . . . . 37

3.2 Thermodynamics of freezing and melting at low densities . . 39

3.2.1 The melting pressure . . . . . . . . . . . . . . . . . . . 39

3.2.2 The freezing and melting densities . . . . . . . . . . . 41

3.2.3 Corrections for isomorph invariant quantities along
the freezing and melting lines . . . . . . . . . . . . . . 43

v



CONTENTS CONTENTS

3.3 Relation between the correlation coefficient R and the scaling
exponent γ (Part 1) . . . . . . . . . . . . . . . . . . . . . . . 44

4 Viscosity of the LJ system in the supercritical region 47

4.1 Isomorph theory constraint on isochoric dependences . . . . . 48

4.1.1 Prediction for stationary points along isochores . . . . 49

4.2 Viscosity data for the LJ system . . . . . . . . . . . . . . . . 50

4.2.1 Isochoric dependence of viscosity . . . . . . . . . . . . 51

4.2.2 Rosenfeld excess entropy scaling . . . . . . . . . . . . 55

4.3 Diffusivity data for the LJ system . . . . . . . . . . . . . . . 58

5 Isomorph theory in d dimensions 63

5.1 Isomorphs in d dimensions for the generalized LJ system . . . 64

5.2 Correlation coefficient R of the LJ system in 2, 3 and 4 spatial
dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Relation between the correlation coefficient R and the scaling
exponent γ (Part 2) . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Invariance of structure and dynamics along an isomorph in 4d 69

6 Negative correlation coefficient and isomorphs:
the Gaussian core model 73

6.1 The phase diagram of the Gaussian core system . . . . . . . . 73

6.2 Simplicity of the GC model . . . . . . . . . . . . . . . . . . . 74

6.3 Scaling exponent γ of the GC system . . . . . . . . . . . . . . 78

6.4 Low density isomorph . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Isomorph in the moderate density region . . . . . . . . . . . . 83

6.6 The freezing line of the Gaussian core system . . . . . . . . . 84

Appendices 88

A Description of the homemade molecular dynamics code 89

A.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1.1 Input and Output . . . . . . . . . . . . . . . . . . . . 90

A.1.2 Cutoff methods and energy conservation . . . . . . . . 93

A.1.3 Neighborlist . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Comparison with RUMD on structure and dynamics . . . . . 95

B Additions to RUMD:
NPT integrator 97

B.1 NPT Leap-Frog: the equations of motion . . . . . . . . . . . 98

B.2 Tests on NPT implementation . . . . . . . . . . . . . . . . . . 99

vi



CONTENTS CONTENTS

C Simulation details 101
C.1 NVT simulations of the LJ system and the generalized LJ

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 SLLOD simulations of the LJ system and of the IPL12 system 102

C.2.1 Determining the zero-strain rate bulk viscosity from a
SLLOD simulations . . . . . . . . . . . . . . . . . . . 103

C.2.2 High temperature simulations presented in Chap. 4 . 103
C.3 NVT simulations with the homemade MD code in 2d, 3d and

4d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.4 NVT simulations of the Gaussian core system . . . . . . . . . 106

D Reprints of articles 107
D.1 Freezing and melting line invariants of the Lennard–Jones

system (Paper I) . . . . . . . . . . . . . . . . . . . . . . . . . 108
D.2 Thermodynamics of freezing and melting (Paper II) . . . . . 121
D.3 Studies of the Lennard–Jones fluid in 2, 3, and 4 dimensions

highlight the need for a liquid–state 1/d expansion (Paper III) 150
D.4 RUMD: A general purpose molecular dynamics package op-

timized to utilize GPU hardware down to a few thousand
particles (Paper IV) . . . . . . . . . . . . . . . . . . . . . . . 156

E Reprints of posters 179
E.1 Isomorph invariance of viscosity along the melting line of a

Lennard–Jones system (Poster I) . . . . . . . . . . . . . . . . 180
E.2 Studies of the Lennard–Jones fluid in 2, 3, and 4 dimensions

(Poster II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 182

vii



CONTENTS CONTENTS

viii



Chapter 1

Background

In this chapter some essential background on the liquid state is presented.
Special attention is dedicated to the description of invariances in the liquid
state. A section describing molecular dynamics (MD) is also included.

1.1 The liquid state

Among the four states of ordinary matter, the liquid state is most likely
the worst defined. More than a proper definition, the liquid state is often
described by what it is not. Plasmas are systems with a consistent num-
ber of charged particles, gasses are systems of mostly free particles (weakly
interacting) and solids can be defined as systems not able to flow, at least
on reasonable observation timescales, because of the strong interactions be-
tween particles. A liquid is a system of particles which strongly interact,
similarly to solids, but can flow, as gasses. As with solids, the compression
of liquids requires high pressures but, at the same time, they have the same
structural symmetries as gasses. Many other examples of liquid properties
shared with gasses or solids can be found. This ’problem of definition’ is also
evident in the not universally accepted definition of the liquid state from a
physical point of view. According to the most common definition, a liquid
can exist only below a well defined critical temperature TC [1] (Fig. 1.1).
For temperatures above TC , the gas and the liquid of a given substance are
termed fluid and are often considered to be indistinguishable. Different au-
thors have questioned this definition of the liquid state [2–5]. It is possible,
for example, to show that the structure and dynamics of several model liq-
uids are the same, when expressed in proper units, along lines in the phase
diagram “parallel” to the freezing line, as we will discuss in Chapter 2 and
3, even at temperatures well above the critical one.
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Temperature

Pr
es
su
re

triple point

critical point
critical pressure
Pcr

critical
temperature
Tcr

solid phase

liquid
phase

gaseous phase

compressible
liquid

Ptp

Ttp

vapour

supercritical fluid

Figure 1.1: Phase diagram of a single-component system as function of pres-
sure P and temperature T . The green line shows the melting line for a normal
system while the dotted line shows an anomalous melting line [6], i.e. with
negative slope, as, for example, the melting line of water [7]. The liquid phase
is, according to the most common definition, restricted to the area delimited by
the melting line, the vaporization line and the critical isobar, i.e. the line of
constant pressure passing through the critical point. This figure is from Ref. [8]

Given the difficulties in finding an universal definition of the liquid state
itself it is not surprising that a comprehensive theory of the liquid state does
not exist yet. The main efforts in this direction through the last century have
been in developing a theory for a subclass of liquids, called simple liquids.
Simple liquids are usually defined as many-body systems interacting via
radially symmetric pair potentials. Atoms and molecules in real systems
present more complex interactions than pairwise ones but simple liquids are
good model systems able to describe many features of common liquids. Not
surprisingly the definition of simple liquid has also been a matter of debate
[2, 9]. It is in fact well known that some molecular liquids, with quite
complicated interactions, can behave more simply than systems interacting
via peculiar pairwise interactions [2, 10]. This statement will become clearer
in Chapter 2 and 6.

In the following three subsections we will describe some of the features
of simple liquid theory and its applicability.
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Chapter 1

1.1.1 Theory of Simple liquids: The HS paradigm

The theory of simple liquids is based on the assumption that the liquid
state is governed by the repulsive part of the interaction potential between
its constituents [1]. In this perspective, the most interesting system to take
into account is a system of hard spheres (HS). This system is described with
a divergent repulsion at contact distance and a zero potential for greater
distances. The interaction potential of HS is:

v(r) =

{
∞ if r < rHS

0 if r > rHS
(1.1)

where rHS is the radius of the HS. The interests in studying this potential
are many. For HS it is possible to solve the Percus-Yevick equation ana-
lytically [1] and obtain the phase diagram and the structure. The state of
the system depends only on the packing fraction η = (π/6)ρr3

HS and not
on temperature as, in general, for real systems. It is intuitive that relating
the properties of a real system with those of HS will require some sort of
mapping. This mapping is hidden in the choice of the rHS which, in gen-
eral, depends on pressure (or density ρ) and temperature of the real system.
From a simulation point of view, HS are less computationally expensive to
simulate than continuous pair potentials and a specific kind of computer
simulation, event driven simulations, has been developed for HS [11]. All
interactions happen at the contact distance and therefore it is not necessary
to simulate intermediate times between a collision and the following one.

Beyond these advantages, the HS paradigm of model liquid system has
some important problematic aspects. The first one is that it cannot describe
the liquid in regions close to the critical point or to the liquid-gas transition.
This problem is due to the absence in the HS approach of any attraction
between particles. Under this assumption, no transition between gas and
liquid can take place [12]. Another open question is the proper way of
defining the HS radius rHS and the possibility of predicting, having chosen
an interaction potential, if a model system will behave as a HS system or
not, as it will be discussed in Chap. 2. This last problem is quite relevant
because, while a wide class of system can be modelled in terms of HS, many
exceptions are known. Two of these exceptions are water and the Gaussian
core model liquid in a part of its phase diagram. This model liquid will be
subject of Chapter 6. Liquids and model liquids which do not follow the
HS paradigm are often called anomalous [6]. These liquids can have simple
pair potentials, as the Gaussian core model liquid, and simple molecular
structure, as water, but manifest uncommon behaviors as, for example, the
decrease of melting temperature with increasing pressure [6].
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Figure 1.2: Power law density scaling. In these figures the dielectric relaxation
time τα is shown to be a function of TV γ and not independently of temperature
T and volume V (or equivalently density). The scaling exponent γ is defined in
the main text. Data for polymer melts and small molecular glass forming liquids
are shown respectively in the left and right figure. These figures have been taken
from Ref. [13], where also information on the different liquids studied can be
found.

1.1.2 Density scaling : simple behavior of complex liquids

Starting from 1998 [14] several experimental works observed that it is possi-
ble to describe a wide class of liquids using density scaling. Density scaling
consists in recognizing that the physical properties of a system, under some
circumstances, do not depend independently on pressure (or density) and
temperature but on a fixed combination of the two. This is similar to what
happens in the case of HS described previously. Always under the hypoth-
esis that only repulsive forces determine the behavior of the liquid phase,
these invariances were explained using inverse power law potential (IPL) as
model for particle interactions:

vIPLn (r) = ε
(σ
r

)n
(1.2)

For these potentials, the invariance curves are characterized by a fixed value
of ρn/3/T . The system of particles interacting via IPLs is commonly named
soft spheres; HS can be though as a limiting case of soft spheres when
n→∞. If an IPL with n = 12 is considered, the scaling exponent γ = n/3
will be 4 and this scaling property is obeyed by several real liquids [13–
16]. Data from Ref. [13] are shown in fig. 1.2. Different liquids will have
different scaling exponents and are therefore associated with different IPLs
[13, 16–18].
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It is interesting to note that liquids obeying density scaling can have
distinct molecular structure and real interactions rather more complex than
IPLs, far away from the definition given above of simple liquids. Density
scaling was first observed in ortho-terphenyl (OTP), then in polymers and
ionic liquids. These systems are very different from rotationally invariant
objects interacting via radially symmetric potentials, as HS or soft spheres.
Density scaling has been confirmed also in computer simulations of gener-
alized Lennard-Jones system [19, 20], i.e., a system of particles interacting
via difference of two IPL potentials. In Chapter 2 we will discuss how these
invariances can be understood without referring to HS or soft spheres.

1.1.3 Anomalous liquids: complex behavior of simple liquids

As introduced before, several liquids can be described through the HS paradigm
but not all of them. There are two liquids which are worth mentioning in
this context, i.e., water and the Gaussian core model liquid.

The first one is the system embedding the common idea of liquid itself
in real life. Water is at the same time one of the most important liquids
to understand but one of the least trivial [21]. It presents anomalies both
in the solid state and in the liquid one [22] and it is interesting because,
its simple molecular structure notwithstanding, it is difficult to model. One
important feature of water is that its crystalline phase is less dense than the
liquid phase at normal pressures. This feature makes water an anomalous
liquid because this kind of behavior cannot be described in terms of HS. The
dotted line starting from the triple point in Fig. 1.1 represents qualitatively
the water melting line at normal pressures. The melting temperature of
water decreases on increasing pressure unlike for other systems (full green
line). It is well known that the anomalous behavior in water is connected
to the presence of directional H-bonds between its molecules [7, 23] and the
presence of this kind of bonds is what usually causes non-simple (non-density
scaling) behavior in other liquids too.

The second liquid is a model liquid consisting of particles interacting
pairwise with Gaussian-like potential:

vGC(r) = ε e−
r2

σ2 (1.3)

This potential has been widely studied in computer simulations because, as
pointed out by Stillinger [24] in 1976, despite its simple analytical form, it
embeds a rich variety of anomalies. The most surprising characteristic of
this potential is the high density behavior of the melting line, which has a
negative slope at high pressures [24–27]. This behavior of the melting line
is not understandable in terms of HS and it will be discussed in Chapter 6.
Another interesting feature of the Gaussian Core (GC) system is its negative
thermal expansion [26–28], which characterizes water too.
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Figure 1.3: A schematic representation of the particles in a simulation box
during an MD simulation. When simulating a given model system, the number
of particles N is often fixed and small compared to the number of atoms and
molecules of a real substance. In order to avoid problems related to the presence
of surfaces (box boundaries), the simulation box is surrounded by its virtual
copies (periodic boundary condition). This means that when a particle exit
the simulation box from the left side, another one enters the box on the right
side with the same velocity. In this way the number of particles in the box
is conserved and the system can be used to calculate average bulk quantities.
Figure is taken from Ref. [29].

1.2 Molecular dynamics

Molecular dynamics (MD) is an excellent tool to test model systems. A
sketch of a MD simulation is given in Fig. 1.3. The unique input needed
is the interaction potential between particles (pairwise or not). Once the
potential is chosen, the MD program will solve the equations of motion of
the system particles using a discretization scheme. The equations of motion
for a system of particles in classical mechanics are differential equations of
second order and, in general, it is not possible to solve them analytically.
This problem can be remedied assuming the interaction force to be constant
for small time intervals. Under this assumption, the equations of motion can
be solved by discretization of time in small steps (timesteps) and evaluating
the derivatives numerically. The definition of a “small timestep” will depend
on the potential chosen and on the state point studied, i.e. on the density
(or alternatively pressure) and temperature of the state point.

In the following some different versions of the discretization algorithm
are described and their equivalence shown [30]. Some details on differences
between CPU implementations and GPU implementations of MD programs
are also given and the RUMD package, used for most of the results in this
thesis, is introduced.
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1.2.1 The Verlet algorithm

The Verlet algorithm [31] is a discretization of Newton’s second law; it is
therefore based on the assumption that for a given state point and potential,
it is possible to find an adequate discrete time increment, which allows one to
reproduce the correct dynamics. From a theoretical point of view it is always
possible to find this time increment (timestep), but from a computational
point of view this may be not accessible, if it’s too small for the machine
precision. As we will see in the following this problem is one of the reasons
why Leap-Frog algorithm can be preferred to Verlet algorithm.

Newton second law for a system of N particles interacting via a pair
potential φi,j is

mr̈i = −
N∑

j=1,j 6=i
∇φi,j = fi. (1.4)

in which ri is the position vector of the particle i with mass m and fi is
the force vector acting on it. The discretized version of the Eq. 1.4 can be
obtained using the central difference approximation for the second derivative
(with time increment h):

ri(t+ h)− 2ri(t) + ri(t− h)

h2
=

fi(t)

m
. (1.5)

In order to obtain energy conservation in an MD algorithm, Eq. 1.5 needs
to be invariant under time inversion [30, 32–35]. The position of particle i
after the time increment h is:

ri(t+ h) = 2ri(t)− ri(t− h) + h2fi(t). (1.6)

The calculation of the new position of any particle requires the knowledge
of where the particle is, ri(t), where it was at the previous timestep ri(t−h)
and the force acting on it, fi(t).

In Eq. 1.6 the squared timestep appears and this can be a problematic
limitation on how small the timestep can be due to machine precision. The
problem is more relevant in GPU codes, where, sometimes, single precision
is preferred to double.

In the Verlet algorithm velocities are not taken into account as dynamical
variables, but they are calculated at any timestep from the central difference
of particles’ positions:

vi(t) =
ri(t+ h)− ri(t− h)

2h
. (1.7)

7
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The velocity Verlet algorithm

Starting from the Verlet algorithm it is possible to obtain a different way to
update the system state, which explicitly takes into account velocities. This
algorithm is called velocity Verlet. The equation for updating positions
is obtained recognising that the difference between positions of the same
particle at different times can be written as its velocity; using Eq. 1.7, Eq.
1.6 becomes:

2ri(t+ h) = ri(t+ h) + 2ri(t)− ri(t− h) + h2fi(t)

2ri(t+ h) = 2ri(t) + 2hvi(t) + h2fi(t)

ri(t+ h) = ri(t) + hvi(t) +
h2

2
fi(t). (1.8)

It is worth pointing out that also this new equation is invariant under time
inversion and it will therefore produce a constant energy MD algorithm
equivalent to the previous one [30, 32–35]. In order to obtain the equation
for velocities’ update, first we need to write Eq. 1.6 in the two following
ways:

ri(t+ 2h) = 2ri(t+ h)− ri(t) + h2fi(t+ h) (1.9)

−ri(t) = ri(t)− ri(t+ h)− ri(t− h) + h2fi(t) (1.10)

and inserting Eqs. 1.9 and 1.10 into Eq. 1.7 evaluated for vi(t + h):

2hvi(t+ h) = ri(t+ 2h)− ri(t)

vi(t+ h) = vi(t) +
h

2
[fi(t+ h) + fi(t)] . (1.11)

Equations 1.8 and 1.11 can be used to implement a discretization scheme of
Newton’s second law, which is completely equivalent, from a formal point
of view, to the classical Verlet algorithm; the equations for velocity Verlet
algorithm are:





ri(t+ h) = ri(t) + hvi(t) +
h2

2
fi(t)

vi(t+ h) = vi(t) +
h

2
[fi(t+ h) + fi(t)]

(1.8)

(1.11)

From a computational point of view, velocity Verlet has the advantage of
explicitly calculating at any timestep the value of the velocities. When
velocity is calculated using Eq. 1.7 there is a risk of incurring problems of
precision. The calculation of the difference between nearby positions, i.e.
the position of a particle at t and at t + h, and the calculation of the ratio
between this small difference and the timestep, which is generally small too,
can cause loss of precision. Another advantage is in not requiring the use
of ri(t − h). Velocity Verlet can also be easily coupled to a thermostat,
discussed in Sec. 1.2.2, but it still requires the calculation of the squared
timestep; this problem is avoided in the Leap-Frog algorithm.
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The Leap-Frog algorithm

The last MD algorithm we will discuss is the Leap-Frog algorithm. The
special features of this algorithm are:

1. There is no need to square the timestep for updating the system state;

2. Velocities and positions are saved at different times.

It’s important to be aware of the second point, because it will become impor-
tant when calculating the kinetic energy of the system and when coupling
the system to a thermostat. This algorithm can be easily derived from
Newton’s second law in the form:

{
f = mv̇

v = ṙ

These equations can be discretized using a central difference approximation
(with increment h as before):





fi(t) =
vi
(
t+ h

2

)
− vi

(
t− h

2

)

h

vi

(
t+

h

2

)
=

ri(t+ h)− ri(t)

h

and then rewritten in the following form:





vi

(
t+

h

2

)
= vi

(
t− h

2

)
+ hfi(t)

ri (t+ h) = ri(t) + hvi

(
t+

h

2

)
(1.15a)

(1.15b)

In order to verify the equivalence between the Leap-Frog, Eqs. 1.15a and
1.15b, and the Verlet algorithm, Eq. 1.6, it is sufficient to insert Eq. 1.15a
in Eq. 1.15b and use Eq. 1.7 in the form:

vi

(
t− h

2

)
=

ri(t)− ri(t− h)

h
.

Note that no squared timestep is needed in this discretization.
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1.2.2 Nosé-Hoover thermostat: NVT MD

The solution of Newton’s second law using one of the discretization schemes
presented before generates the so-called NV E ensemble, i.e., constant num-
ber of particles N , volume V (or density ρ = N/V ) and total mechanical
energy E. It is often more interesting for the comparison of model systems
with real systems to simulate a NV T ensemble, i.e., constant temperature T
instead of constant total mechanical energy E. The temperature can be kept
constant in different ways; the most commonly used are the Nosé-Hoover
thermostat [36], the Langevin, rescaling velocities and others [1]. In the
following we will introduce only the first method because it is the one used
in the simulations for this thesis.

The Nosé-Hoover thermostat [36] introduces an additional force, a “fric-
tion”, in order to keep the kinetic energy constant. This additional force cou-
ples with the total kinetic energy and it “corrects” velocities every timestep.
The equations of motion for a system of particles coupled with a Nosé -
Hoover thermostat are:





r̈i(t) =
fi(t)

m
− η(t)vi(t)

η̇(t) =
K(t)−KT

d(N − 1)Tτ2
Th

(1.16a)

(1.16b)

whereK(t) = 1
2

∑
N miv

2
i (t) is the kinetic energy of the system at the present

time, KT is the kinetic energy of the system in thermal equilibrium at tem-
perature T and d the number of spatial dimensions; in the denominator of
Eq. 1.16b the system degrees of freedom are d(N−1) due to the conservation
of centre of mass momentum. In Eq. 1.16b the quantity η is called thermo-
stat state and its variation is related to the thermostat relaxation time τTh.
The thermostat relaxation time τTh defines how strongly the thermostat is
coupled with the system.

Eqs. 1.16a and 1.16b can be discretized as in the case of Newton’s
second law. The discretization will be different if a Leap-Frog or a Velocity
Verlet algorithm is employed. In order to update the thermostat state, it’s
necessary to calculate the kinetic energy of the system at timestep t. In a
Leap-Frog algorithm velocities are calculated at t − h

2 and t + h
2 and the

velocity at time t is obtained as a mean of these two values. In velocity
Verlet algorithm the velocities at the time t are known from Eq. 1.11.

10
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The equations obtained using the Leap-Frog discretization scheme on
Eqs. 1.16a and 1.16b are [37]:





vi

(
t+

h

2

)
=

(
1− hη(t)

2

)
vi
(
t− h

2

)
+ hfi(t)/m

(
1 + hη(t)

2

)

ri (t+ h) = ri(t) + hvi

(
t+

h

2

)

η(t+ h) = η(t) + h
K(t)−KT

d(N − 1)Tτ2
Th

(1.17a)

(1.17b)

(1.17c)

Note that the equation for positions’ update has not been changed with
respect to those for NVE dynamics. This equation will be changed if a
barostat, i.e. a constraint on the system pressure, is introduced as will be
discussed in appendix B.

If we set η(t) = 0 in Eqs. 1.17a and 1.17c , Eqs. 1.15a and 1.15b are
recovered and therefore NVE dynamics. In this way it is possible to use the
same program for simulating both the NVE and the NVT dynamics. The
calculation of the total kinetic energy K(t) is usually performed assuming
that the velocity of the system centre of mass is zero. If this is not the
case, the kinetic energy due to the streaming of the entire system should be
removed. This problem is avoided in MD programs by keeping the center of
mass momentum zero, by periodically resetting it.

1.2.3 CPUs and GPUs

The acronyms CPU and GPU stand for Central Processing Unit and Graph-
ics Processing Unit respectively. The first one is commonly called processor
while the second one graphics card. The first molecular dynamics codes used
a single processor. As the possibility of using many processors for a simu-
lation became available, more advanced molecular dynamics codes started
using parallel computing on CPUs. The most expensive parts, in terms of
computer time, of an MD code are, depending on how the program is struc-
tured, the force calculation and the neighborlist update. At this stage it is
not important to understand what these two calculations do, but details are
given in appendix A; the main feature of both these calculations is that they
are related to the difference in position of pairs of particles, when a pairwise
potential is used. This means that these calculations scale as N2 and this
is the reason why they are the most important to take into account when
optimizing an MD program. The calculation of the difference between two
particles’ positions is a simple operation but it is expensive when a huge
number of this same operation are needed. This feature makes the possi-
bility of using Graphics Processing Unit for performing these calculations
especially appealing. A GPU has a really large number, of order 103 in a
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Figure 1.4: Benchmarks for different molecular dynamics code available at
the moment. Both programs using parallelization on CPUs and on GPUs are
included. Performances are measured in TPS, i.e., timesteps per second at a
given system size N . The figure has been taken from Ref. [38] where more
details on these benchmarks and on RUMD can be found.

modern GPU, of processing cores able to perform simple operations in short
time. All these processing cores can work simultaneously. It it therefore
possible to use a different processing core for each particle, or even more
than a single core for each particle. This way of parallelizing the force cal-
culation and/or the neighborlist calculation can significantly improve the
performance of an MD program. Some benchmarks of modern MD pro-
grams working on CPUs or GPUs are shown in Fig. 1.4. Performances are
measured in TPS, i.e., timesteps per second at a given system size N .

1.2.4 Rumd

RUMD is the molecular dynamics program developed at Roskilde University
starting from 2008 and it has been released in 2012. The name is an acronym
for Roskilde University Molecular Dynamics and, according to the newest
benchmarks [38], is the fastest code available at the moment; benchmarks
are shown in Fig. 1.4. The program is open source and can be downloaded
at rumd.org. RUMD uses the CUDA programming library [39] for C++
developed by Nvidia starting from 2007 in order to parallelize the compu-
tation on GPUs. One of the strengths of this code, which has been relevant
for our work, is the optimized used of GPUs processing cores when simulat-
ing small systems, N < 8000. In this range of system sizes, the number of
available computation parallel processes (thread) is larger than the number
of particles and it is therefore necessary to use more than one thread for
each particle in order to take advantage of the hardware’s full capability.
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Chapter 2

Isomorph Theory

In this chapter isomorph theory is presented. The main features of the theory
are derived from the general definition of Roskilde matter [40] and then
specialized to the Lennard-Jones system [41] for further use in the following
chapters. More details can be found in Refs. [42–44]. Some differences
between isomorph theory and inverse power law (IPL) scaling or hard sphere
(HS) modelling of a simple liquid are also discussed. Specifically referring
to the Lennard-Jones system, the difference between the Weeks-Chandler-
Andersen (WCA) [45–47] description of the liquid state and isomorph theory
is also elucidated. All simulation data in this chapter have been produced
by the author and details on the simulations can be found in appendix C.

2.1 Roskilde matter

Starting from 2008, the Roskilde group has pointed out the existence of
strong correlations between potential energy and virial fluctuations in the
NVT ensemble of some model liquids [48, 49]. An example of these strong
correlations for the Lennard-Jones model liquid is given in Fig. 2.1. The
consequences of these correlations on the physical properties of the system
have been investigated in many works [48, 50–53] and led to the discovery
of invariance curves for structure and dynamics in the phase diagram of the
class of strongly correlated liquids and to a new definition of simplicity for
the liquid state [2].

Nowadays systems with strong potential energy-virial correlations are
named Roskilde simple systems, or just Roskilde (R) systems, and the in-
variance curves are called isomorphs. Invariance curves were found both
in the liquid and in the crystalline phase [54] and therefore we will speak
about R systems and not simply liquids. The theory describing R systems
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Figure 2.1: Correlations between potential energy and virial of the Lennard-
Jones system at the state point (ρ, T ) = (1.0635, 2.0). (a) Instantaneous devi-
ations from the mean value of the potential energy per particle and virial per
particle normalized by their standard deviations. The deviations follow each
other showing the presence of strong correlations between the two quantities.
(b) Virial W as function of potential energy U at different configurations sam-
pled in the NVT ensemble. The correlation coefficient R is calculated using Eq.
2.1 and the scaling exponent γ using Eq. 2.18.

is called isomorph theory, from the name of the invariance curves, and it
will be described in the following because it will be necessary to understand
the remaining chapters in this thesis. Isomorph theory is exact only for
systems with an Euler-homogeneous potential energy function, for instance
systems interacting via an inverse-power-law (IPL) pair-potential [48, 50].
This means that for these systems it is possible to derive directly from
the pair potential the existence of the potential energy-virial correlations
[48, 50]. For a general R system, it will be necessary to evaluate the cor-
relation coefficient R (defined below) from a computer simulation and the
property of being Roskilde simple will hold only in a certain region of the
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phase diagram; it will in fact depend on the density ρ and temperature T
of the chosen state point. The correlation coefficient is defined as

R(ρ, T ) =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉 (2.1)

where ∆ denotes the instantaneous deviations from the equilibrium mean
value and the brackets denote NV T ensemble averages, W the virial and
U the potential energy of the system. A system is Roskilde simple when
R > 0.9. Bearing in mind these limitations, the theory can be used as a
good approximation for a wide class of systems. Examples of model systems
that are R simple [2] in part of their thermodynamic phase diagram, in liquid
and solid state [54], are the standard and generalized Lennard-Jones systems
(single-component as well as multi-component) [52, 53, 55], systems inter-
acting via the exponential potential [56, 57] and systems interacting via the
Yukawa potential [58, 59]. R systems include also some molecular systems
like, e.g., the asymmetric dumbbell models [60], the Lewis-Wahnström’s
three-site model of OTP [60], the seven-site united-atom model of toluene
[48], the EMT model of liquid Cu [48] and the rigid-bond Lennard-Jones
chain model [10]. Predictions of the isomorph theory have been shown to
hold in experiments on glass-forming van der Waals liquids by Gundermann
et al [61], by Roed et al [62], and by Xiao et al [63].

2.2 General definition

Recently isomorph theory has been reformulated in a slightly more general
way starting from a simple condition on the energy landscape for R systems.
The advantage of the new definition is that it is able to better describe the
behavior of the excess specific heat Cex

V [40], as will become clear in the
following. The new formulation of the theory [40] is consistent with the
previous findings and the original theory [52] can be obtained through a
first order Taylor expansion of the general case.

A Roskilde system is a system of N particles for which taken any two con-
figurations with potential energies U(Ri) and U(Rj) with U(Ri) < U(Rj),
a uniform scaling of the two configurations will preserve the potential energy
ordering:

U(Ri) < U(Rj) =⇒ U(λRi) < U(λRj). (2.2)

In this definition R represents the d ·N dimensional vector describing the
micro-configuration i or j of a system of N particles embedded in d spatial
dimensions. The scaling factor λ can assume any value in R+

0 and Eq. 2.2
holds therefore also with an equal sign. The choice of not limiting the theory
to the 3-dimensional case is related to the study of the general d-dimensional
case that will be presented in Chapter 5.
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Figure 2.2: Direct check of Eq. 2.2 for the LJ system at the state point
(ρ, T ) = (1.0635, 2.0). Different equilibrium configurations are selected from
an NVT simulation at the given state point and then scaled to 200 different
densities in the range [0.85ρ, 1.28ρ]. After the scaling is done, the potential
energy is calculated and its deviation from the mean value (evaluated from all
the scaled configuration at each density) is evaluated. The ordinate axes is
scaled using the standard deviation, analogously of what is done in Ref. [40].

If the potential is Euler-homogeneous, i.e.,

v(λr) = λav(r) (2.3)

with a in N0, Eq. 2.2 is trivially verified:

U(λRi) = λaU(Ri) (2.4)

U(λRj) = λaU(Rj) (2.5)

and so U(Ri) < U(Rj) =⇒ U(λRi) < U(λRj). (2.6)

For this reason, any system interacting via Euler-homogeneous potential is
a Roskilde liquid, as stated previously. For other systems, Eq. 2.2 will
only approximately hold, as in the case of the Lennard-Jones (LJ) system
[41] for which the validity of Eq. 2.2 is checked in Fig. 2.2. The scaled
configurations are mostly not crossing each other.

The entropy S of any physical system can be written as the sum of the
entropy of an ideal gas at the same temperature and density and an excess
term, Sex, which is related to the interaction between particles. If we now
consider physically relevant micro-configurations with the same density ρ
and the same potential energy U(R), we can formally define a microscopic
excess entropy Sex simply by choosing it to be the Sex corresponding to the
potential energy surface that the configuration R belongs to [40, 64]:

Sex(R) ≡ Sex(ρ, U(R)). (2.7)

The restriction of considering physically relevant micro-configurations re-
flects the fact that for real systems isomorph theory is only approximate.
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The non physically relevant micro-configurations are the ones that are less
likely, i.e., corresponding to a low Boltzmann factor. Under the assumption
of Sex(ρ, U(R)) being bijective, Eq. 2.7 can be used to express potential
energy as function of excess entropy:

U(R) = U(ρ, Sex(R)). (2.8)

These equations, Eqs. 2.7 and 2.8, can be used to define relations between
excess entropy and potential energy for every system. Nevertheless, they are
of particular interest for Roskilde systems because they imply the existence
of curves of invariant structure and dynamics. It can be proved [40] that
two isotropic scaled micro-configurations satisfying Eq. 2.2 have the same
excess entropy Sex. The relation between the state vector R of the two
scaled configurations R1 and R2 = λR1 is:

ρ
1/d
1 R1 = ρ

1/d
2 R2 ≡ R̃ (2.9)

where the last equality defines the reduced coordinate vector R̃. In this case,

the λ in Eq. 2.2 is equal to ρ
1/d
1 ρ

−1/d
2 . The invariance of Sex under isotropic

scaling implies that the excess entropy for a Roskilde system depends only
on the reduced coordinate vector R̃.

Sex(R) = Sex(R̃) (2.10)

and therefore Eq. 2.8 can be recast as:

U(R) = U(ρ, Sex(R̃)). (2.11)

When defining the reduced coordinate R̃, we use the density of the sys-
tem. The idea of using macroscopic thermodynamic quantities as reference
units for the description of the system was originally introduced by Rosen-
feld [65, 66] and it is used to define invariant quantities in isomorph theory.
Henceforth quantities expressed using macroscopic thermodynamic quanti-
ties as reference units are named ’in reduced units’ and represented with a
tilde; distances are measured in units of ρ−1/d, energies in units of kBT and
time in units of m1/2(kBT )−1/2ρ−1/d, where m is the average particle mass.

Isomorphs are defined as configurational adiabats, i.e curves along which
the Sex is constant, in the region of the phase diagram where the system is R
simple. Starting from Eq. 2.11, it is possible to show that the structure and
dynamics of a Roskilde liquid along isomorphs are invariant, when expressed
in reduced units.
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2.3 Isomorph invariants and isomorph shape

Invariance of structure and dynamics

In order to show the invariance of structure and dynamics along an isomorph
it is sufficient to show that Newton’s second equation of motion, in reduced
units, is invariant along an isomorph. The reduced units version of Newton’s
second law is:

d2R̃

dt̃2
= F̃(R) ≡ F(R)ρ−1/d

kBT
(2.12)

The force at any given time will be function of the particles’ positions in non
reduced units. If the system of interest is R simple, we know from Eq. 2.11
that the potential energy U is function of the reduced coordinate vector R̃.
The reduced force vector F̃(R) in Eq. 2.12 is, for conservative forces:

F = −∇U(ρ, R̃) = − ∂U(ρ, Sex)

∂Sex

∣∣∣∣
ρ

∇Sex(R̃) (2.13)

which, using ∇ = ρ1/d∇̃ and ∂U/∂Sex|ρ = T , becomes:

F = −ρ1/dT ∇̃Sex(R̃) or F̃(R) = − 1

kB
∇̃Sex(R̃). (2.14)

Eq. 2.14 shows that the reduced force to be a function of the reduced
coordinate vector and therefore to be invariant along an isomorph for con-
figurations with given reduced coordinates. This implies that structure and
dynamics, in reduced units, are invariant along an isomorph [40].

Scaling exponent γ

The first characterization we gave of a Roskilde system is the strong correla-
tions between potential energy and virial fluctuations in the NVT ensemble.
This feature can be derived from Eq. 2.2 in the following way. For two config-
urations R1, R2 at the same density and potential energy U(R1) = U(R2),
Eq. 2.2 states that, for a Roskilde system, U(λR1) = U(λR2). We can now
take the derivative of U(λRi) respect to λ and obtain:

R1 · ∇U(λR1) = R2 · ∇U(λR2) (2.15)

and, using the definition of virial W (R) ≡ 1
dR · ∇U(R), we obtain, for

λ = 1:
W (R1) = W (R2). (2.16)

The knowledge of how potential energy scales allows one to predict the virial
of a different configuration. The two quantities W and U are therefore
perfectly correlated. This perfect correlation will exist only for systems that
fully satisfy Eq. 2.2 and it will hold for Roskilde systems only to a good
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approximation. As consequence of that, the correlation coefficient R, defined
in Eq. 2.1, between W and U is not identically equal to 1 but only close to.
For some systems, the Lennard-Jones system for example, the correlation
coefficient R, defined through Eq. 2.1, can be really close to unity, as shown
in Fig. 2.1 (b).

When the correlations between W and U are present, it is possible to
introduce a proportionality constant between the instantaneous fluctuations
of the two quantities:

∆W (t) u γ∆U(t) (2.17)

or, equivalently,

γ =
〈∆W∆U〉
〈(∆U)2〉 (2.18)

where the least-squares approach has been used to calculate the slope γ
of the linear regression of W as function of U . The Pearson correlation
coefficient of this linear regression is the R defined in Eq. 2.1.

Using the fluctuation relation [48]

∂〈A〉
∂β

∣∣∣∣
ρ

= −〈〈AU〉 − 〈A〉〈U〉〉 = −〈∆A∆U〉 (2.19)

where A is a generic thermodynamic quantity and β = (kBT )−1. Choosing
in particular W and U we get

∂〈W 〉
∂β

∣∣∣∣
ρ

= −〈∆W∆U〉, ∂〈U〉
∂β

∣∣∣∣
ρ

= −〈(∆U)2〉, (2.20)

together with the Maxwell relation [52]

ρ
∂〈W 〉
∂T

∣∣∣∣
ρ

= −ρ2 ∂Sex

∂ρ

∣∣∣∣
T

(2.21)

and the definition of thermodynamic temperature (〈U〉 = U)

∂U

∂Sex

∣∣∣∣
ρ

= T , (2.22)

Eq. 2.18 becomes

γ = −
ρ
∂Sex

∂ρ

∣∣∣∣
T

T
∂Sex

∂T

∣∣∣∣
ρ

= −

∂Sex

∂ ln ρ

∣∣∣∣
T

∂Sex

∂ lnT

∣∣∣∣
ρ

. (2.23)

The right-hand side of Eq. 2.23 is the logarithmic derivative of tempera-
ture T as function of density ρ along a constant excess entropy Sex curve
(dSex(ρ, T ) = 0) and therefore

γ =
∂ lnT

∂ ln ρ

∣∣∣∣
Sex

. (2.24)
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Figure 2.3: Data obtained from NVT simulations (SLLOD simulations for vis-
cosity η) of the Lennard-Jones model system. Details in appendix C. (a) Excess
pressure in reduced units, P̃ex = W/(NkBT ), along two different isomorphs.
For inverse power-law pair potentials this quantity is invariant, while for the
LJ system it clearly is not. This shows that isomorph scaling is not simply a
trivial IPL scaling. (b) In the top panel, the scaling exponent γ, Eq. (2.18), is
shown as a function of density along the freezing line of the LJ system and the
isomorph from (ρ0, T0) = (1.0635, 2.0), named the freezing isomorph for reasons
that will be discussed in Chapter 3. The green line is the predicted value from
Eq. 2.24 [55, 67] and Eq. 2.39. The middle and bottom panels show the virial
potential-energy correlation coefficient R and the reduced viscosity η̃ along the
freezing line of the LJ system and the freezing isomorph. The freezing line data
are taken from Pedersen [68] and the values of γ, R and η̃ at these points are
marked in blue; the red symbols are the same quantities calculated at freezing
isomorph state points.
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The proportionality constant defined in Eq. 2.18 is the scaling exponent
that produces constant excess entropy Sex curves in the R simple region of
the phase diagram, previously named, isomorphs. Eq. 2.24 allows one to
generate isomorphs step-by-step, i.e., for small density changes, due to its
differential form.

Connection with the first formulation of the theory

Starting from Eq. 2.8 the old formulation of the isomorph theory [48, 50–
53] can be recovered as a first order Taylor expansion; let’s consider a single
physically relevant micro-configuration R0 at the state point (ρ0, T0); its mi-
croscopic excess entropy is Sex(R̃0) and, assuming that the value of Sex(R̃0)
is close to the thermodynamic excess entropy Sex,0 at the state point (ρ0, T0),
it is possible to write its potential energy U(ρ0, Sex(R̃0)) using a first order
Taylor expansion:

U(ρ0, Sex(R̃0)) ≈ U0 + T0(Sex(R̃0)− Sex,0) (2.25)

where we made use of Eq. 2.8, of T = ∂U/∂Sex|ρ and of Eq. 2.10. The term
U0 = U(ρ0, T0) is the mean value of the potential energy at the state point
(ρ0, T0). If (ρ1,R1) and (ρ2,R2) are two micro-configurations corresponding
to the same reduced configuration R̃1 = R̃2 = R̃ the potential energy of the
two micro-configurations are:

U(ρ1, Sex(R̃1))− U1

kBT1
=
U(ρ2, Sex(R̃2))− U2

kBT2
(2.26)

due to the invariance of Sex(R̃) − Sex,0 and accordingly the definition of
Roskilde simple systems from Ref. [48] is recovered. Eq. 2.26 has been ob-
tained using an approximation for the Sex dependency. If this approximation
is dropped, a generalized version of Eq. 2.26 is:

U(R2) = fρ1(ρ2, U(R1)). (2.27)

This last equation is equivalent to Eq. 2.2 as discussed in Ref. [40]. There-
fore the temperatures corresponding to the configurations R1 and R2 = λR1

along the same isomorph will be related by, always using T = ∂U/∂Sex|ρ:

T2 =
∂fρ1(ρ2, U(R1))

∂U(R1)

∣∣∣∣
ρ1,ρ2

T1 (2.28)

remembering that due to Eq. 2.11, the potential energy U depends on the
micro-configuration Ri through the excess entropy Sex(R̃i). Eq. 2.28 gives
the density dependence of the temperature along an isomorph. It is therefore
possible to define the shape function for isomorphs as follows:

h(ρ1, ρ2, U1) =
∂fρ1(ρ2, U(R1))

∂U(R1))

∣∣∣∣
ρ1,ρ2

(2.29)

21



Chapter 2

and Eq. 2.28 becomes
T2 = h(ρ1, ρ2, U1)T1. (2.30)

For state points along an isomorph starting from (ρ1, T1), it is also possible
to use the function h(ρ1, ρ2, U1) to obtain the density dependence of the
scaling exponent γ substituting Eq. 2.30 into Eq. 2.24:

γ(ρ2, Sex(R̃)) =
∂ lnh(ρ1, ρ2, U1)

∂ ln ρ2

∣∣∣∣
Sex

. (2.31)

2.3.1 Estimating specific heat along an isomorph

The excess specific heat at constant volume CexV , i.e. the difference between
the system CV and the specific heat at constant volume of an ideal gas at
the same density and temperature, is defined by

CexV =
∂U

∂T

∣∣∣∣
ρ

. (2.32)

If two isomorphic state points are taken into account it is possible to express
the excess specific heat of the state point (ρ2, T2) as function of the excess
specific heat of the state point (ρ1, T1) using Eqs. 2.27 and 2.30 [40].

CexV,2 =
∂U(R2)

∂T2

∣∣∣∣
ρ2

=
∂U(R2)

∂U(R1)

∣∣∣∣
ρ2

∂U(R1)

∂T2

∣∣∣∣
ρ2

(2.33)

and therefore

1

CexV,2
=

1

CexV,1
+

T1

h(ρ1, ρ2, U(R1))

∂h(ρ1, ρ2, U(R1))

∂U(R1)

∣∣∣∣
ρ1,ρ2

(2.34)

CexV,2 = CexV,1

[
1 +

∂ lnh(ρ1, ρ2, U(R1))

∂ lnT1

∣∣∣∣
ρ1,ρ2

]−1

. (2.35)

Excess specific heat data for the LJ system along three different isomorphs
are shown in Fig. 2.4. The full lines are predicted excess specific heat at
constant volume CexV from Eq. 2.35.

If in Eq. 2.35 the partial derivative term is ignored, the prediction from
the first formulation of isomorph theory [52] is recovered. From data in
Fig. 2.4 it is clear that the approximation of considering the specific heat
invariant along an isomorph provides results worse than Eq. 2.35 but still
not too far from the simulation data [69].
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Figure 2.4: Excess specific heat at constant volume per particle cexV along three
different isomorphs. Density ρ and temperature T of the starting points for the
three isomorphs are given in the legend and the value of cexV per particle at these
starting points is marked with a cross in figure. Dotted lines are the predictions
from isomorph theory for cexV from Eq. 2.35. At high densities the data exhibit a
plateau which correspond to the prediction of the first formulation of isomorph
theory [52], i.e. constant cexV .

2.3.2 Isomorph shape function h(ρ) from the pair potential

In previous sections the function h(ρ1, ρ2, U1) have been introduced but no
details are given on its functional form. In Refs. [55, 67, 70] the question
of relating the function h(ρ1, ρ2, U1), which in the following will be referred
as h(ρ), has been addressed. It can be shown in fact that the density de-
pendence of the scaling exponent γ can be obtained from the pair potential
through:

γ(ρ, Sex) =
1

d

(
−2− rv

(3)(r)

v(2)(r)

)∣∣∣∣∣
r=Λ(Sex)ρ−1/d

(2.36)

where the second and third derivative of the pair potential, respectively
v(2) and v(3), are involved and d is the number of spatial dimensions. The
quantity Λ(Sex) takes into account the dependence on excess entropy of
Eq. 2.31. The physical meaning of Λ(Sex) is that along an isochore the
scaling exponent slightly changes with temperature and therefore Eq. 2.36
needs to be specialized to the considered isomorph, which is identified by its
(conserved) excess entropy Sex. The shape function h(ρ) can be obtained
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by integration from Eq. 2.36, as it is clear from Eq. 2.31:

h(ρ, Sex) = A ρ−2/dv(2)(r)
∣∣∣
r=Λ(Sex)ρ−1/d

. (2.37)

The parameter A takes into account that the function h(ρ) is defined up to a
positive multiplicative constant. In the case of the Lennard-Jones potential
[41] in d = 3

vLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

, (2.38)

Eq. 2.37 becomes:

h(ρ, Sex) =

(
γ0(Sex)

2
− 1

)(
ρ

ρ0

)4

−
(
γ0(Sex)

2
− 2

)(
ρ

ρ0

)2

(2.39)

where the function has been evaluated at a state point (ρ0, T0) with scaling
exponent γ0. As already pointed out, the dependence on Sex can be dropped
when considering a single isomorph since the excess entropy is constant along
any given isomorph, as stated in Eq. 2.10.

It is interesting to note that the right hand side of Eq. 2.36 is propor-
tional to the approximate IPL exponent of order p = 2 [48, 50]:

n(p)(r) =

(
−p− rv

(p+1)(r)

v(p)(r)

)
. (2.40)

In the case of a simple IPL potential with exponent n, n(p)(r) = n for
every p. For the IPL potential, the scaling exponent from Eq. 2.36 will be
identically n/d for any distance. In d = 3, the function h(ρ) can be used
to understand why the density-scaling discussed in Chap. 1 holds. In Fig.
2.3, the density dependence of γ along an isomorph is shown for the LJ
potential and the data are compared with Eq. 2.36. The scaling coefficient
γ exhibits a slow variation with density ρ (it changes from ≈ 6 to ≈ 4 while
density is changed a factor 2) and this is why density-scaling with fixed
scaling exponent [13–16] is obeyed [55].
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2.4 Differences and analogy between liquid state
theories

Now that the main features of isomorph theory have been highlighted it
is possible to compare isomorph theory with the previous approaches used
to describe the liquid state, i.e. the HS paradigm introduced in Chap. 1
and the well known Weeks-Chandler-Andersen [45–47] approximation for
the Lennard-Jones system.

The isomorph theory and the HS paradigm

The HS system has been the reference system of the theory of simple liquid
in the last century [1] and it has been found to well describe many aspects
of simple liquids. Nevertheless three important aspects of the mapping from
a generic system to the HS one are still debated. The first one is the need of
defining an ad hoc HS radius: no clear answer to how to define it has been
found [71–77]. The second aspect concerns the applicability of the mapping;
it is well known, for example, that many systems exhibit invariances along
constant excess entropy curves in the dense region of the liquid phase [65, 78]
but there is no way, given a specific state point, to verify if it is in the well
behaving dense region or not without comparing its physical properties to
the ones of another state point. The third issue is relating to the predicted
invariances. Once the chosen system have been mapped to the corresponding
HS system (after choosing an HS radius) it should inherit all the invariances
of the HS system itself but this is not the case: as shown in Fig. 2.3 the
LJ system has invariant dynamics along an isomorph, i.e. a region of a
configurational adiabat for which the correlation coefficient R is larger than
0.9, as predicted in a HS picture but not invariant reduced (excess) pressure.

All these problematic aspects of the HS mapping are not present in the
isomorph theory which is at the same time able to described a wide class of
systems without referring to the unphysical picture of liquids as collection
of spherical particles interacting via rigid collisions. In the isomorph theory
there is no need for mapping from the real system to an ideal one and
therefore no need of defining an ad hoc radius. Often the isomorph theory is
confused with some sort of mapping to an IPL system [1] but this is not the
case. As shown in Fig. 2.5 (a), the viscosity of the LJ system and that of the

IPL describing the repulsive part of the LJ potential vIPL12(r) = 4ε
(
σ
r

)12
are

different. The most striking difference, in our view, is not in the numerical
difference between the computed viscosity for the two systems but in the
completely different trends. While the reduced viscosity η̃ is invariant for
the LJ system, Fig. 2.3, this is not true for the IPL along the same curve. In
the isomorph theory the well behaving region, i.e. the region of applicability
of the theory, is well defined. If the correlation coefficient R, given by Eq.
2.1, at the chosen state point is larger than 0.9 the isomorph theory can

25



Chapter 2

10
0

10
1

10
2

T
F

LJ
 (Agrawal and Kofke)

1.0

1.2

1.4

1.6

1.8

2.0

η
IP

L
/η

L
J

η
IPL

/η
LJ

10
0

10
1

10
2

10
3

T
F

LJ
 (Agrawal and Kofke)

10
1

10
2

10
3

η
IPL

η
LJ

(a)

0.90 0.95 1.00 1.05 1.10

ρ
F

LJ
(Pedersen)

0.020

0.025

0.030

0.035

0.040

0.045

0.050

D

WCA
LJ

(b)

Figure 2.5: Differences between the isomorph theory and other approaches.
(a) Comparison between the viscosity of the LJ system with truncation at 2.5σ

and the IPL12 potential vIPL12(r) = 4ε
(
σ
r

)12
with the same truncation along

the freezing line state points from Ref. [79]. The difference between the viscosity
data for temperatures below T ≈ 70 in LJ units clearly shows that the IPL12
system does not offer a reliable description of the LJ dynamics in a significant
part of the phase diagram. (b) Comparison between the diffusion coefficient
D of the LJ system and the WCA approximation along the Pedersen freezing
line [68]. While it is well known that the structure of the LJ fluid can be
described with the WCA approach, which relies on the same assumptions of the
HS paradigm, this approximation completely fails in reproducing the dynamics.
The same failure in describing the dynamics with WCA approximation is well
known also for the LJ binary mixture [80, 81].
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be used. The third issue introduced in the previous paragraph is maybe
the most interesting problem of the HS mapping. Why some quantities are
invariant while some others are not? In the case of isomorph theory this
question is easily addressed [52]: quantities involving derivatives respect to
volume of the internal energy are not invariant. This is the case for pressure
for example and it explains why the excess reduced pressure P̃ex of the LJ
system in Fig. 2.3 is not invariant.

WCA and isomorphs for the LJ system

It is well known that the structure of the LJ system in the dense liquid
region can be well described using the Weeks-Chandler-Andersen (WCA)
[45–47] approximation. This approximation is based on the idea that the
LJ liquid can be described ignoring the effect of the attraction, in the dense
liquid region. The WCA potential is obtained by cutting the LJ potential at
the distance r̄ corresponding to the minimum of the potential and shifting
the potential in order to have vWCA(r̄) = 0.

The WCA approximation has been proved to well reproduce the struc-
ture of the LJ system but at the same time it has been recently proved by
different authors that it gives a poor description of the dynamics [80–82].
The diffusion coefficient for two systems of particles, the first interacting
via vWCA(r) and the latter via LJ potential with cut at 2.5σ, is shown in
Fig. 2.5 for state points along the freezing line from Ref. [68]. The data
differ significantly. As will be discussed in the next chapter, isomorph theory
is able to describe the invariance of both dynamics and structure along the
configurational adiabats without the need of ignoring the attraction between
Lennard-Jones particles.
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The Lennard-Jones model
system and its isomorphs

In this chapter we discuss how isomorph theory can be related to some
well known freezing and melting criteria connecting them to the isomorph
invariances of the Lennard-Jones (LJ) system [41]. A study on the relation
between the correlation coefficient R and the scaling exponent γ for the
generalized LJ model is also included. The work on the freezing and melting
line of the LJ system has been published in Ref. [83, 84] while the results
on the generalized LJ model have not been published yet. Details on the
simulations can be found in appendix C.

In the last chapter we described how isomorph theory can be used to
explain specific invariances of Roskilde liquids. In this chapter and in the
following ones two model systems are studied: the Lennard-Jones (LJ) [41]
system and the Gaussian core system. These two systems are representative
of two classes of model liquids which have been widely studied in the past
years: the LJ system is an example of simple liquid according to the most
common definition [1] while the Gaussian core is an example of anomalous
liquid [6, 24, 85]. These two systems are different in many aspects but they
can both be described by isomorph theory in parts of their phase diagram.
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3.1 Freezing and melting lines of the LJ system

In Chap. 1 the phase diagram of a single-component system has been in-
troduced. When pressure and temperature are used as thermodynamical
variables to define the state of a system, as in Fig. 1.1, the transition be-
tween the liquid state and the solid state is represented by a line, the melting
line, in the phase diagram because the coexistence pressure between liquid
and solid is unique at any temperature. Another possible choice of ther-
modynamical variable is to use density and temperature. In this case there
exist a range of densities at which liquid and solid can coexist at equilibrium
for each temperature. This coexistence region is delimited by two lines: the
freezing line represents, at each temperature, the lowest density at which
liquid and solid can coexist while the melting line represents the highest
density.

The study of freezing and melting of a simple liquid has been broadly
discussed in the past [86–88]. The aim of our study in this broad field was
to understand why some liquids show invariances along their freezing and
melting curves and others do not [89, 90]. Another interesting question
in this context is if these invariances are peculiarities of the freezing and
melting processes or if these invariances hold also elsewhere in the phase
diagram. In order to answer these questions we performed an extensive
study of the freezing and melting of a well known system, the Lennard-
Jones model system. The reasons for studying this specific system are many,
among them the most important are, in our view, the simplicity of the model
liquid itself, which is also why this model system has been so widely used,
and the presence of a wide literature to compare to. The results of this
section have been published in [83].

3.1.1 Data and predictions for the freezing and melting lines

Already in 2009, Gnan et al [52] and Schrøder et al [53] proposed that the
freezing line for the LJ system should be an isomorph. This conjecture was
left without proof until 2014 when Pedersen [68] showed that an isomorph
can be used to approximate well the LJ freezing line for densities of about
1.0 in LJ units. Small deviations were found close to the triple point and
we will discuss them in the next section. In this section we present different
estimations of the LJ freezing line that have been computed in the last
twenty years and test the prediction of the LJ freezing line to be an isomorph
on the full range of densities and temperatures studied in the past. The LJ
model system has been used as a model system for some metals too, therefore
the study of the freezing line for this system can be of interest in other fields
of research as for example in the study of Earth’s core [91–93].

We used the state point (ρ, T ) = (1.0635, 2.0) as reference point for
building the freezing isomorph. This freezing state point was calculated by
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Figure 3.1: Freezing line of the LJ system. In (a) the isomorph approxima-
tion to the freezing line is marked by the red line and the Khrapak and Morfill
approximation [95] by the black line (AF,KM = 2.29 and BF,KM = 0.71 in this
case); freezing state points obtained in the recent years using various techniques
are shown by symbols [68, 79, 96, 97]. Both approximations reproduce the data
points well; the inset focuses on low densities. In (b) the relative difference
between Agrawal and Kofke freezing-temperature data [79] and the two approx-
imations is shown. The isomorph approximation gives smaller deviations from
the simulation data. The main advantage of approximating the freezing line by
an isomorph lies, however, in the possibility of predicting the full freezing line
from the knowledge of a single freezing state point.
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Pedersen [68] using the interface pinning method [94]. In Chap. 2 we have
shown that at this state point the LJ liquid is a Roskilde liquid, Figs. 2.1
and Fig. 2.2. The correlation coefficient R and the scaling exponent γ at
this state point are:

RF = 0.995 , γF = 4.907 . (3.1)

Even though the correlation coefficient is close to 1.0, the γ value definitely
differs from 4, indicating that the attractive part of the potential is not
negligible. Starting from this state point it is possible to build an isomorph
that we will name the approximating freezing isomorph or simply freezing
isomorph. The equation of this isomorph is:

TF (ρ) = AFρ
4 −BFρ2 (3.2)

where AF = 2.27, BF = 0.80 and TF is the freezing temperature at a given
density ρ. This equation have been obtained using Eq. 2.39 with the value of
Eq. 3.1 for γ. It should be remembered that isomorph theory is not exact for
the LJ system but it holds only approximately and the fact that the freezing
line is an isomorph is an approximation itself. Because of this approximate
nature of the isomorph theory, the parameters in Eq. 3.2 slightly depend
on the freezing state point chosen. The same density dependence for the
freezing temperature of the LJ system was suggested by Khrapak and Morfill
[95] and, in fact, long ago by Rosenfeld from his “additivity of melting
temperatures” (derived by reference to the hard-sphere system) [98, 99].
In Fig. 3.1, the freezing isomorph is compared with computed values for
the freezing line in a wide range of densities. There is not doubt that the
freezing isomorph provides a rather good approximation for the freezing line
of the LJ system in the whole range of densities considered. It is also worth
noting that the construction of the freezing isomorph requires only a single
NVT simulation at a chosen freezing point, in our case (ρ, T ) = (1.0635, 2.0).
Nevertheless, it is also clear, from Fig. 3.1 (b), that the freezing line is not
exactly an isomorph as we will discuss in the next section.

The isomorph theory has been shown to hold for the crystalline phase too
[54]. The same treatment presented here for the freezing line can therefore
be repeated for the melting line. We choose to build the melting isomorph
from a state point at the same temperature as the one chosen for the freezing
isomorph. The state point used is (ρ, T ) = (1.132, 2.0) and the values of R
and γ at this state point are:

RM = 0.9985 , γM = 4.8877 . (3.3)

The melting temperature as function of density is obtained using Eq. 2.39:

TM (ρ) = AMρ
4 −BMρ2 (3.4)
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ρM TM Tpinning ∆T/TM
0.973 0.800 0.921 −0.132

0.989 0.900 1.006 −0.106

1.005 1.000 1.095 −0.086

1.034 1.200 1.270 −0.055

1.061 1.400 1.453 −0.036

1.087 1.600 1.636 −0.022

1.109 1.800 1.812 −0.007

1.132 2.000 2.000 +0.000

1.153 2.200 2.191 +0.004

1.172 2.400 2.371 +0.012

1.191 2.600 2.561 +0.015

3.509 258.44 275.81 +0.067

Table 3.1: Comparison between the melting temperature predicted using Eq.
(3.4) at a given density ρ and the melting temperature calculated for the same
density using the interface pinning method [94]. The freezing and melting den-
sities at T = 275.81 have been calculated in Ref. [83] by the author while the
other data are from Pedersen [68]. The parameters in Eq. 3.4 were calculated
at the reference state point (ρ, T ) = (1.132, 2.0)

where AM = 1.76 and BM = 0.69. The functional form of Eqs. 3.2 and 3.4
is exactly the same because isomorph shape depends on the chosen potential
only and not on the system phase. The comparison between the tempera-
tures estimated through Eq. 3.4 and the computed ones is shown in Table
3.1 (from Ref. [83]).

3.1.2 Invariances along the freezing and melting lines and
phase transition criteria

The existence of isomorphs in the phase diagram of a Roskilde system has an
important consequence in the description of phase transitions. In the region
of the phase diagram where strong correlations are present, it is sufficient
to know any isomorph invariant quantity on a single line, which is not an
isomorph, to be able to predict the behavior of these quantities in the whole
region. This is possible because from any point along the chosen line, which
could be for example an isochore or an isotherm, it is possible to build
an isomorph and thereafter to estimate the value of the chosen quantity
along the isomorph using its invariance in reduced units. It is therefore
correct to state that the phase diagram of any R system is approximately
1-dimensional when referring to isomorph invariant quantities. In this view
any isomorphic invariant quantity will have a given value, in reduced units,
at the phase transition and so the phase transition can be identified by a
specific value of the isomorphic invariant quantity.
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Figure 3.2: Liquid results. Structure factor S(q) along the Pedersen freezing
line (a,d) [68], along the freezing isomorph from Eq. 3.2 (b,e), and along an
isomorph well within the liquid phase (c,f); in (a), (b) and (c), S(q) is plotted
as a function of wave vector q in Lennard-Jones units, in (d), (e) and (f), S(q)
is plotted as a function of reduced wave vector q̃ = ρ−1/3q. It is worth noting
that while in (a) and (d) the density change is about 25 percent, in the other
figures density is changed about a factor 3.

If for example the maximum value of the structure factor S(q) at a given
freezing point is S(q̃max), where the q vector is expressed in reduced units,
the maximum value at any other given freezing point will be the same due
to isomorph invariance of structure, since the freezing line is approximately
an isomorph. This peculiar invariance is known as Hansen-Verlet freezing
criterion [100, 101] and was originally explained by reference to the HS
system.
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A B T ρ γ R
liquid isomorph 4.32 1.34 4.0 1.0635 4.7589 0.9966
freezing isomorph 2.27 0.80 2.0 1.0635 4.9079 0.9955
melting isomorph 1.76 0.69 2.0 1.132 4.8877 0.9985
crystal isomorph 0.91 0.39 1.0 1.132 4.9979 0.9986

Table 3.2: This table gives the coefficients A and B of the four isomorphs
studied in this work (Eq. 3.2 and Eq. 3.4 and similar for the two other iso-
morphs). The first two columns contain the coefficients A and B and the latter
four columns contain temperature T , density ρ, density scaling coefficient γ and
correlation coefficient R of the state points the isomorphs studied in this work
start from. A pure n = 12 IPL pair potential leads to γ = 4 as discussed in
Chap. 2.

According to the same reasoning, if we consider a crystal at a state
point on the melting line and study the vibrations of elements of the lattice,
i.e. its dynamics, it is possible to associate with the melting of the crystal
a specific value of the plateau of the reduced mean-squared-displacement

(MSD) < u2 >m /ρ
2/3
m [102, 103]. Due to the invariance of dynamics along

an isomorph, the melting isomorph in Eq. 3.4 in this case, this MSD is
approximately invariant along the melting line and this invariance is well
known as the Lindemann melting criterion [104].

In order to show that these criteria are not features of the freezing or
melting process per se, in Figs. 3.2 and 3.3 the invariance of S(q) along the
freezing isomorph and along another isomorph in the liquid phase and the
invariance of MSD along the melting isomorph and along another isomorph
in the crystal phase are shown. The details on the starting state points for
the freezing isomorph, the melting isomorph and for the other two isomorphs
considered are given in Table 3.2.

The behavior of S(q) (MSD) along the liquid (solid) isomorph and along
the freezing (melting) line is the same and therefore freezing (melting) in-
variances are consequence of the more general invariance [9, 43], due to the
existence of isomorphs. This point is of great interest because it means that
any theory of liquid or solid state should take into account the fundamental
importance of isomorphs in the phase diagram of an R simple system.
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Figure 3.3: Crystal results. Mean-squared displacement (MSD) along the
Pedersen melting line (a,d) [68], along the melting isomorph from Eq. 3.4 (b,e),
and along an isomorph well within the crystal phase (c, f); in (a), (b) and (c),
the MSDs are plotted as a function of time t in LJ units, in (d), (e) and (f),
the reduced MSDs are plotted as a function of reduced time t̃. The invariance
of the plateau of MSD along the melting line implies the Lindemann melting
criterion for R liquids because the invariance of the reduced-unit vibrational
mean-square displacement is equivalent to the invariance of Lindemann constant
[102, 103]. Along the melting isomorph defect diffusion is observed. Defect
formation is a stochastic phenomenon, as shown by the non-monotonicity of its
appearance with respect to T or ρ. In order to study the isomorphic invariance
of defect formation, an averaging over many simulations at every state point is
necessary which could be object of future studies. The diffusion of defects, in
LJ crystals, when properly averaged, has been shown to be isomorphic invariant
by Albrechtsen et al [54].
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3.1.3 Invariance of reduced viscosity and the Andrade equa-
tion for freezing viscosity

A consequence of the invariance of dynamics along an isomorph is that the
reduced (bulk) viscosity

η̃ = ηρ−2/3(mkBT )−1/2, (3.5)

as well as all the other reduced transport coefficients, is invariant. When
this invariance is taken into account, together with the fact that the freezing
line is an approximate isomorph, an equation for viscosity along the freezing
line can be obtained:

ηF = η̃0ρ
2/3(mkBTF (ρ))1/2 (3.6)

where the subscript F stands for freezing, TF (ρ) is the freezing temperature
at density ρ and η̃0 = 5.2 is the reduced value of η at the reference state
point (ρ0, T0) = (1.0635, 2.0). Using Eq. 3.2 it is possible, for the LJ system,
to rewrite Eq. 3.6 as function of ρ (or alternatively T ) only:

ηF (ρF ) = η̃0 · ρ2/3
F

√
mkB

(
AFρ4

F −BFρ2
F

)
(3.7)

η(TF ) = η̃0

√
mkBTF



BF +

√
B2
F + 4AF ·TF

2AF




1/3

(3.8)

in which AF = 2.27 and BF = 0.80 are the freezing isomorph coefficients
as in Eq. 3.2. In Fig. 3.4, viscosities estimated with Eqs. 3.7 and Eq. 3.8
are compared with the corresponding values for the LJ system, calculated
using the SLLOD algorithm [105–107]. The green line in Fig. 3.4 is obtained
assuming η̃0 = 5.2 to be constant as predicted from from isomorph theory.
This dependence of viscosity on freezing density and temperature as in Eq.
3.6 is known as the Andrade equation for freezing viscosity [108–110]:

η(ρF , TF ) = β · ρ2/3
F

√
TF . (3.9)

Eq. 3.9 was proposed in 1931 to describe the viscosity of liquid alkali metals
along their freezing line. The coefficient β depends on the chosen material
and, analogously, the reduced viscosity at freezing η̃F depends on the po-
tential. Even though alkali metals can be considered much more complex
than the Lennard-Jones system, the isomorph theory can be used to describe
them both. It was in fact shown by Hummel et al [111] that most metals
exhibit strong correlations between virial and potential energy and therefore
are Roskilde simple. The existence of strong correlations and isomorphs is
the reason why Andrade equation for freezing viscosity [108–110] holds.
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Figure 3.4: Viscosity along the freezing line and along the freezing isomorph,
Eq. 3.2, as a function of density (a) and of temperature (b). The black dots
represent results for the viscosity obtained from our SLLOD simulations [105–
107]. The green line is the predicted viscosity assuming the invariance of reduced
viscosity along an isomorph (Eqs. 3.7 and 3.8). The red dot is the viscosity
of the state point from which the freezing isomorph is built and from which
the constant η̃0 in Eq. 3.6 is determined, (ρ, T ) = (1.0635, 2.0). The reduced
viscosity at this state point is η̃0 = 5.2.
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3.2 Thermodynamics of freezing and melting at
low densities

In the previous section we showed that the freezing and melting isomorphs
provide good approximations of the freezing and melting line for the LJ
system. It can be seen that this approximation works best when the density
ρ is larger than 1.0. Looking at Fig. 3.2 (a) and (b), it could be noted
that the peak height of the structure factor S(q) is slightly increasing with
increasing density in (a) while it is quite constant in (b), even though the
range of densities in (b) is much larger. A similar small difference between
isomorph predictions and results from simulations can be seen in Fig. 3.3,
where the plateau value of the MSD is slightly increasing for increasing
density (or increasing pressure). This density dependence of the Lindemann
constant was pointed out also in Ref. [112].

In this section we study the behavior of freezing and melting lines near
the triple point, showing that it is possible to correct the predictions of the
last section in order to get an even better description of the freezing and
melting lines and of the dynamics. In the following we will reproduce some
of the results from Ref. [84].

The author’s main contribution to this work was the study of viscosity
presented in Fig. 3.6. The data for viscosity in this section have been
obtained using the SLLOD algorithm [105–107], as those of the last section,
but the cutoff radius of the potential (and consequently the system size) has
been changed. In this case in fact the LJ potential is studied with a cutoff
of 6σ in order to reduce the effect of using a truncated potential instead of
the full one. The effect of potential truncation on the melting line of the LJ
system near the triple point is studied in Ref. [68] where data for truncation
at 2.5σ and 6σ are compared. More information on the simulations can be
found in appendix C.

We will start by focusing on the description of melting in the pressure-
temperature (p, T ) phase diagram, in which there is no difference between
freezing and melting line, and then in the density-temperature (ρ, T ) phase
diagram. In the following, starting from the knowledge of equilibrium prop-
erties at a given coexistence state point for the LJ system, (p0, T0, ρ0l, ρ0s) =
(20.857, 2.0, 1.0635, 1.132) from [68], the coexistence line is predicted and the
prediction compared with the simulation data.

3.2.1 The melting pressure

The coexistence line between the liquid and the solid is where the two phases
have the same pressure, temperature and Gibbs free energy per particle
[89]. Consider now two state points at the same temperature T 6= T0, the
first one (pm, T ) along the melting line and the second one (pI , T ) along
the isomorph starting from (p0, T0). These two state points have a slightly
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Figure 3.5: Phase boundaries. (a) melting line of the LJ system in the (p, T )
phase diagram. The simulation data obtained with interface pinning method
[68, 94] (black dots) are compared with the prediction of the melting line from
Eq. 3.12 and from the extrapolation of the Clausius-Clapeyron equation [89]
assuming constant ∆V , i.e. constant difference between the volume of the solid
and of the liquid at the melting pressure, and constant excess entropy difference
∆Sex between the two phases. The reference point has been indicated with
an arrow. (b) freezing and melting lines of the LJ system in the (ρ, T ) phase
diagram. The simulation data obtained with interface pinning method [68, 94]
(black dots) are compared with the prediction obtained in Sec. 3.2.2. The
reference points (one on the freezing line and one on the melting line) have been
indicated with arrows. Figures taken from Ref. [84].

different pressure
∣∣pm − pI

∣∣ < 1 if they are not far from the reference point
(p0, T0). The Gibbs free energy G(T, pm(T )) at the melting state point
(pm, T ) can be therefore obtained as a function of the Gibbs free energy
along the reference isomorph using a first order Taylor expansion:

Gl(T, pm(T )) u GIl (T ) + V I
l (T )(pm(T )− pIl (T ))

= F Il (T ) + V I
l (T )pm(T )

Gs(T, pm(T )) u GIs(T ) + V I
s (T )(pm(T )− pIs(T ))

= F Is (T ) + V I
s (T )pm(T )

where V = ∂G
∂p

∣∣∣
T

has been used and l and s indicate the liquid or solid phase

while I is used to label quantities along an isomorph built from the starting
state point. In the last equality, the relation G(T, p)− V (T )p(T ) = F (V, T )
connecting Gibbs free energy and Helmholtz free energy F (V, T ) has been
used. The coexistence state point at the new temperature, can be found
using the equality Gl(T, pm(T )) = Gs(T, pm(T )) which implies

pm(T )(V I
l − V I

s ) = F Is (T )− F Il (T ). (3.10)

When the difference in Helmholtz free energy between the two phases can
be evaluated, it is possible to find the coexistence pressure pm(T ) at the new
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temperature. The definition of Helmholtz free energy is:

F Il/s(T ) = U Il/s(T )− TSex,l/s + Fid(T, ρ
I
l/s(T )) (3.11)

where Fid is the ideal gas contribution. The ideal term is known at any
state point. The difference in excess entropy Sex between the liquid and
solid phase, necessary for the calculation of pm(T ) from Eq. 3.10, can be
obtained using the condition Gl(T0, p0) = Gs(T0, p0) at the starting state
point. Since the excess entropy Sex along an isomorph is constant, the
excess entropy difference between two isomorphs is constantly equal to the
difference at the starting state points [84]. The equation for the melting
pressure pm at temperature T , for an R simple system, is therefore:

pm(V I
l − V I

s ) =

(
U Is −

T

T0
Us,0

)
−
(
U Il −

T

T0
Ul,0

)

+
T

T0
(Wl,0 −Ws,0) +NkBT ln

(
ρIs
ρI0s

ρI0l
ρIl

)
(3.12)

where Wl/s is the virial at the starting state point. In the case of the LJ

system, the virial W I
l,s and potential energy U Il,s along an isomorph can be

calculated analytically [53, 84] from knowing only the physical quantities
at the starting state point. The predicted melting pressure from Eq. 3.12
for the LJ system is compared with the melting line evaluated by Pedersen
[68] using the interface pinning method [94] in Fig. 3.5 (a). The last term
in Eq. 3.12 is responsible for corrections to the isomorph theory prediction
of the last section. This correction is less and less relevant as temperature
increases because the ratio between the liquid and solid density at a given
temperature becomes constant.

3.2.2 The freezing and melting densities

In order to bring these results on the melting line from the (p, T ) phase
diagram to the (ρ, T ) one, it is necessary to know the densities of the liquid
and solid at the coexistence pressure given by Eq. 3.12. In the case of the
LJ system this can be done because, along an isomorph, the dependence of
the virial on density is known [53, 84]. From the coexistence pressure pm(T )
the virial is obtained as function of density and temperature:

Wl/s,m(T )

N
=

pm(T )

ρl/s,m(T )
− kBT (3.13)

At the same time, the virial at (pm, T ) can be obtained from a first order
Taylor expansion with respect to the reference isomorph:

Wm(T ) = W I(T ) +
∂W (T )

∂ ln(ρ/ρ0)

∣∣∣∣
I

T

ln
(
ρm/ρ

I
)

(3.14)
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Figure 3.6: Dynamics along the melting and freezing line in the (ρ, T ) phase
diagram. (a) Lindemann ratio as a function of temperature T along the melt-
ing line. The black dots represent the Lindemann constant obtained from the
plateau of the MSD of the crystal, the blue dashed line the prediction from last
section, i.e. constant Lindemann ratio, and the red curve the prediction from
Eq. 3.16. (b) freezing viscosity as a function of temperature T along the freezing
line. Data from SLLOD simulations (black dots) are compared with the pre-
diction assuming constant reduced viscosity, Eq. 3.6, and with the prediction
from Eq. 3.16. The correction is fairly small when compared to the case of
the Lindemann ratio, but it’s still appreciable. For the difference between these
SLLOD simulations and those of Sec. 3.1.3, we refer to appendix C. Figures
taken from Ref. [84].
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where the subscript s/l have been removed for clarity. This equation holds
both for the liquid and the solid case. Eqs. 3.13 and 3.14 are a set of two
equations in Wm(T ) and ρm and can be solved numerically at any T .

The freezing and melting densities predicted from Eqs. 3.13 and 3.14
are shown in Fig. 3.5 (b) and compared with the values for the freezing and
melting line computed by Pedersen [68].

3.2.3 Corrections for isomorph invariant quantities along the
freezing and melting lines

In the start of this section it was pointed out that some isomorph invariances
do not hold perfectly along the LJ freezing and melting lines in the neigh-
borhood of the triple point. The cause of this discrepancy resides in the
assumption that in this region of the phase diagram, the freezing and melt-
ing lines are isomorphs. Even though approximating the phase boundaries
with the freezing and melting isomorphs allows one to explain why freezing
and melting invariances exist [83], it is possible to give a better description
of the dynamical quantities in analogy with what is done for the freezing
and melting lines themselves. A generic isomorphic invariant quantity in
reduced units is a function of excess entropy Sex only (along an isomorph):

X̃ = φ(Sex). (3.15)

The value of the quantity X along the freezing or melting line will be slightly
different from the one along the freezing or melting isomorph. We can always
find the value of the quantity X at a state point close to the reference
isomorph using a first order Taylor expansion:

X̃ = X̃0 + φ’(Sex)∆Sex u X̃0 + φ’(Sex)
∂Sex

∂ρ

∣∣∣∣
I

T

(ρm − ρI) (3.16)

where the quantity φ’(Sex) can be calculated at the starting state point of
the isomorph [84]. Using Eq. 3.16 it is possible, for example, to calculate
the value of X along the freezing line starting from the value of X along
the freezing isomorph. This approach allows one to take into account the
density dependence of the Lindemann ratio, shown in Fig. 3.3 (d), and of
reduced viscosity, shown in Fig. 2.3 (b), for densities close to the triple
point. In Fig. 3.6, the predictions of isomorph theory from the last section,
i.e. constant Lindemann ratio and reduced viscosity (blue lines), and the
predictions from Eq. 3.16 are compared. At low densities Eq. 3.16 pro-
vides a notable improvement, while at higher densities the results of the two
approaches are comparable.
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Figure 3.7: Scaling exponent γ as a function of correlation coefficient R for
different generalized LJ potentials. The inset in each figure shows the crossover
region and the vertical dotted black line delimits the Roskilde simple region, i.e.
where R > 0.9. (a) LJ(8, 4) (b) LJ(18, 9) (c) LJ(24, 12) (d) LJ(36, 18).
For each system six isochores are considered ρ = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5].
Along each isochore the temperature is changed in the range [0.25, 5.00]; temper-
atures are indicated in the legend. Along each isotherm the densities considered
are ρ = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5].
In figure (b),(c) and (d) it is possible to distinguish between two different be-
haviors of the dependence of γ from R which are related to the liquid and the
crystal phase, the latter being the steepest. In figure (d) all the simulations at
density ρ = 1.5 and all the simulations at ρ = 1.25 except for the one at lowest
temperature were in the crystal phase. State points with negative correlation
coefficient R, and close to zero, are in the gas-liquid coexistence region.

3.3 Relation between the correlation coefficient R
and the scaling exponent γ (Part 1)

In the last section of this chapter a study of the generalized LJ is presented.
Data in this chapter have been obtained together with Ida Marie Friisberg
during her master thesis at Roskilde University. The simulations on LJ(8, 4),
LJ(18, 9) and LJ(24, 12) have been carried out by Ida Marie Friisberg, while
the simulations on the LJ(36, 18) and the analyses presented in this section
are original work of the author.

The generalized LJ potential is defined as:

vLJm,n(r) =
ε

m− n
[
n
(σ
r

)m
−m

(σ
r

)n]
(3.17)
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with m and n being positive integers. The potentials studied in this section
are a particular case of Eq. 3.17, i.e. when m = 2n:

vLJ2n,n(r) = ε

[(σ
r

)2n
− 2

(σ
r

)n]
(3.18)

The phase diagram of the LJ(2n, n) system is very sensitive to the choice
of the exponent n as can be understood from the dependence of the critical
point upon n, studied in Ref. [113, 114], and from the dependence of the
isomorph shape function h(ρ, Sex), Eq. 2.39, when n is changed. The critical
temperature for the LJ(2n, n) decreases as n is increased while the critical
density slightly increases. The isomorphs become steeper with increasing n:

h(ρ, Sex) = A(Sex)

(
ρ

ρ0

)2n/3

−B(Sex)

(
ρ

ρ0

)n/3
(3.19)

and, recalling the results of the last sections, as a consequence of Eq. 3.19 the
freezing and melting lines of the LJ(2n, n) system get steeper with increasing
n. In this scenario it is interesting to study how the correlation coefficient R,
defined in Eq. 2.1, and the scaling exponent γ, defined in Eq. 2.18, change
throughout the whole phase diagram.

A limitation on the region of applicability of the isomorph theory can be
derived from Eq. 3.19: two competing terms are present in Eq. 3.19, a pos-
itive one (ρ2n/3) and a negative one (ρn/3); while at high densities the first
term is always dominant, at low densities this is not the case. The function
h(ρ, Sex) can in fact become zero and even negative upon decreasing den-
sity ρ and this will produce unphysical results when remembering that the
function h(ρ, Sex) is a ratio between two temperatures, from Chap. 2, and
it must therefore be positive. The condition h(ρ, Sex) = 0 is accomplished
for ρ = ρ̄ where:

ρ̄ =

(
B(Sex)

A(Sex)

)3/n

ρ0 (3.20)

In the case of the LJ(2n, n), the two coefficients A and B can be obtained
from the value of γ(ρ0, T0) = γ0 at the state point (ρ0, T0) the isomorph is
built from:

A =
3

n
γ0 − 1 (3.21)

B =
3

n
γ0 − 2 (3.22)

Since both A and B are positive, from Eqs. 3.21 and 3.22 it follows that
A > B. The density ρ̄ for which h(ρ̄, Sex) = 0 is therefore lower than
the starting density ρ0. This means that when moving along an isomorph
toward lower densities there should always be a density ρ > ρ̄ at which
the R simple condition, R > 0.9, breaks down in order to avoid unphysical
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predictions from the theory. This is well known to happen for the Lennard-
Jones potential (n = 6, LJ(12, 6)) [69] because the correlation coefficient R
decreases with decreasing density and with decreasing temperature [48] and
it becomes lower than the threshold value 0.9 well before approaching ρ̄.

It would be nice if the end of the region in which strong correlations exist
could be associated with a change of some observable physical quantity (or
alternatively with a change of behavior of some quantity) which can be
measured in experiments. With this goal in mind we studied the relation
between the correlation coefficient R and the scaling exponent γ for four
different values of the exponent n: n = 4, n = 9, n = 12, n = 18. The
scaling exponent γ is the logarithmic derivative of the function h(ρ, Sex)
with respect to density ρ along an isomorph (Eq. 2.24). As a consequence
of this, at the density ρ̄ the scaling exponent γ is diverging. The parameter
γ can be an interesting quantity to consider because it is possible to measure
it in experiments [13–16, 61] and the theory has an unphysical prediction
for its value at ρ = ρ̄.

In Fig. 3.7 the scaling exponent γ is shown as a function of the correla-
tion coefficient R along several isochores and isotherms for the four different
generalized LJ potentials studied. Approximately when the correlation co-
efficient R crosses the threshold value 0.9, the scaling exponent γ changes
behavior and it starts to decrease. While the fact that the scaling exponent
γ should decrease toward zero when R approaches zero, it is not obvious
that the change of behavior in γ corresponds to the system no longer being
R simple. This change in the behavior of γ could, in theory, be measured
in experiments, even though it will require really high accuracy due to the
slow variation in γ with density and temperature [13–16, 61]. More plots as
the ones in Fig. 3.7 will be shown in Chap. 5 where the LJ(12, 6) system
is studied in a number of spatial dimensions different from 3 and a similar
behavior is found.
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Viscosity of the LJ system in
the supercritical region

An extensive study of viscosity of the Lennard-Jones (LJ) model system
[41] in the supercritical region is presented in this chapter. A new empirical
formula for viscosity based on the isomorph theory makes it possible to
describe viscosity in the whole region. The behavior of viscosity is also
studied in connection with the 2-body excess entropy, the specific heat and
the diffusivity of the system. Results in this chapter have not been published
elsewhere. Details on the simulations can be found in appendix C.

The transport coefficients for the LJ system have been broadly inves-
tigated by different authors. Particular focus has often been given to the
behavior of viscosity in the liquid region next to the freezing line and at
temperatures usually not too high compared to the critical temperature
[115–117]. In this chapter the study of viscosity is extended to a wider
range of densities and temperatures, along five different isochores starting
from the freezing temperature and increasing temperature up to 200TF for
the lowest density. An equation for describing the viscosity data in the full
range of densities and temperatures is also presented. In the derivation of
this equation, previous works in the same context [65, 78, 98, 108–110, 118–
120] have been used as starting points together with results from isomorph
theory of Chap. 3.

The first section deals with the prediction from the isomorph theory
about the density dependence of isomorphic invariant quantities and in the
following sections the data are presented and analyzed.
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Figure 4.1: Freezing line of the LJ system from Ref. [79] and state points
studied in this chapter. The densities of the five different isochores that have
been studied are indicated in legend. The lowest temperature studied for each
isochore is the freezing temperature, from Ref. [79].

4.1 Isomorph theory constraint on isochoric de-
pendences

We discussed in Chap. 2 the existence of invariance curves for the Roskilde
(R) systems. Along these curves structure and dynamics are invariant and
it is therefore sufficient to know the dynamical properties at a single state
point to predict the behavior along the entire isomorph. The isomorph
theory allows one to know even more about the system, in particular it
is possible to obtain a constraint on the isochoric dependence of a given
isomorphic invariant quantity.

All state points in the (ρ, T ) phase diagram belonging to the same iso-
morph satisfy the relation:

T (ρ) = T0 ·h(ρ, ρ0) (4.1)

in which (ρ0, T0) are the density and temperature of the state point the
isomorph starts from. In Eq. 4.1 the dependence of h(ρ, ρ0) on Sex, from
Eq. 2.39, is neglected. The choice of the state point is not relevant as long
as the correlation coefficient R, defined in Eq. 2.1, is larger than 0.9. The
functional form of h(ρ) depends on the model system but at this stage we do
not choose any specific model system because the following argument holds
for any R liquid. In the case of two isomorphs starting from different state
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points along the same isochore, Eq. 4.1 becomes:

Tiso1(ρ) = T0,1 ·h(ρ, ρ0) (4.2)

Tiso2(ρ) = T0,2 ·h(ρ, ρ0) (4.3)

where the subscripts 1, 2 identify the isomorph starting at temperatures T1

and T2 respectively. These equations imply that:

Tiso1(ρ)

T0,1
=

Tiso2(ρ)

T0,2
= h(ρ, ρ0) (4.4)

Tiso1(ρ)

Tiso2(ρ)
=

T0,1

T0,2
(4.5)

and therefore the ratio between temperatures of two isomorphs is the same
at any density. Eq. 4.5 constrains any given isomorphic invariant quantity
along an isochore to depend on the ratio between the state point temper-
ature and a reference temperature in order to be consistent with isomorph
theory. If we chose as reference temperature the freezing temperature TF ,
Eq. 4.5 implies that along any isomorph the temperature of the isomorph is
proportional to that of the freezing isomorph at the same density. A generic
isomorph invariant quantity X̃(Sex) is therefore a function of the ratio T/TF
along any given isochore:

X̃(ρ, T ) = f

(
T

TF (ρ)

)
(4.6)

where the tilde indicates that reduced units are used, as usual. The function
X̃(ρ, T ) depends on density ρ only through the freezing temperature T (ρ).
This result in the context of isomorph theory, as well as the following one,
has been obtained by the author.

4.1.1 Prediction for stationary points along isochores

Given a generic isomorph invariant quantity X and the corresponding re-
duced units quantity X̃ = Xρ−αT−β, it is also possible to predict that the
state points (ρ, T ) at which the quantity X exhibits a stationary point define
an isomorph. In particular, this holds for maximum or minimum values of
X along an isochore, if there is any. As before, the proof does not require
the choice of a specific model liquid.

X = X̃ραT β (4.7)

∂X

∂T

∣∣∣∣
ρ

= ρα
[
βT β−1f

(
T

TF

)
+
T β

TF
f ′
(
T

TF

)]
(4.8)

= ραT β
[
βT−1f

(
T

TF

)
+

1

TF
f ′
(
T

TF

)]
(4.9)
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Figure 4.2: Viscosity data (a) for the LJ system obtained from SLLOD simula-
tions [105–107] are showed for five different isochores whose density are indicated
in the legend.The same data are shown in reduced units in (b). The starting
temperature along each isochore is the freezing temperature reported in Ref.
[79]. For the isochores with low density it is possible to clearly see how vis-
cosity exhibits a minimum after which it increases with increasing temperature.
This fact is well known in the literature, see Ref. [3] and its references. As
temperature increases, reduced viscosity becomes less and less dependent on
temperature reaching a plateau value for isochores ρ = 1.09, 1.437. The exis-
tence of this plateau is consistent with kinetic theory [121]. A consistency check
on the high temperature data can be found in the appendix C.

where Eq. 4.6 has been used. This implies that, if X(ρ, T ) has a stationary
point along an isochore, the temperature T̄ at which it occurs must satisfy

f ′
(

T̄

TF (ρ)

)
= −βTF (ρ)

T̄
f

(
T̄

TF (ρ)

)
. (4.10)

In both sides of Eq. 4.10 only functions of T̄ /TF appear and therefore the
set of points defined by Eq. 4.10 is an isomorph identified by a certain value
of the ratio T̄ /TF . One of the implications of Eq. 4.10 is that the Frenkel
line [3] (when defined as the line of viscosity minima along an isochore) is an
isomorph in the region of the phase diagram where the system is R simple.

4.2 Viscosity data for the LJ system

In Fig. 4.2, data for the viscosity of LJ system along five different isochores
are shown. It is interesting to note that while the viscosity η exhibits a
minimum along isochores [3], Fig. 4.2 (a), reduced viscosity η̃ does not,
Fig. 4.2 (b), and it shows a clear plateau (at least for the isochore at the
lowest density). It is not needed to show the presence of a plateau at any
other density than the lowest one because, due to isomorph invariance of
reduced viscosity along isomorphs (Chap. 3), the presence of a plateau for
a reduced quantity along an isochore implies that there will be a plateau on
every other isochore in the R simple region of the phase diagram.
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The existence of this plateau can be understood from kinetic theory
[121]. The viscosity of a dilute gas of HS is:

η0 =
2(mkBT )1/2

3π3/2σ2
(4.11)

where σ is the diameter of the HS. The reduced viscosity will therefore be:

η̃0 =
η0

ρ2/3(mkBT )1/2
=

2

3π3/2

1

ρ2/3σ2
(4.12)

This implies that at any given density ρ a high temperature plateau value
should exists. Hildebrand [122] noted in 1976 that Eq. 4.11 can be used
to describe the viscosity of a wide class of fluids when the value of σ is
determined by the density, i.e., σ ∝ ρ−1/3. When this assumption is done,
Eq. 4.12 becomes independent of density ρ and consistent with isomorph
invariance.

4.2.1 Isochoric dependence of viscosity

With the goal in mind of describing viscosity of the LJ system in the su-
percritical region, we now focus on the behavior of reduced viscosity along
a single isochore. The isomorph theory will then allow us to extend the
result to any other isochore using isomorph invariance of reduced viscosity.
The starting point is the Andrade equation for freezing viscosity, Eq. 3.9,
already examined in Chapter 3. This equation has been suggested by An-
drade himself first [108–110] and by Kaptay [118] more recently in order to
predict the behavior along an isochore. The monotonic decrease of viscosity
for temperatures close to the freezing one, which can be seen in Fig. 4.2,
can be described as an Arrhenius decrease:

η(ρ, T ) = A (mkBT )1/2ρ2/3 exp

(
B
TF (ρ)

T

)
(4.13)

which in reduced units becomes:

η̃(ρ, T ) = A exp

(
B
TF (ρ)

T

)
(4.14)

where the coefficient A can be identified as the value of the reduced viscosity
at freezing η̃F . This equation is consistent with the constraint of Sec. 4.1
but, even though it succeeds in describing the viscosity of many metals, it
is not able to describe the data in Fig. 4.2 with A and B independent of
density.

We found that the data in Fig. 4.2 can be instead described introducing
a non-Arrhenius dependence of viscosity, which is also consistent with the
constraint in Sec. 4.1. The equation we propose is:

η̃(ρ, T ) = A exp

[
B

(
TF (ρ)

T

)β]
(4.15)
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Figure 4.3: (a) Viscosity η of the LJ system along five isochores as in 4.2. The
full line indicates the viscosity η estimated using Eq. 4.19. The dotted lines
are the freezing line and the Frenkel line [3], here defined as the line of viscosity
minima along an isochore, and predicted using Eq. 4.20. (b) Reduced viscosity
η̃ of the LJ system along five isochores as in 4.2. The full line indicates the
reduced viscosity η̃ estimated using Eq. 4.18.
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This equation has a single free parameter, β, because A and B can be
calculated from the high temperature plateau value of reduced viscosity η̃0

and the reduced freezing viscosity η̃F :
{
η̃(ρ, TF ) = A exp(B) = η̃F

η̃(ρ, T →∞) = A
(4.16)

The values for A and B so obtained are A = η̃0 = 0.53 and B = 2.37. Eq.
4.16 can be rewritten as:

{
A = η̃0

B = ln (η̃F /η̃0) .
(4.17)

The β coefficient in Eq. 4.15 is found by fitting the data for viscosity along
the isochore ρ = 1.09 and it is found that β u 2/3. No theoretical argument
to justify this value of the coefficient β has been found.
The final equation is:

η̃(ρ, T ) = η̃0 exp

[
B

(
TF (ρ)

T

)2/3
]

(4.18)

and correspondingly for full viscosity we have:

η(ρ, T ) = ρ2/3(mkBT )1/2η̃0 exp

[
B

(
TF (ρ)

T

)2/3

.

]
(4.19)

In Fig. 4.3 the values obtained using this equation are compared with the
data from SLLOD simulations already shown in Fig. 4.2. It is worth noting
that the values used here for the reduced viscosity at freezing are slightly
different from the one of Chap. 3. This difference is due to the fact that
here we used data for the freezing line from Ref. [79] which includes the
broadest studied density range nowadays available in the literature.

Eq. 4.18 allows also one to find an equation for the minima of viscosity
along isochores using Eq. 4.10:

Tmin(ρ) =

(
4B

3

)3/2

TF (ρ) (4.20)

The freezing temperature TF (ρ) can be estimated using Eq. 3.2 and there-
fore Eq. 4.20 is an analytical equation for the Frenkel line [3], when defined
as isochoric minima of viscosity. The prediction of viscosity minima from
Eq. 4.20 is tested in Fig 4.3 where the full set of viscosity data is also shown.
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Figure 4.4: (a) Rosenfeld-Tarazona expression for reduced viscosity η̃ obtained
combining Eq. 4.21 and Eq. 4.24. The coefficients A and B are calculated fitting
the viscosity data for the LJ system separately for each isochore (same data as
Fig. 4.2). The coefficients A and B so obtained are functions of density ρ and
therefore do not provide an universal description of viscosity. (b) Rosenfeld-
Tarazona expression for reduced viscosity η̃ obtained combining Eq. 4.21 and
Eq. 4.24. In this case the coefficient A is fixed to the value obtained from the
reduced viscosity plateau but the fit of the SLLOD data is poor.

4.2.2 Rosenfeld excess entropy scaling

Different studies have been carried out in the past to describe the behavior
of transport coefficients for simple liquids. Two remarkable examples are the
works of Rosenfeld [65] and Dzugutov [78]. In these two works, transport
coefficients, expressed in reduced units, are shown to depend only on the
excess entropy Sex. The dependence of the transport coefficients on Sex is
exponential [65, 78]:

ln η̃ ∝ −Bη̃Sex (4.21)

ln D̃ ∝ BD̃Sex (4.22)
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Figure 4.5: Excess specific heat at constant volume per particle cexV for the LJ
system along five isochores whose densities are indicated in legend. (a) cexV as a
function of temperature T (b) cexV as a function of T/TF (ρ), i.e the temperature
is measure as a multiple of the freezing temperature at any chosen density.

Both these works rely on the analogy between a simple liquid and the HS
paradigm; Dzugutov’s derivation of Eq. 4.22 uses the Chapman–Enskog
theory [123]. The same conclusion can be derived from the isomorph theory,
in fact both the excess entropy and the reduced transport coefficients are
invariant along an isomorph. As a consequence it is possible to express
one as function of the other, both excess entropy and reduced transport
coefficients being monotonic functions of temperature at constant density.

In 1998, Rosenfeld and Tarazona [124] proposed an equation for the
excess specific heat at constant volume CV of simple liquids.

CV,ex(ρ, T ) =
3

5
α(ρ)T−2/5 (4.23)

which implies

Sex(ρ, T ) = −3

2
α(ρ)T−2/5 (4.24)

since CV = ∂S
∂ lnT

∣∣
V

.

Eqs. 4.21 and 4.24 suggest that the exponent β in Eq.4.18 for reduced
viscosity η̃ should be equal to 2/5. The choice of β = 2/5 is tested in Fig.
4.4 (a). The other two parameters A and B are fitted to the viscosity data.
Using Rosenfeld-Tarazona approach it is possible to describe the data but
the coefficients A and B depend on the specific isochore. In Fig. 4.4 (b)
the parameter A is fixed to the high temperature limit of reduced viscosity,
following the same scheme used for Eq. 4.18 while the coefficient B is fitted.
The results are much worse than using Eq. 4.18. This discrepancy could be
related to the non-correctness of Eq. 4.23 in the whole range studied here.
As we discussed in Chap. 2, the excess specific heat CV,ex is not exactly
invariant along an isomorph and therefore the function α(ρ) could be slightly
dependent on T implying Eq. 4.24 to be incorrect. This conjecture is tested
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Figure 4.6: Data for 2-body excess entropy S
(2)
ex , obtained from Eq. 4.25,

for the LJ system along five isochores whose densities are indicated in legend.
(a) S

(2)
ex as function of temperature T (b) S

(2)
ex as a function of T/TF (ρ), i.e

the temperature is measure as a multiple of the freezing temperature at any
chosen density. The 2-body excess entropy data can be fitted by a power law in
T/TF (ρ) for temperatures below 10 as Rosenfeld suggests, Eq. 4.24, but with
the same exponent 2/3 as in Eq. 4.18 and not with the exponent 2/5 suggested
by Rosenfeld.

in Fig. 4.5: for temperatures close to the freezing one the CV data do not
collapse perfectly. It is not completely surprising that Eq. 4.23 does not well
describe the LJ system close to freezing because its derivation assumes that
LJ particles can be modelled as HS, according to the HS paradigm discussed
in Chap. 1.

In Fig. 4.6, 2-body excess entropy data are shown. The 2-body excess

entropy S
(2)
ex can be calculated from the radial distribution function (RDF)

g(r) using the following expression [125]:

S(2)
ex = −1

2
ρ

∫
[1− g(r) + g(r) ln (g(r))] r2dr (4.25)

where the spherical symmetry of the RDF for fluids has been used. The
behavior for temperatures below 10 TF can be well described with the same
functional form as Eq. 4.24 but using the exponent 2/3 as in Eq. 4.18.

It should be noted that the high temperature estimates of S
(2)
ex (T > 100)

along the isochore ρ = 1.09 are noisy due to insufficient precision in the
high temperature data for RDFs. Longer simulations would be required

in that region. A justification for using the S
(2)
ex instead of the full excess

entropy Sex can be found, for a R simple system, in the fact that this two
quantities are both invariant along an isomorph, the first one because of
the invariance of the RDF on isomorphs and the second one because of the

isomorph definition. The practical reason is that calculating the S
(2)
ex from

Eq. 4.25 is straightforward, while the calculation of the full excess entropy
requires a different treatment.
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Figure 4.7: Relations between reduced viscosity η̃, 2-body excess entropy S
(2)
ex

and specific heat at constant volume per particle cexV . (a) Excess entropy scaling
for viscosity as suggested by Eq. 4.21. The linear relation between ln(η̃) and

S
(2)
ex holds while reduced viscosity is above ≈ 2.0, i.e. for temperature below

2TF . (b) Specific heat at constant volume per particle cexV as a function of
reduce viscosity η̃. In Eq. 4.23 the quantity cexV is supposed to obey the same
scaling with temperature as excess entropy in Eq. 4.24. It makes therefore
sense to investigate if cexV is an universal function of η̃. From the data it follows
that this is the case for high temperatures but not close to freezing. This is a
consequence of the fact that while reduced viscosity η̃ is isomorph invariant, cexV
varies slightly on isomorphs, Chap. 2.
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In Fig. 4.7 (a), Rosenfeld entropy scaling for reduced viscosity from Eq.
4.21 is compared with our viscosity data showing a rather good agreement
at low temperatures (corresponding to high values of −Sex) but a significant
deviation at high temperatures. In a HS picture, which is the background
for Rosenfeld entropy scaling, both the excess specific heat at constant vol-
ume CexV and the reduced viscosity η̃ should be functions only of the excess
entropy Sex. Since they are both functions of the same quantity, they should
also be an unique function of each other. In Fig. 4.7 (b), the excess spe-
cific heat at constant volume per particle cexV is plotted as a function of
the reduced viscosity η̃. At low temperatures, corresponding to high values
of the reduced viscosity, cexV is not a unique function of reduced viscosity
η̃ showing, as already happened in the case of reduced excess pressure in
Chap. 2, that the HS approach fails to describe the system in a satisfying
way. As discussed in Chap. 2, the specific heat at constant volume CexV
is not exactly invariant along an isomorph, especially at low densities and
temperatures, and so is not a function of the excess entropy only while the
reduced viscosity is. Isomorph theory can be therefore used to justify the
behavior of cexV and η̃.

4.3 Diffusivity data for the LJ system

The isomorph theory can be used to predict both the viscosity η and the
diffusion coefficient D of an R liquid. In this section we focus on comparing
the results of the previous section on viscosity with the behavior of diffusivity
along the same isochores. The diffusivity data shown in this section, as well
as the data for CV and Sex, are obtained independently of the viscosity
data: while for viscosity we used SLLOD simulations [105–107] for these
other quantities NVT simulations are used. More details can be found in
appendix C.

The predictions formulated in Sec. 4.1 are applicable to any isomorph
invariant quantity and therefore hold for the diffusivity too. In Fig. 4.8 (a),
the reduced diffusivity D̃ [52], calculated from the long time behavior of the
mean squared displacement (MSD), is shown as function of the ratio TF /T .
The data for the five isochores perfectly collapse showing that a similar
description to the one used for viscosity in Eq. 4.18 can be reproduced.

Nevertheless, there is an important difference between the high tempera-
ture behavior of diffusivity and viscosity. While the latter has been shown to
have a high temperature plateau, Sec. 4.2, this is not the case for diffusivity.

For temperatures well above the freezing one, i.e. where the plateau of
viscosity appears, it is reasonable to consider the LJ particles interacting
through pure IPL12 potential:

vIPL12(r) = 4ε
(σ
r

)12
. (4.26)
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Support in this direction comes from the scaling exponent γ being close to
4 at high temperatures. For example, γ = 4.20 at (ρ, T ) = (1.09, 302.17).
When the system is at equilibrium it is possible to define an effective radius
of the IPL particle as:

vIPL12(r = σeff ) = kBT . (4.27)

The effective radius σeff is

σeff ∝ (kBT )−1/12. (4.28)

A consequence of Eq. 4.28 is that at high temperature particles have a small
effective radius σeff . The mean free path l is defined as [121]

lσ2
effρ = 1 (4.29)

and therefore, using Eqs. 4.28 and 4.29, the mean free path along an iso-
chore, at high temperature, scales with T as:

l ∝ (kBT )1/6. (4.30)

The diffusion coefficient can be obtained as :

D = l
vth
3

(4.31)

with vth the thermal velocity vth ∝ (kBT )1/2 [121]. The reduced diffusion
coefficient, along an isochore, can be obtained using Eqs. 4.30 and 4.31

D̃ ∝ D

(mkBT )1/2
∝ (kBT )1/6. (4.32)

No plateau is therefore present for the reduced diffusivity D̃.
In Fig. 4.8 (b) data for reduced diffusivity D̃ and reduced viscosity η̃

of the LJ system along the isochore ρ = 1.09 are compared. We also show
the product of the two quantities, which is constant under the hypothesis
of a constant hydrodynamics radius for the particles. The constancy of the
product of the two reduced transport coefficient is the well known Stokes-
Einstein relation [126–128], as shown in the following.

D̃η̃ = Dρ1/3

(
m

kBT

)1/2 η

ρ2/3(mkBT )1/2
=

Dη

ρ1/3(kBT )
(4.33)

and so
Dη = kBTρ

1/3D̃η̃ (4.34)

Eq. 4.34 reduces to Stokes-Einstein relation when D̃η̃ρ1/3 = (6πr̄)−1 with r̄
being the hydrodynamic radius of the particle. The invariance of D̃ and η̃ en-
sures the validity of Eq. 4.34 along an isomorph but its validity is not ensured
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Figure 4.8: Results for diffusivity and comparison with viscosity results. (a)
The reduced diffusivity is plotted as a function of TF (ρ)/T . The data along the
five isochores studied collapse onto a master curve in analogy with what happens
in the case of reduced viscosity and as predicted by Eq. 4.6. (b) Data for
reduced diffusivity (black dots), reduced viscosity (red dots) and their product
D̃η̃ (green dots) along the isochore ρ = 1.09. The lines represent the result of
a power law fitting of the data corresponding to temperatures above ≈ 100 in
LJ units. While the reduced viscosity exhibits a plateau, the reduced diffusivity
keep increasing with increasing temperature T with an exponent similar to the
one predicted from Eq. 4.32. The discrepancy between the exponent from power
law fitting and the one from Eq. 4.32 could be related to the approximation
done in obtaining Eq. 4.32, i.e. assuming the LJ system being effectively an
IPL12. The effect of these different behaviors is the violation of the invariance
of D̃η̃ which is equivalent to the violation of Stokes-Einstein relation [126–128],
see text.

along an isochore. In the high temperature limit, i.e. at temperatures of
about ≈ 100 in LJ units, the assumption of a constant hydrodynamic radius
break down as can be immediately understood from the different behavior
of D̃ and η̃: the first quantity keeps decreasing on increasing temperature
while the latter one tends to a constant value; their product therefore cannot
be constant. In Fig. 4.8 (b) the high temperatures data for η̃, D̃ and D̃η̃
are fitted to power law functions of temperature. The power law exponent
for D̃ is close to the 1/6 predicted from Eq. 4.32, while the exponent for
η̃ is about five times smaller. The result is a breakdown of Stokes-Einstein
relation at high temperatures, represented in Fig. 4.8 by an increase of D̃η̃
with increasing temperature (green data).
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Isomorph theory in d
dimensions

This chapter is dedicated to the study of the Lennard-Jones (LJ) model
system [41] in 2d, 3d and 4d. The aim of this study was to investigate
whether the correlation coefficient R increases when the dimensionality of
the space increases and therefore to probe whether every system becomes
strongly correlated in a part of its phase diagram when the dimensionality is
increased. The results of this chapter, with exception of Sec. 5.3, have been
published in Ref. [129]. Data presented in this chapter have been obtained
by the author using the MD code described in the appendix A; details on
the simulations can be found in appendix C.

An important, but often forgotten, ingredient in the modelling of phys-
ical properties of a specific system is the dimensions it lives in. Theories of
critical phenomena [35] and mean field theories (as Ising model) have been
shown to produce better description of systems in a number of dimensions
greater than 3. Isomorph theory as recently been argued to be valid for every
system, in a region of their phase diagram, in higher number of dimensions
[130] due to the predominant role of the first coordination shell, i.e., the fact
that a particle is mostly affected only by its closest neighbors. This con-
jecture was first formulated in [44] and it is tested against MD simulations
in this chapter. Another way of expressing the same concept is that every
system, in a region of their phase diagram, is an R liquid in high enough
dimensions. In the following our focus will be on the Lennard-Jones (LJ)
model system [41] for practical reasons.
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Figure 5.1: (a) Phase diagram of the LJ(12,6) system in 3d [83, 131]. Or-
ange crosses represent the simulated state points along the critical isotherm and
the critical isochore in 2d, 3d and 4d. Temperatures and densities are scaled
respect to the critical ones, taken from Refs. [132–134] respectively for 2d, 3d
and 4d. The green dots represent the isomorphic state points in 4d studied in
the following. At these state points the LJ system in 4d is liquid (according to
our simulations) giving insights on the difference between the phase diagram of
the LJ system in 3d and 4d. (b) Consistency check between Eq. 5.5 and Eq.
2.24. The isomorph starting from the state point (ρ, T ) = (0.9, 1.0) in 4d is built
incrementing density of 1, 2 and 5 per cent and finding the isomorph temper-
ature through Eq. 2.24. This way of building an isomorph is computationally
expensive because it requires many intermediate simulations but it can be used
for any R system. The results are then compared with Eq. 5.5. The agreement
is perfect as long as the increment in density is not too big, in fact an increment
of 5 per cent in density is a rather big one. The use of Eq. 2.24 is not suggested
when Eq. 5.5 can be used instead because the latter equation does not require
any intermediate simulation.

5.1 Isomorphs in d dimensions for the generalized
LJ system

As pointed out in Chap. 2, for the LJ system it is possible to find an
analytical expression for isomorphs in 3d. This is true for any potential
defined by the sum of 2 IPL potentials and therefore results in this section
will be obtained for the generalized LJ(m,n) potential. The peculiarity of
this family of systems that allows one to find an analytical expression for
isomorphs is the way potential energy and virial scale with density [53]:

U(ρ̂) = ρ̂
m
3 Um,0 + ρ̂

n
3Un,0 (5.1)

W (ρ̂) =
m

3
ρ̂
m
3 Wm,0 +

n

3
ρ̂
n
3Wn,0 (5.2)

where ρ̂ = ρ/ρ0, (ρ0, T0) is a reference state point, Um,0 refers to the part of
potential energy deriving from the IPL with exponent m evaluated at the
reference state point and analogously for Un,0 and for the virial Wm,0 and
Wn,0. Eqs. 5.1 and 5.2 are obtained taking into account that the potential
energy of the LJ(m,n) system is the sum of two terms, Um and Un. These
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terms scale with density as Um(ρ) = (ρ/ρ0)m/3Um(ρ0) along an isomorph
[53] due to the invariance of the radial distribution function (RDF) g(r). In
the case of d dimensions, Eqs. 5.1 and 5.2 can be written as:

U(ρ̂) = ρ̂
m
d Um,0 + ρ̂

n
dUn,0 (5.3)

W (ρ̂) =
m

d
ρ̂
m
d Wm,0 +

n

d
ρ̂
n
dWn,0 (5.4)

Using the definition of temperature T = ∂U
∂Sex

∣∣∣
ρ
, Eqs. 5.3 and 5.4 and

the equation for the scaling exponent γ along an isomorph, Eq. 2.24, it
is possible to obtain that the isomorphs for a generalized LJ(m = 2n, n)
system in d dimensions are:

T (ρ)

T0
=

h(ρ, ρ0)

h(ρ0, ρ0)
=

(
d

n
γ0 − 1

)(
ρ

ρ0

)2n/d

−
(
d

n
γ0 − 2

)(
ρ

ρ0

)n/d
(5.5)

where the h(ρ, ρ0) function has been normalized to 1 at the reference point
(ρ0, T0). This result is similar to the one of the 3d case, whose complete
derivation can be found in the supplementary material of Ref. [84] reprinted
in appendix D. The dependence of h(ρ, ρ0) on the excess entropy Sex, see
Eq. 2.37, has been omitted because it is irrelevant when studying a single
isomorph. Eq. 5.5 is the analogue of Eq. 2.39 for a LJ(m = 2n, n) potential
in d dimensions. The scaling exponent γ0 = γ(ρ0, T0) in d dimensions is
always defined by Eq. 2.18:

γ =
〈∆W∆U〉
〈(∆U)2〉 (2.18)

but it should be noted that the definition of the virial in d dimensions is:

W = −1

d

∑

i

ri∇riUi. (5.6)

Details on how to derive Eq. 2.18 can be found in the appendix of [84] for
the 3d case and their generalization is straightforward, taking into account
Eqs. 5.3 and 5.6. The second term in Eq. 5.5 will vanish in the limit of high
densities when γ = 2n/d and the conventional IPL scaling is recovered. Eq.
5.5 can be used to obtain the equation for the scaling exponent γ along an
isomorph, using Eq. 2.24:

γ =
∂ lnT

∂ ln ρ

∣∣∣∣
Sex

(2.24)

For a generalized LJ(m = 2n, n) system, γ is a decreasing function of den-
sity. Therefore γ > 2n/d for the LJ(m = 2n, n) system in the region where
the system is R simple. This can be understood from Eq. 5.5 when consid-
ering that the coefficient

(
d
nγ0 − 2

)
is defined to be positive; as consequence,
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Figure 5.2: Reduced radial distribution function (RDF) g(r̃) for the LJ system
along the critical isotherm T = Tc in 2d, 3d and 4d. (a) RDFs at the state
point with density ρ = 1.4ρC . (b) RDFs at the state point with density ρ =
2.0ρC . The effect of increasing the dimensionality of the space is a decrease
in the peaks’ height. The second peak of the RDFs in 3d and 4d is barely
present, showing the increasing importance of the first coordination shell [2]
with increasing dimensionality.

the freezing line, which can be approximated by an isomorph as shown in
Chap. 3, is steeper and steeper when decreasing dimensions. The same
effect is obtained if the number of dimensions is kept fixed and the expo-
nent n increased because the relevant quantity is the ratio of n over d, as
can be understood from Eq. 5.5. In other words, decreasing the number of
dimensions has, on the freezing line of a LJ(2n, n) and on every isomorph,
the same effect of increasing the exponent n keeping fixed the number of
dimensions. In order to keep the same steepness of the freezing line, it is
necessary to scale the exponent n with the number of dimensions d. In this
view it can be understood why the HS system, i.e. the limit of a soft sphere
potential for n → ∞, provides a good approximation for R simple liquids.
The mapping from a R system to HS system is a mapping from a given n
to an infinite one and at the same time to infinite dimensions where every
system is R simple (in the “hard” region of the phase diagram) as recently
discussed in Ref. [130] and previously conjectured in Ref. [44].

Another interesting consequence can be derived from Eq. 5.5 which has
been already pointed out in Chap. 3 for the 3d case: isomorphs described
by Eq. 5.5 cannot exist at low densities because the isomorph temperatures
corresponding to these densities will be negative. This is the reason why
the correlation coefficient R must decrease as density is decreased, for the
LJ(m,n).

In Fig 5.1 (b) an isomorph in 4d is shown. The consistency between
Eq. 5.5 and the iterative construction of the isomorph through Eq. 2.24 is
verified. Different density increments are used and the results are consistent
with the prediction from Eq. 5.5, except in the case of the largest density
change (5%). This is not surprising because the step-by-step construction
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Figure 5.3: Correlation coefficient R, defined in Eq. 2.1, as a function of
temperature T/Tc (density ρ/ρc) along the critical isochore (isotherm). (a) R
monotonically increases both as a function of temperature along the critical
isochore and with increasing dimension at a given ratio T/Tc. (b) As for the
critical isochore, R monotonically increases as a function of density along the
critical isotherm. R also increases with increasing number of dimensions as long
as the same system phase is studied. For densities above ρ = 2.5ρc the LJ in
2d crystallizes in a hexagonal close packing (HCP) lattice, for a system size of
N = 1225 LJ particles, and the correlation coefficient R becomes approximately
unity. These state points are marked with squares instead of circles.
For the 2d case some state points are marked with open circles. At these
state points violent density fluctuations, resulting in strong non homogeneity
(“holes”), have been observed.

relies on the discretization of Eq. 2.24 and it is expected to fail when the
density increment is too large.

5.2 Correlation coefficient R of the LJ system in
2, 3 and 4 spatial dimensions

The first choice in studying the behavior of a system when changing the
number of spatial dimensions is to identify reasonable state points to com-
pare. The phase digram of the LJ system changes when studied in a different
number of spatial dimensions. Our aim is to study the LJ system in 2d, 3d
and 4d but, while the phase diagram of the LJ system is well known in 2d
[132, 135, 136] and 3d [68, 83, 131, 133], not much information on the 4d
phase diagram is available. Nevertheless, the position of the critical point
is known in 2d, 3d and 4d [132–134]. The reason why the LJ system has
not been studied in higher dimensions than 4 is related to the fact that in
5d the LJ system has no thermodynamic limit [134]. We start from study-
ing the behavior of the LJ at the critical point (ρC , TC) while changing the
number of dimensions. In order to have a more general feeling on how the
LJ system behaves in 4d, and 3d and 2d as well, simulations have been
performed also along the critical isochore ρ = ρC and the critical isotherm
T = TC . The choice we made for comparing the different dimensions is to
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Figure 5.4: Scaling exponent γ, from Eq. 2.18, as a function of the correlation
coefficient R, from Eq. 2.1, along several configurational adiabats in 2d and
3d. (a) Three curves in the liquid phase and two in the crystalline phase are
generated using Eq. 2.24 for the 2d LJ system. The scaling exponent γ increases
for values of R below the 0.9 threshold and then it starts to decrease. For the
crystal phase the correlation coefficient R is always larger than 0.9 and γ is
monotonically decreasing. (b) Two configurational adiabats for the liquid phase
of the 3d LJ system in the liquid phase. The decrease in γ starts slightly after
the 0.9 threshold for the black line.

scale temperatures and density by the critical values.

In Fig. 5.2 the RDFs at ρ = 1.4ρC and ρ = 2ρC are shown for the LJ
system in 2d, 3d, 4d. In both cases the structure is less pronounced when
the dimensionality is higher.

In Fig. 5.3 the correlations coefficient R, calculated using Eq. 2.1, is
shown at different state points along the critical isochore and the critical
isotherm. The LJ system at the critical point exhibits stronger correlations
when the dimensionality d is increased. The data for state points along the
critical isochore and the critical isotherm clearly confirm that increasing the
dimensionality d produces better correlations between potential energy and
virial.

5.3 Relation between the correlation coefficient R
and the scaling exponent γ (Part 2)

In Chap. 3 the correspondence between the correlation coefficient R crossing
the threshold of 0.9 and the start of the decreasing behaviour of the scaling
exponent γ has been studied for the generalized LJ(m = 2n, n) system.
Here that study is extended, considering the LJ system, which corresponds
to n = 6, in 2d and 3d. The study in 4d is less interesting due to the fact
that the correlation coefficient is close to or above 0.9 in the whole region
of the phase diagram studied, as shown in Fig 5.3, and the data are more
computationally expensive to obtain. In Fig. 5.4, the scaling exponent γ is
plotted as a function of the correlation coefficient R for three constant-Sex
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Figure 5.5: Scaling exponent γ, from Eq. 2.18, as a function of the correlation
coefficient R, from Eq. 2.1, along configurational adiabats starting from the
critical point of the LJ system in 2d, 3d and 4d. In all cases γ exhibits a
maximum in the region where the correlation coefficient is crossing the value
0.9. The maximum value of γ is decreasing with increasing dimensions due to
the softening of the potential discussed in Sec. 5.1.

curves (configurational adiabats) in the liquid phase and two in the crystal
phase for the 2d LJ system (a), and along two curves in the liquid phase
for the 3d LJ system (b). For all the considered isomorphs in the liquid
phase, the correspondence between the correlation coefficient R crossing
the threshold of 0.9 and the start of the decreasing behaviour of the scaling
exponent γ is found, while for the crystal the correlation coefficient is always
above 0.9. In Fig. 5.5 an isomorph starting from the critical point in 2d, 3d
and 4d is studied and the same conclusion can be obtained. Even though
the LJ system is not Roskilde simple at the critical point in any studied
number of dimensions, Eq. 2.24 can still be used to generate constant Sex

curves, but the invariances predicted by isomorph theory will hold only when
R > 0.9. It is important to underline the difference between an isomorph and
a configurational adiabat: isomorphs are subset of configurational adiabats
for which R > 0.9.

5.4 Invariance of structure and dynamics along an
isomorph in 4d

In Sec. 5.2 we showed that the correlation coefficient R in 4d for densities
higher than the critical one is above 0.9, see Fig. 5.3. This means that the
invariance of structure and dynamics predicted by isomorph theory should
hold in this region of the phase diagram. Eq. 5.5 can be used to generate
an isomorph in 4d and, as known from the previous chapters, it is possible
to choose density quite far from the reference one and still find the same
structure and dynamics when the temperature is properly chosen. The start-
ing point of the isomorph is (ρ, T ) = (0.9, 1.0). The state point at density
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Figure 5.6: Structure and dynamics studied at three different state points
along the same isomorph. The description of how these isomorphic state points
are obtained is in the main text. (a) Reduced radial distribution function (RDF)
g(r̃) at the three state points considered. (b) Reduced mean-squared displace-
ment (MSD) at the three state points considered. The MSD is calculated using
the standard tool from RUMD [38] and therefore only three components of the
four-dimensional vector displacement are taken into account. Due to isotropy
of the liquid phase it is correct to calculate the MSD using three components of
the position vector only. Nonetheless we checked that all the possible choices of
the three components out of four give the same results.
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ρ = 0.945 is found using Eq. 2.24 recursively, i.e. with the step-by-step
method, while the second state point, at density ρ = 1.5, is found using Eq.
5.5. The choice of using two different methods was made in order to further
validate the result. The consistency between the two methods was verified
in Fig. 5.1 (b).

In Fig. 5.6, the reduced RDF and the reduced MSD for a 4d LJ system
are shown at three different state points along the same isomorph, starting
from (ρ, T ) = (0.9, 1.0). The reduced-unit structure, probed by the RDF,
and the reduced-unit dynamics, probed by the MSD, of the three isomorphic
state points studied exhibit a perfect collapse clearly showing that isomorph
invariances hold in 4d.
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Negative correlation
coefficient and isomorphs:
the Gaussian core model

As briefly discussed in Chap. 1, it is possible to describe the behavior of the
Gaussian core (GC) [24] model liquid in the low density region using the HS
paradigm. In this chapter we show that isomorph theory can be applied to
the GC model liquid even in a part of the anomalous region, i.e. where the
freezing line has a negative slope. Data presented in this chapter have been
obtained by the author and they are part of an ongoing project that has not
been published yet. Details on the simulations can be found in appendix C.

6.1 The phase diagram of the Gaussian core sys-
tem

The Gaussian core (GC) [24] model system is the system of particles inter-
acting via the pairwise potential:

vGC(r) = ε e−
r2

σ2 (1.3)

as already introduced in Chap. 1. In all our simulations the potential
parameters (ε, σ) were set to unity. Many authors have focused on the fea-
tures of this system due to its complex behavior [24, 25, 137–141]. The GC
phase diagram has been studied in a wide range of densities [25–27, 142–
144], highlighting the existence of a well behaved low density region and
an anomalous region at high density. As predicted by Stillinger [24], the
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GC has a low density-low temperature regime in which the fluid crystallizes
when increasing density at constant temperature in a FCC crystal or in a
BCC crystal, depending on the chosen isotherm. For high enough tempera-
tures it is no longer possible to crystallize the fluid and only the fluid phase
is observed. An interesting feature of GC model is the negative slope of
the freezing and melting lines at high density [24, 26] which is typical for
anomalous liquids [7]. In Fig. 6.1 the phase diagram for the GC model
system with data from Ref. [142, 143] is shown and the different phases are
indicated: the face-centered-cubic (FCC) crystal, the body-centered cubic
(BCC) crystal and the fluid (F). The difference between the freezing and the
melting temperatures at constant density for the GC system is very small
[142, 143] and cannot be resolved on the scale of the figure. For this reason
only data for the freezing line are shown in Fig. 6.1. The high density limit
of the freezing line is well described by a power-law function of density, as
different authors reported [25, 145].

6.2 Simplicity of the GC model

The low density region the GC phase diagram can be described in terms of
HS [24]. In the following the term ’low density region’ will be used for state
points in the fluid region on the left side of the freezing line, i.e. for densities
smaller than the density at which the freezing line exhibits the maximum
(Fig. 6.1), while the term ’high density region’ for state points in the fluid
region on the right.

In general, every time that a system is well described by HS in a part
of its phase diagram it is also well described in terms of isomorph theory in
the same region at least. This conjecture is checked in Fig. 6.2 (a) and 6.3
(b). In the first figure, the validity of the general definition of Roskilde (R)
simple systems, i.e. Eq. 2.2, is checked for a state point in the low density
region and the correlation coefficient R, defined in Eq. 2.1, and the scaling
exponent γ, defined in Eq. 2.18, are reported. Even though the scaled
potential energies cross each other, most of them cross only neighboring
lines. This is the same of what happens in the case of the LJ system, where
Eq. 2.2 was not even perfectly obeyed because of the approximate nature of
the isomorph theory. The GC system is R simple at the chosen state point
and therefore it is possible to build an isomorph in the low-density region.

In Fig. 6.2 (b), the same check is performed at a state point in the
high density region. At this state point Eq. 2.2 is also satisfied but the
correlation coefficient R and the scaling exponent γ are both negative. Neg-
ative correlations between virial and potential energy were first reported
in hard-core colloidal particles interacting with a short range of attractive
squared-well [146] but the validity of isomorph theory in the case of strong
negative correlations has not been investigated. In Chap 2, where isomorph
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Figure 6.1: Phase diagram of the Gaussian core model system. Data for the
freezing line from Ref. [142, 143] are shown together with two configurational
adiabats, i.e. constant excess entropy Sex curves. Both configurational adiabats
have been obtained with the step-by-step method: the scaling exponent γ is
evaluated from an NVT simulation at a given state point, the density is increased
(decreased for the green line) by 1 per cent and the temperature corresponding
to the new density along the same configurational adiabat is calculated using
Eq. 2.24. The starting point of each configurational adiabat is marked by
a cross. The arrow along each configurational adiabat indicates whether the
curve has been built by increasing or decreasing density. The red line is a
configurational adiabat constructed from a state point in the low density region
(positive correlations) while the green line is a configurational adiabat from a
state point in the high density region (negative correlations, see text). The
configurational adiabat starting from high density (green line) intersects the
freezing line showing that in the high density region the freezing line is not a
configurational adiabat.

theory is presented, it is shown that Eq. 2.2 implies the existence of strong
correlations between virial and potential energy but no requirement for these
correlations to be positive is given. It is therefore interesting to investigate
whether negative correlations still produce isomorphs in the phase diagram
or not. A negative γ implies that the system will have a decreasing freezing
temperature upon increasing density, if we assume that the freezing line and
isomorphs have at least similar density dependence, and this is what can be
observed in Fig. 6.1.

In Fig. 6.2 (c), it is shown the effect of scaling configurations on the
potential energy in the case of a non strongly correlated state point. The
state point considered here belongs to the high density freezing line from
Ref. [25]. In this case Eq. 2.2 is strongly violated because many curves
cross the entire figure and their behavior is not a monotonic function of
density.
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Figure 6.2: Direct check of Eq. 2.2 at three state points in the fluid phase
of the GC system. The state point from which the equilibrium configurations
were taken and at which R, defined in Eq. 2.1, and γ, defined in Eq. 2.18, are
evaluated is indicated on top of each figure. The way these curves are produced
is described in the caption of Fig. 2.2. (a) fluid state point (ρ, T ) = (0.045, 0.02)
in the low density region. The correlation coefficient R is above 0.9 and the
scaling exponent γ is positive. (b) fluid state point (ρ, T ) = (0.4208, 0.006) in
the high density region. R is strongly negative, i.e. R < −0.9, and γ is negative
too. (c) fluid state point (ρ, T ) = (2.19, 3.8 · 10−6) at even higher densities (this
state point is along the freezing line evaluated in Ref. [25]). R is negative but
close to zero. In this last situation many of the curves cross the entire figure
and have a non monotonic behavior as function of density.
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Figure 6.3: Correlation coefficient R, scaling exponent γ and configurational
adiabat shape h(ρ), from Eq. 6.2, along the configurational adiabat starting
from the state point (ρ, T ) = (0.0406, 0.0014). (a) correlation coefficient R as a
function of density ρ along the chosen configurational adiabat. The drop from
strong positive correlation to fairly strong negative correlation is sharp and it
is in the same region of densities where the freezing line exhibits the maximum.
(b) scaling exponent γ along the chosen configurational adiabat. The red line
represents the prediction for the scaling exponent γ from the pair potential [70],
Eq. 6.1. The agreement between the data and the prediction is satisfying for
densities lower that unity. (c) configurational adiabat shape prediction from
Eq. 6.2, i.e., from the pair potential. The agreement is good in the same region
as for γ, not surprisingly because γ is the logarithmic derivative of h(ρ), from
Eq. 2.31. It’s important to remark that the regions in which the configurational
adiabat is also an isomorph are only the ones in which Eq. 2.2 is satisfied. This
statement is clarified in the text and in Sec. 6.6.
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6.3 Scaling exponent γ of the GC system

As discussed in Chap. 2 and in Ref [70], the scaling exponent γ(ρ, Sex) and
the shape function for isomorphs h(ρ, Sex) can be predicted starting from
the pair potential. The scaling exponent γ is related to the derivatives of
the pair potential v(r) from the equation:

γ(ρ, Sex) =
1

3

(
−2− rv

(3)(r)

v(2)(r)

)∣∣∣∣∣
r=Λ(Sex)ρ−1/3

(2.36)

where the second and third derivative of v(r), respectively v(2)(r) and v(3)(r),
are involved. The coefficient Λ(Sex) takes into account that the equation for
distinct isomorphs can slightly differ [70] and it depends on the specific
configurational adiabat, i.e. a constant excess entropy Sex curve. In the
following, we will assume the coefficient Λ(Sex) to be identically unity for
simplicity. Eq. 2.36 when specialized to the case of the GC model provides
a prediction for γ along an isomorph:

γ(ρ) =
2

3

2ρ−
4
3 − 5ρ−

2
3 + 1

2ρ−
2
3 − 1

. (6.1)

Eq. 6.1 predicts a monotonically decreasing dependence of γ on density ρ,
see Fig. 6.3 (b) and a (negative) divergent value of γ for ρ = ρ̄ = 23/2 ≈ 2.83.
A divergent value of the scaling exponent γ is not physical and therefore, in
order for the theory to be consistent, the system should stop being R simple
before reaching the density ρ̄. There is no reason, according to Eq. 6.1, to
set a lower limit to the density at which isomorph theory should work in
the case of the GC system. It is interesting to note the difference between
this system and the LJ system. In the latter case, the isomorph theory does
not apply at low density while it works at high density and this keeps being
true even in the high dimensionality limit considered in Chap. 5. For the
GC system the converse happens: there is an upper limit to the density at
which the theory can be used but not a lower one.

Following Ref. [70], it is possible to predict also the shape of configu-
rational adiabats, i.e. the analytical form of the T (ρ) dependence in the
phase diagram, from the pair potential. In Ref. [70] the function h(ρ, Sex) is
supposed to describe the isomorph shape because isomorphs are configura-
tional adiabats. The GC system is the first case where further attention on
the distinction between configurational adiabats and isomorphs is required;
a careful explanation of the difference is given in the following pages. The
equation for h(ρ, Sex) from Ref. [70] is:

h(ρ, Sex) = A ρ−2/3v(2)(r)
∣∣∣
r=Λ(Sex)ρ−1/3

. (2.37)
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The coefficient A incorporates the fact that the function h(ρ, Sex) is defined
up to a positive multiplicative constant. When Eq. 2.37 is specialized to
the GC model and, as before, Λ(Sex) is set to unity, the prediction for the
shape of configurational adiabats h(ρ) is:

h(ρ) = −Aρ− 4
3 (ρ

2
3 − 2)e−ρ

− 2
3 . (6.2)

The temperature T along a given isomorph is proportional to h(ρ) and it will
become negative for densities higher than ρ̄. As in the case of γ(ρ), there
is consistency requirement from the theory: the system must stop being R
simple somewhere before reaching density ρ̄.

In Fig. 6.1 a configurational adiabat starting from the state point
(ρ, T ) = (0.0406, 0.0014) is shown (red curve). This curve has been con-
structed step-by-step (using a 1 per cent density increment) as described in
Chap. 5, i.e., evaluating the scaling exponent γ from an NVT simulation at
the starting state point, numerically solving Eq. 2.24 to find the tempera-
ture change corresponding the chosen density change and then iterating the
procedure. In Fig. 6.3 (a) the correlation coefficient R, defined in Eq. 2.1,
is plotted as a function of density ρ along this configurational adiabat. At
low density the system is a Roskilde liquid and the correlation coefficient R
decreases as density is increased. The GC system is therefore strongly cor-
relating at small densities, while at densities corresponding to the maximum
of the freezing curve the correlation coefficient R is close to zero and then
it becomes strongly negative in the high density region.

Along the same configurational adiabat the scaling exponent γ has been
evaluated and it is compared with predictions from Eq. 6.1 in Fig. 6.3 (b).
The agreement between simulation data and Eq. 6.1 is good for ρ < 1.
There is therefore a density at which the system stops behaving R simple,
as discussed before. It is interesting to note that the value ρ = 0.9594
(green vertical line in figure) is where γ from Eq. 6.1 has an inflection point.
This change of concavity is needed in order to have a negative divergence at
higher densities but it is not reflected at all in the γ evaluated from NVT
simulations. We can now notice a parallel with the LJ systems studied in
the previous chapters: as in the case of the LJ system the change in the first
derivative of γ was associated to the system ceasing to be R simple (Chap. 3
and 5), for the GC model the high density non-R simple region starts with a
change in the sign of the second derivative of γ. At the present stage, these
correlations between changes in γ behavior and the system ceasing to be R-
simple are only the author’s observations and the theoretical understanding
of physics processes relating to this change in behavior is unclear. A more
deep understanding of these correlations could be of interest for further
development of the isomorph theory.

In the 3d space the change between different regimes of the scaling expo-
nent γ is smooth but we can speculate that in the d→∞ limit this change

77



Chapter 6

becomes sharp and it could be thought as of some sort of phase transition
between an R simple domain in the phase diagram and a non-R simple do-
main, in analogy with what has been discussed in Refs. [129, 130]. The
data we have at the present stage are not enough to give any proof of this
conjecture. An extensive study of the GC system, and of other systems as
well, could give further insight in this direction.

In Fig. 6.3 (c), the consistency between Eq. 6.2 and the step-by-step
construction of the configurational adiabat is verified. Data are in agreement
with the prediction for ρ < 1 as in the case of γ. It is worth noting that,
even though the maximum of the configurational adiabat is well described
by h(ρ) in Eq. 6.2, in that region the GC system is not strongly correlating,
as evident from Fig. 6.3 (a), and the isomorph theory is not supposed
to hold there. The description of configurational adiabats through Eqs.
6.1 and 6.2 is derived starting from the assumption that the temperature
along a configurational adiabat depends on density and excess entropy Sex

as T = h(ρ)f(Sex) [67]. This relation is restricted to R simple systems
[67]. It is therefore surprising and not completely understood why the h(ρ)
function can describe the configurational adiabat even in the region where
strong virial potential energy correlations are absent. In the case of the GC
system, along the same configurational adiabat there are two regions where
the system exhibits strong correlations: in the low density region strong
positive correlations while at high densities strong negative ones. These
two regions define two different isomorphs because they are connected by a
region in which correlations are weak or absent.

The phase diagram of the GC system appears to be divided therefore in
four different density regions:

1. low-density region: the GC system has correlation coefficient R close
to unity and it is R simple. In this region the system is also simple
according to the usual definition of Chap. 1 and Ref. [1];

2. the region around the maximum of the freezing curve: the GC system
is not R-simple because the correlation coefficient R is close to zero,
and it cannot be described with HS either;

3. moderate density region (approximately 0.4 < ρ < 1.0): the corre-
lation coefficient R is strongly negative, Eq. 2.2 is satisfied and iso-
morphs with negative scaling exponent γ exist;

4. high density region: even though the coefficient R is still strongly neg-
ative, the configurational adiabats are not isomorphs anymore because
Eq. 2.2 is no longer satisfied, as shown in Fig. 6.4.

This division into regions based on the system density becomes irrelevant at
high temperatures. Along an isochore, the correlation coefficient R for this
system is monotonically increasing with temperature and the GC system
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Figure 6.4: Direct check of the general definition of R simplicity (Eq. 2.2).
(a) at the state point (ρ, T ) = (1.110, 1.87 · 10−3) along the configurational adi-
abat in Fig. 6.1 (red curve). The density of this state point is higher than
the density 0.9594 where γ exhibits an inflection point. (b) at the state point
(ρ, T ) = (1.325, 1.23 · 10−4) along the high density freezing line from Ref. [25].
Also in this case the density is higher than that of the inflection point. The dif-
ference between these figures and the ones in Fig. 6.2 is that in this case there
are (more) scaled potential energy curves that cross many others, especially at
(ρ, T ) = (1.325, 1.23 · 10−4), showing a much stronger violation of Eq. 2.2 than
in Fig. 6.2 (a) and (b).

exhibits strongly positive correlations. The study of the system has been
not extended to the high temperature region both for the lack of time and
because the structure and dynamics become trivial when the particles’ mean
kinetic energy is large compared to the interaction energy (ideal gas).

In the next sections the existence of invariance along isomorphs for the
GC model both in the low density region and in the high density region
is shown and the possibility of approximating the freezing line of the GC
model with a freezing isomorph, in analogy with the LJ system in Chap. 3,
is discussed.
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Figure 6.5: Structure and dynamics along an isomorph in the low density
region of the phase diagram of the GC system. The density of the second state
point is doubled respect to the density of the first one. In this region, the
GC model fluid can be also described following the HS paradigm. (a) Radial
distribution function (RDF) g(r) at the two isomorphic state points; (b) RDF
in reduced units; (c) Mean squared displacement (MSD) at the two isomorphic
state points; (d) MSD in reduced units.

6.4 Low density isomorph

The existence of strong positive correlations between virial and potential
energy implies the invariance of reduced structure and reduced dynamics
along isomorphs. In Fig. 6.5 the structure and the dynamics for the GC
model in the fluid phase is studied along the isomorph starting from the
state point (ρ, T ) = (0.0406, 0.0014) This isomorph is the low density side of
the configurational adiabat represented in Fig. 6.1 with a red curve. In this
region R > 0.9 and therefore the configurational adiabat is an isomorph.
Both structure and dynamics are plotted as a function of usual LJ units
(length in units of σ and energies in units of ε) and as a function of reduced
units, defined in Ref. [52]. Analogously to the other R systems, the invari-
ance of structure and dynamics along the chosen isomorph is verified for
the GC model too. The collapse of the radial distribution function is not
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Figure 6.6: Structure and dynamics along an isomorph in the moderate density
region of the phase diagram of the GC system defined in Sec. 6.3. In this region,
the GC model fluid cannot be described following the HS paradigm. (a) Radial
distribution function (RDF) g(r) at the two isomorphic state points; (b) RDF
in reduced units; (c) Mean squared displacement (MSD) at the two isomorphic
state points; (d) MSD in reduced units. It is quite surprising that the two state
points have the same dynamics (MSD) even in non-reduced units.

perfect, but one should notice that the density and temperature have been
changed by a factor ≈ 2 and ≈ 8 respectively.

6.5 Isomorph in the moderate density region

The presence of strong negative correlations in the phase diagram should
lead, as in the case of the strong positive ones, to the invariance of structure
and dynamics in reduced units along configurational adiabats, which are
negative R isomorphs. This conjecture is formulated in this work for the
first time and is verified in Fig. 6.6. As mentioned in the start of this chapter,
there is no requirement for the correlation coefficient R to be positive, but
only for its absolute value to be close to unity. The two state points, whose
structure and dynamics are studied in Fig. 6.6, belong to the configurational
adiabat represented in Fig. 6.1 with a green line. These state points are in
the moderate density region defined in Sec. 6.3, i.e. where configurational
adiabats are isomorphs with negative correlation coefficient R and negative
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scaling exponent γ. Invariances in this region cannot be explained referring
to the HS system. In Fig. 6.6 the structure (RDF) and the dynamics (MSD)
are plotted as a function of LJ units and of reduced units. The invariance
in reduced units is well verified in agreement with the isomorph theory
prediction. The relative change in density and temperature in this case are
8% and 11% respectively. Even though this density change seems to be
small when compared to the one of the last section, one should remember
that the density ranges studied in computer simulations are often of this
order. In Fig. 6.6 (a) it is possible to see that this density change produces
a significant variation in the RDF. The absence of any change in the MSD
in non reduced units is surprising, specially when associated with an evident
change in structure. A similar finding, but for a completely different system,
has been reported in Ref. [147].

6.6 The freezing line of the Gaussian core system

The existence of isomorphs in the fluid phase implies, as discussed in Chap.
3 and in Refs. [83, 84], that the freezing line for the system of study can be
approximated by an isomorph, the freezing isomorph. Keeping this aim in
mind we constructed two different configurational adiabats with the step-by-
step method, already explained previously, from two state points belonging
to the low density side of the freezing line (positive slope) taken from Refs.
[142, 143]. The two configurational adiabats, together with the entire set
of freezing state point of Refs. [142, 143], are reported in Fig. 6.7. The
low density region of the freezing line is well approximated by configura-
tional adiabats, which are isomorphs since R > 0.9 in this region as shown
in Fig. 6.7 (b). There is no difference between the configurational adiabats
(isomorphs) generated from the two state points. In the region of densities
where the freezing line exhibits a maximum and where the correlation coef-
ficient drops to zero, the approximation for the freezing line stops working,
as expected. The isomorph theory is, in fact, not supposed to work when
R ≈ 0.

This is strong evidence that isomorphs and configurational adiabats are
not exchangeable concepts. Specifically, not all configurational adiabats are
isomorphs. The role of the excess entropy Sex as the relevant parameter
in describing transport coefficients is, in the author’s view, related to the
existence of hidden scale invariance predicted by the isomorph theory and
not a general feature of configurational adiabats, as suggested by Rosenfeld
[65] or Dzugutov [78]. In support of this hypothesis, the breakdown of
Rosenfeld entropy scaling has been observed in the anomalous region of the
GC system (Ref. [148]).

For the GC system the difference between configurational adiabats and
isomorphs is even more striking than for other systems; along the same
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Figure 6.7: Freezing line of the GC system and isomorph approximating its
low density side: (a) comparison between the freezing line from Refs. [142, 143]
and the approximation provided by Eq. 6.3. Two independent configura-
tional adiabats are built from the state points (ρ, T ) = (0.0779, 0.002) and
(ρ, T ) = (0.1057, 0.004) along the GC freezing line from Refs. [142, 143] to
show the uniqueness of Eq. 6.3. A third configurational adiabat starting from
(ρ, T ) = (0.5219, 0.004) is also shown. (b) correlation coefficient R, from Eq.
2.1, along the three configurational adiabats. The black dotted line indicates the
(approximate) density at which the correlation coefficient R exceeds the thresh-
old of 0.9 and therefore it indicates the maximum density at which Eq. 6.3 well
approximates the GC freezing line. For densities below ρ ≈ 0.17 the correlation
coefficient R along the configurational adiabats is above 0.9 and therefore these
configurational adiabats correspond to the same isomorph.
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configurational adiabat in fact the correlation coefficient R can be strongly
positive (close to unity) and then strongly negative, as shown in Fig. 6.3 (a)
and Fig. 6.7 (b). A consequence of this behavior of R is that along the same
configurational adiabat it is possible to have two distinct isomorphs. The
structure and the dynamics on the low density side of the configurational
adiabats are different from those along the high density side and therefore
the two strongly correlating branches of the configurational adiabat cannot
be the same isomorph. This is true in particular for the isomorph starting
from the two low density freezing state points considered here. While for
low densities this isomorph provides a good approximation of the freezing
line, the continuation of the same configurational adiabat does not describe
the high density side of the freezing line, as shown in Fig. 6.7.

The function h(ρ) from Eq. 6.2 gives the shape of isomorphs and there-
fore it can be used to obtain an analytical expression for the low density
freezing line of the GC system. The coefficient A in Eq. 6.2 can be chosen
by imposing to the function h(ρ) to have the same maximum value as the
configurational adiabat from one of the freezing state points. The choice of
which freezing state point to use is irrelevant as long as the state point is
in the strongly correlating region, as shown in Fig. 6.7. The value for A so
obtained is AL = 1.10 · 10−2 where the suffix L stands for low density. The
low density side of the GC freezing line can be therefore approximated by:

TL = −ALρ−
4
3 (ρ

2
3 − 2)e−ρ

− 2
3 (6.3)

Differently from what done in Chap. 3, in this case Eq. 6.3 is a one-
parameter fit and it is not a prediction of the freezing line from a single state
point. For this reason this equation has not been called freezing isomorph.
It should be noted that in this derivation we assumed that Λ(Sex) = 1, which
is known to be a simplifying approximation of the general case discussed in
Ref. [70] This could be an explanation of the need for a fitting parameter
in obtaining Eq 6.3.

The invariance of reduced structure and reduced dynamics along the low
density side of the freezing line is verified in Fig. 6.8. As in the case of the
LJ system, the invariances along the low-density freezing line of the GC
system can be explained in terms of isomorph theory.

We tried to approximate the freezing line of the GC system in the mod-
erate density region, defined in Sec. 6.3, with an equation like Eq. 6.3
without success. From Fig 6.7 it is evident that after the maximum of the
freezing curve, Eq. 6.3 does not even represent the correct configurational
adiabat. An alternative way of proceeding could be the one adopted in
Chap. 3 for the low density region of the LJ freezing line, where the bare
isomorph theory does not provide an accurate approximation of the freezing
line but it is still possible to obtain the right freezing line as a first order
Taylor expansion. Due to lack of time, this part of the work is unfinished.
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Figure 6.8: Invariances along the freezing line in the low density region. (a)
Radial distribution function (RDF) g(r) at three state points along the freezing
line from Refs. [142, 143]; (b) RDF in reduced units; (c) Mean squared displace-
ment (MSD) at the same state points; (d) MSD in reduced units. When using
reduced units, the structure and the dynamics of the two state points collapse
onto a master curve.

Summary: results, problems and outlooks

The resulting picture from our (ongoing) work on the GC system is not
complete and this is one of the reasons this system deserves a more extensive
study. We showed that at low density the correlation coefficient R is close to
unity and isomorphs are present in this region. Both in the liquid phase and
along the low density side of freezing line, isomorph invariances hold and
the description of isomorphs using Eqs. 6.1 and 6.2 is confirmed. At high
density a much more complex scenario appears. It is still possible to define
isomorphs, and invariances still hold, but the isomorphs in this region are
characterized by strongly negative correlations between virial and potential
energy (instead of strongly positive as at low densities). In this region
the freezing line is not a configurational adiabat and cannot be therefore
approximated by an isomorph.
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Conversely from the other results presented in this thesis, the data for
the high density GC have only partially been double checked by the author
due to the lack of time. One of the most trustworthy check of a NVT
simulation is, in the author’s opinion, the measurement of specific heat at
constant volume. This measurement can be performed both using potential
energy fluctuations and calculating the variation of potential energy when
changing temperature along an isochore. A difference in the value of excess
specific heat Cex

V provided by the two measurements is usually related to a
not sufficiently accurate choice of the thermostat relaxation time (see Chap.
1, appendix A and App. C) or problems related to loss of precision due
to single precision calculation on the GPU. In the case of the data for the
high temperature configurational adiabat, red line in Fig. 6.1, this test has
been performed with good results: the excess specific heat at the state point
(ρ, T ) = (0.4887, 0.0294) is Cex

V = 1.035 from potential energy fluctuations
and Cex

V = 1.040 from the measurement along the isochore ρ = 0.4887. In the
case of the configurational adiabats in Fig. 6.7 the excess specific heat Cex

V

from the fluctuations is wrong. The excess specific heat at the state point
ρ, T ) = (0.4860, 0.0067) is Cex

V = 6.972 from potential energy fluctuations
and Cex

V = 1.638 from the measurement along the isochore ρ = 0.4860. The
correlation coefficient R and the scaling exponent γ are usually less sensitive
than Cex

V to the thermostat relaxation time and the fact that the results of
R are reasonable can be understood by comparing Fig. 6.3 (a) with Fig.
6.7 (b). The behavior of R as a function of density is in fact the same. A
deeper understanding of why the estimation of the excess specific heat Cex

V

from fluctuations is so off is needed and will be matter of further study by
the author. A wrong estimation of the scaling exponent γ could justify the
discrepancy between the configurational adiabat (which is calculated using
γ) in Fig. 6.7 and the prediction from h(ρ). Despite these problems, the
GC system has shown to be extremely interesting and it should be the focus
of even more interest in the future studies as a playground for theories such
as the isomorph theory. An interesting possible direction of extending the
study of this system, on the track of what done in Chap. 5, could be in
understanding how isomorphs with negative correlation coefficient behave
in higher number of dimensions.
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Description of the homemade
molecular dynamics code

In this appendix the molecular dynamics program developed by the author
for simulating a system of particles in d dimensions is described. This pro-
gram has been used to produce the data in Chapter 5 and it is available at
http://dirac.ruc.dk/~lorenzoc/ together with some analysis tools.

As described in Chapter 1, a molecular dynamics (MD) program inte-
grates the equations of motion of a system of N particles interacting via
a chosen potential. The discretized equations of motion for the Leap-Frog
NVE, i.e. constant number of particles N volume V and total mechanical
energy E, and NVT, where T stands for constant temperature, dynamics
[149] can be generalized to an arbitrary number of spatial dimensions due to
their vectorial form. The necessity of dealing with vectorial calculations in
an arbitrary number of dimensions is one of the reasons for developing our
MD program in Fortran 90. Other reasons for this choice are that Fortran
90 represent a good compromise between easy coding and parallelization op-
portunities. Both CUDA environment [39] and OpenMP environment [150]
have been developed for Fortran 90 and therefore it is possible to parallelize
a Fortran code on GPUs and/or CPUs. The present code utilizes parallel
computing on CPUs for the calculation of the neighborlist. A GPU imple-
mentation of the neighborlist and of the force calculation could be a future
development. All calculations in this program are in double precision.
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A.1 Program structure

The program is structured in different libraries; this way of structuring the
code has two main advantages: the code is more readable (when appropri-
ately commented) and the different libraries can be modified independently
from each other. The interaction potentials available are exclusive libraries.
The structure of the code is the following:

1. PhD MDfortran.f90 : this is the main file where the Leap-Frog
equations for NVE and NVT dynamics are integrated;

2. MDneighborlist.f90 : contains the implementation of neighborlist
calculation using OpenMP parallelization [150] on CPUs;

3. MDoutputmanager lib.f90 : contains all the functions and subrou-
tines related to reading the starting configuration and to writing the
output;

4. MDpotential lib.f90 : there are 3 versions of this file and each of
them implements a different pair potential and it contains the specific
force calculation

(a) LJ(12,6) ( future plan for LJ(8,4) and LJ(16,8))

(b) Exp potential [56, 57]

(c) mW potential (only pairwise term) [151]

5. general func lib.f90 and MDfunction lib.f90 contain functions for
general use.

A.1.1 Input and Output

The program needs to be compiled for the chosen pair potential. Informa-
tions about how to compile the program can be found at http://dirac.

ruc.dk/~lorenzoc/. In order to run a simulation a starting configuration
at density 1.0 and a text file containing the parameters of the simulation
(described in the following) are needed.

The starting configuration can be created using a stand-alone code named
Nd start conf that produces a configuration with the specified number of
particles in a simple cubic (SC) lattice structure and it takes as input the
number of particles in one direction (this number, as example, is 3 if a SC
of 9 particles in 2d is desired) and the number of dimensions. The starting
configuration is saved as a compressed gzip file.

An example of the parameters’ file, named sim info.mydat, is given in
Fig. A.1. In this file the information on the state point to simulate, as
density and temperature, the output schedule and the integrator (NVE or
NVT) can be chosen.
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#Starting configuration:

Mystart_N1728_T1.312_rho0.9.xyz.gz

#d, N, Nsteps

3 1728 2000000

#block_size, record_en_int, record_traj_int

10000 200 500

#density, T, timestep, cutoff, skin

0.90D0 1.3120D0 0.00250D0 2.5D0 0.3D0

#integrator , targetT, thermo_relax, SF_on

NVT 1.3120D0 80.0D0 1

Figure A.1: Example of parameters’ file. A detailed explanation of each
parameter is given in the text.

In the following each line of sim info.mydat is described and all the
meaning of all the parameters explained.

The file name of the starting configuration is read from the second line.
This file can be produced using Nd start conf or can be a restart file from
an old simulation.

On the fourth line there is information regarding the dimensionality of
the system d, the number of particles N in the starting configuration and
the number of timesteps Nsteps to simulate. The program will verify if the
number of particles N inserted corresponds to that in the starting configu-
ration and it will throw an error otherwise.

On the sixth line there is the output information. Output is divided into
blocks in order to make easier to check the results while the simulation is
still running (using the analysis tools). At the end of each block a restart
file is written; this file can be used as starting configuration to restart the
simulation whether is needed. The three parameters on this line specify
how long, in terms of how many timesteps, an output block should be and
how often energies and trajectories are saved. The block size needs to be an
integer multiple of each of the other two numbers. If this is not the case,
the program will throw an error. At the present stage no logarithmic saving
of trajectories is implemented, this could be part of future development.

On line eight the informations about density ρ, temperature T , timestep,
cutoff and neighborlist skin are given. The meaning of skin and cutoff
parameters will be discussed in Secs. A.1.2 and A.1.3. This MD program
performs simulations in reduced units; a reason for doing that is to produce
the output configurations directly in the reduced units relevant for the iso-
morph theory. The density and the temperature of the system are therefore
set to unity before the simulation starts while the length scale and the en-
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Figure A.2: Check for the NVE and NVT integrators. (a) total mechanical
energy for an NVE simulation in 3d at the state point (ρ, T ) = (0.9, 1.312) for
the LJ system using SF cutoff. (b) output temperature for an NVT simulation
in 3d at the state point (ρ, T ) = (0.9, 1.312) for the LJ system using SF cutoff.

ergy scale of the potential are scaled in order to get the right density and
temperature in usual MD units. If for example the desired temperature is
T = 0.5 in MD units with σ = ε = 1 parameters of the potential, a simula-
tion with T = 1 and (σ, ε) = (1, 2) will be performed. The reason for this
is that in any MD code, changing density ρ and temperature T or chang-
ing the length scale σ and the energy scale ε of the potential is completely
equivalent. The input file is thought in a way to allow the beginner user to
be able to perform simulations easily and this is why the input parameters
are in terms of density and temperature and not of σ and ε. The energy
output is also given in usual MD units.

In the last line it is possible to specify the integrator (NVE or NVT, NPT
could be a further development), the target temperature and the thermostat
relaxation time. The NVT program uses the Nosé-Hoover thermostat [36]
already presented in Sec. 1.2.2. The thermostat relaxation time is given
as a multiple of the timestep. In the example in Fig. A.1, the thermostat
relaxation time will be 80 timesteps. The last parameter specifies the cutoff
method: the program can use a shifted potential (SP) or shifted force (SF)
cutoff. The SP cutoff is selected inserting 0, corresponding to SF on =
false, while SF cutoff inserting 1. Any other number either than 0 or 1 will
produce an error.
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Figure A.3: (a) check of ideal scaling relation between the energy fluctuation
∆E and the timestep h:
log(∆E) ∝ 2 · log(h) from Ref. [33]. Several NVE simulations at the state point
(ρ, T ) = (0.9, 1.312) for the LJ system using SF cutoff have been performed with
different timesteps. The values of the energy standard deviation so obtained
have then been fitted to verify if the MD code is able to reproduced the ideal
scaling of Ref. [33] and this is the case. (b) time required (in seconds) in order
to perform a simulation in 3d at the state point (ρ, T ) = (0.9, 1.312) for the LJ
system using SF cutoff for different values of the skin parameter. The choice of
the optimal skin for a given system at a given state point can seriously improve
the performances of an MD code as discussed in Refs. [153, 154].

A.1.2 Cutoff methods and energy conservation

This MD program allows one to chose between two different cutoff methods:
shifted force (SF) [152] and shifted potential (SP). The shifted potential
(SP) method is commonly used in molecular dynamics simulation codes and
it consists in setting the potential to zero when the distance between two
particles is larger than the chosen cutoff. This cutoff method introduces a
discontinuity in the force. The shifted force (SF) method sets the force to
zero for distances larger than the cutoff and smoothly shifts the potential in
order to avoid discontinuity. In a recent work, Toxvaerd and Dyre [152] have
shown that using SF cutoff it is possible to obtain a better scaling between
energy fluctuation in the NVE ensemble and timestep than when using SP.
The ideal scaling is given by log(∆E) ∝ 2 · log(h) and in Fig. A.3 (a) it is
verified that MD code presented here can reproduce this ideal scaling when
using SF. In Fig. A.2 (a) the total mechanical energy E is shown as function
of time for an NVE simulation. Only small drift in the total energy can be
observed on a simulation of 2 · 106 timesteps.

Another advantage of SF is that it is possible to reproduce the correct
structural and dynamical quantities using a smaller value for the cutoff than
the one needed in the case of SP [152]. This feature can be useful when
simulating dense systems, where the number of neighboring particles is high.

91



Chapter A

Figure A.4: (a) representation of force calculation is performed in a program
using neighborlist. The force acting on the red particle is calculated summing all
the forces if the neighborlist is absent even though only particles closer than the
cutoff radius rc give a contribution to the total force. The use of a neighborlist
allows one to restrict the force calculation to the particles which are not much
farther away that rc. (b) representation of the skin parameter. When the
neighborlist is built all particles inside a sphere of radius rc+ skin are recorded.
If the skin is chosen to be zero, the neighborlist needs to be updated at each
timestep because particles that where closer than rc could have moved away and
vice-versa with particles farther away than rc. In this case the neighborlist will
not produce any improvement on the code performances. When the skin is not
zero, all the particles in the sphere of radius rc + skin are taken into account in
the force calculation. The force calculation will require N ∗ Nb calculations as
maximum if we indicate with Nb the maximum number of neighbors. In order
to ensure that at every timestep all the particles closer than rc are taken into
account in the force calculation, the neighborlist is updated every time than one
particle travel more than 0.5skin from the position at which it was when the
neighborlist was built the last time. This figures has been taken from Ref. [155].

A.1.3 Neighborlist

When simulating system with a large number of particles interacting via
short range potentials, it is convenient to use a neighborlist [31] in order to
avoid performing useless force calculation between particles which are far
enough to be weakly interacting or not interacting at all if the distance be-
tween the particles is longer than the cutoff. A neighborlist is an array of
integers which registers the neighbors of every particle. When using a neigh-
borlist, the loop for force calculation only takes into account the neighbors
of a given particle. If the maximum number of neighbors is Nb the force
calculation will need N ·Nb pairwise distances instead of N2. The intro-
duction of a neighborlist can significantly improve the performances for big
system sizes. The two parameters which determine how the neighborlist is
built and how it is updated are the potential cutoff and the skin. This
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two parameters are represented in Fig. A.4. The cutoff has already been
described in Sec. A.1.2. The skin is the parameter that determines how
often the neighborlist is updated. A smaller skin it will imply a more fre-
quent update of the neighborlist but at the same time a smaller number
of neighbors. The neighborlist is built recording, for each particle, all the
neighbors defined as the particles at distance not larger than rc + skin and
it is updated when a particle moves more that half skin from the position
where it was when the neighborlist was built the last time. The importance
of the skin parameter can be understood from Fig. A.3 (b), where the time
needed to simulate 10000 timesteps for a LJ system in 3d at the state point
(ρ, T ) = (0.9, 1.312) is plotted as a function of the chosen skin. As pointed
out in Refs. [153, 154], the choice of the optimal skin can be crucial in order
to obtain reasonable simulation times when working with big system sizes.

In order to optimize the performance of the MD code, the neighborlist
is calculated in parallel on CPUs using the OpenMP environment [150].

A.2 Comparison with RUMD on structure and
dynamics

The MD code discussed in this appendix has been tested against RUMD [38].
In Fig. A.5 the structure, probed by the radial distribution function (RDF),
and the dynamics, probed by the mean-squared displacement (MSD), of
the LJ system at the state point (ρ, T ) = (0.9, 1.312) in 3d are shown.
The black lines have been obtained from an NVT simulation with the MD
code. The RDF is calculated using the myMD rdf tool available at http:

//dirac.ruc.dk/~lorenzoc/ while the MSD is calculated using rumd msd
tool, after converting the output in RUMD format. The red lines have
been obtained from an NVT simulation with RUMD and using the standard
RUMD tools for calculation of RDF and MSD. The results from the two
codes are in perfect agreement.
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Figure A.5: Structure and dynamics of the LJ system at the state point
(ρ, T ) = (0.9, 1.312) in 3d. Results from the MD code described in this appendix
are compared with RUMD [38]; SF and SP indicate if shifted force (SF) [152]
either shifted potential (SP) cutoff is used for the interaction potential. (a) Ra-
dial distribution function (RDF) g(r) (b) Reduced mean-squared displacement
(MSD), i.e., expressed in reduced units as defined in Ref. [52].
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Additions to RUMD:
NPT integrator

In this appendix the atomic NPT integrator implemented by the author
together with Ulf R. Pedersen in the RUMD code is described. The imple-
mentation of the NPT integrator is base on Ref. [156]. The simulation data
presented have been obtained by the author using RUMD [38].

One of the fundamental classes in the RUMD program structure is the
integrator class. This class is responsible for the integration of the equations
of motion. The NPT integrator is an implementation of the integrator class
that allows the program to integrate the equations of motion coupled with a
thermostat and a barostat, correspondingly necessary to keep temperature T
and pressure P constantly equal to the desired values. The implementation
scheme used for the NPT integrator is a variation of the scheme proposed
in Ref. [156] and it was developed together with Ulf R. Pedersen. The
difference between the two schemes is the way the equations of motion are
discretized: Martyna et al [156] used a velocity Verlet algorithm, while the
scheme we implemented uses a Leap-Frog algorithm consistently with the
other integrators in RUMD. For the differences and analogies between the
NVE implementation of velocity Verlet and Leap-Frog algorithms see Chap.
1.

At every timestep the positions and velocities of every particles are up-
dated. Kinetic energy and virial are calculated and used to keep track of
temperature and pressure. No long range corrections are used for calculating
the pressure.

The integrator is written in C++ CUDA which is an environment for
C++ which allows one to parallelize on Nvidia graphic cards (GPUs). All
RUMD integrators are parallelized in CUDA.
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B.1 NPT Leap-Frog: the equations of motion

The equation of motion proposed in Ref. [156] are:

Equations of motion

ṙi =
ṗi
mi

+
pε
W

ri (B.1)

ṗi = Fi −
(

1 +
d

Nf

)
pε
W

pi −
pη
Q

pi (B.2)

Barostat and thermostat state

ṗε = V d(Pint − Pext) +
d

Nf

N∑

i=1

p2
i

mi
− pε
Q
pη (B.3)

ṗη =
p2
ε

W
− (Nf + 1)kBT +

N∑

i=1

p2
i

mi
(B.4)

It has been proved that these equations reproduce the NPT ensemble with
respect to both mean values and fluctuations [156]. The volume change at
every timestep is calculated from:

V̇ = V d
pε
W

(B.5)

The equations for Leap-Frog NPT integrator are obtained by discretization
of the equations of motion respect to time in analogy with what done in Sec.
1.2.2 for the NVT integrator. The discretized equations are:

Equations of motion

pi(t+ h/2) =
1

1 +A
{hḞi(t) + pi(t− h/2) [1−A]} (B.6)

A =
h

2

[(
1 +

d

Nf

)
pε(t)

W
+
pη(t)

Q

]

ri(t+ h) =
h

mi
pi(t+ h/2) +

[
1 +

pε(t)

W

]
ri(t) (B.7)

Barostat and thermostat states

pη(t+ h) = pη(t) + h

[
2K(t) +

p2
ε (t)

W
− (Nf + 1)kbT

]
(B.8)

pε(t+ h) = hV d(Pint − Pext) +
hd

2Nf
K(t) + pε

[
1− hpη(t)

Q

]
(B.9)

Volume change

V (t+ h) = V (t)
[
1 + hd

pε
W

]
(B.10)
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τp T p V ∆V cex
p

5 2.000 4.700 5304.506 23.431 3.036

20 2.000 4.700 5303.084 23.939 3.106

50 2.000 4.700 5303.141 23.694 3.069

200 1.998 4.699 5303.035 44.676 7.665

500 1.986 4.688 5302.351 129.40 56.84

Table B.1: Mean values of the temperature T , the pressure p, the volume
V , the volume fluctuations and excess specific heat at constant pressure per
particle cexp for the LJ system are shown for different choices of the barostat
relaxation time τp at the state point (T, p) = (2.0, 4.7). The values indicated in
the table for temperature T and pressure p are the mean values measured for
input parameters (T, p) = (2.0, 4.7). The data clearly shows that at this state
point a good choice of the τp is a value in the range [20, 50]. The data for cexp
and ∆V strongly depend on the τp if the latter value is not well chosen.

These equations of motion have a similar structure of the ones for NVT
dynamics derived in Chap. 1 but, while in NVT dynamics only the velocities
are rescaled, in this case the positions are scaled too in order to be consistent
with the volume scaling in Eq. B.5.

B.2 Tests on NPT implementation

The implementation of the NPT integrator have been checked in two ways.
The first test is the stability against changes of the barostat relaxation time;
this test it is needed in order to understand in which range of values of
the relaxation time the integrator reproduces the expected thermodynamic
ensemble. The second test is a consistency check between the value for the
excess specific heat at constant pressure obtained from enthalpy fluctuations
and the value obtained from the derivative of the enthalpy along an isobar.

Stability vs changes of the barostat relaxation time

The barostat relaxation time is the parameter that regulates how strongly
the barostat is coupled with the equations of motion. As shown in Eqs. B.6
and B.7, the correction to the position and velocity of each particle due to
the presence of the barostat are related to this parameter. If the coupling
is too strong the simulation could produce unrealistic results, while if the
coupling is too weak the barostat is not able to keep the pressure constant.
It is therefore important to be aware of which is the range of values of the
barostat relaxation time that ensures a correct NPT dynamics. This range
of values is, in general, dependent on the interaction potential chosen and
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therefore no default value for the relaxation time of the barostat has been
chosen for the NPT integrator in RUMD. The user must choose the barostat
(and the thermostat) relaxation time when the NPT integrator is associated
with the simulation object in RUMD.

In Table B.1 the mean values of the temperature T , the pressure p, the
volume V , the volume fluctuations and excess specific heat at constant pres-
sure per particle cex

p are shown for different choices of the barostat relaxation
time τp at the state point (T, p) = (2.0, 4.7). The system we simulated is
the Lennard-Jones system which is in the liquid phase at the chosen state
point. The number of particles is N = 4096 and the potential cutoff is 2.5σ.
The thermostat relaxation time for these simulations is fixed to τTh = 0.4

Excess specific heat at constant pressure

At the same state point (T, p) = (2.0, 4.7), the excess specific heat at con-
stant pressure per particle cex

p is evaluated from the derivative of the enthalpy
with respect to temperature at constant pressure. Two new simulations
are performed at the state points (T, p) = (1.9, 4.7) and (T, p) = (2.1, 4.7)
and cex

p is found using a linear regression. The value of cex
p so obtained is

cex
p = 2.965 consistently with the values from Table B.1 when τp is chosen

in the range [20, 50].
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Simulation details

This appendix describes how the simulation data presented in this thesis
have been obtained by the author. The program used to perform the sim-
ulations is specified together with the relevant parameters to reproduce the
simulations.

C.1 NVT simulations of the LJ system and the
generalized LJ system

The NVT simulations presented in Chaps. 2, 3 and 4 have been performed
using RUMD [38]. The system size used for these simulations is N = 1000.
The cutoff for the LJ potential was 2.5σ (shifted potential) and the LJ
parameters (σ, ε) were both set to unity.

The timestep t used for each simulated state point (ρ, T ) was chosen
keeping the reduced timestep t̃ = ρ1/3(kBT/m)1/2t = 0.001 constant. At
each state point the system was equilibrated for 2 · 106 timesteps start-
ing from an FCC crystal configuration and the data runs were of 5 · 108

timesteps. The simulations used to find the scaling exponent γ at the state
point (ρ, T ) = (1.0635, 2.0) and (ρ, T ) = (1.132, 2.0) were 5 · 109 timesteps
long in order to reduce the statistical error on γ. These state points have
been used in Chap. 3 to determine the freezing and melting isomorphs.

The NVT integrator in RUMD utilizes a Nosé-Hoover thermostat. The
relaxation time of the thermostat τTh was left equal to the default RUMD
value (τTh = 0.2) for the simulations in the liquid state. For the simulations
of FCC crystals along the melting line, τTh was scaled in order to keep its
reduced value constantly equal to τ̃Th = 0.2. This is equivalent to the use
of a τTh which corresponds to a fixed number of timesteps.
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Figure C.1: Measured reduced viscosity from equation C.1 at different reduced
strain rates. Two of the four state points (green and red dots) are on the same
isomorph (the freezing isomorph of Chap. 3) and their behavior in reduced unit
is the same. As a consequence, the reduced strain rate at which reduced viscosity
start to be strain rate dependent is isomorphic invariant, consistent with results
from Separdar et al [157]. The blue (violet) dots are results of simulations at
state points along the same isochore (isotherm) of (ρ, T ) = (1.125, 2.6). The
behavior of reduced viscosity as function of strain rate is strongly modified by
changing density or temperature if the chosen state points are not isomorphic.

C.2 SLLOD simulations of the LJ system and of
the IPL12 system

The SLLOD simulations [105–107] presented in Chaps. 2, 3 and 4 have
been performed using RUMD [38]. As in the case of NVT simulations the
system size was N = 1000, the potential cutoff was 2.5σ (shifted potential)
and the LJ parameters were set to unity. The reduced timestep for these
simulations was kept constantly equal to t̃ = 0.001. At each state point (ρ, T )
the system was equilibrated for 2 · 106 timesteps and the data runs were of
5 · 108 timesteps. Only for the simulations presented in Sec. 3.2, the cutoff of
the potential was 6.0σ and the system size was N = 4096. The temperature
in a SLLOD simulation is kept constant by rescaling the velocities and not by
using a Nosé-Hoover thermostat; no thermostat relaxation time is therefore
involved.

In the two following sections how to obtain the viscosity from a SLLOD
simulation (which is an extended version of the appendix of Ref. [83], see
appendix D) is described and the tests performed on the high temperature
data in Chap. 4 are presented.
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C.2.1 Determining the zero-strain rate bulk viscosity from
a SLLOD simulations

A SLLOD simulation[105–107] is a molecular dynamics simulation performed
by shearing the simulation box with constant speed. Between the bottom
part of the box and the top part there is a relative shearing motion with
strain rate γ̇ = ∂ux

∂y , where ux is the streaming velocity at ordinate y when
the box is sheared in the x direction. Under low strain-rate conditions, this
kind of simulation reproduces an ordinary, laminar Couette flow and the lin-
ear, shear-rate-independent, bulk viscosity can be calculated from the stress
tensor σij through the equation

η =
σxy
γ̇

. (C.1)

Equation (C.1) holds only when the viscosity is independent of strain rate,
i.e., at a sufficiently small shear rate. As shown by Separdar et al [157]
the strain rate γ̇ for which the measured viscosity starts to be strain-rate
dependent is isomorph invariant when given in reduced units.

The behavior of the reduced viscosity η̃ as a function of the reduced
strain rate ˜̇γ is shown in Fig. C.1. When the two considered state points
are on the same isomorph, they exhibit the same shear-thinning behavior
in reduced units; this is not true if we move along an isochore or along an
isotherm. The dotted green line in Fig. C.1 marks the reduced strain rate
used for the simulations along the freezing line reported in Chap. 3.

If two simulations are performed at different temperatures along the same
isochore, as the simulations in Chap. 4, a strain rate in the linear region
for the simulation at the lowest temperature, when used for the simulation
at the highest temperature, ensures that the system satisfies the shear-rate-
independent condition also at the highest temperature. This can be under-
stood from Fig. C.1 when comparing the data at (ρ, T ) = (1.125, 2.6) and
at (ρ, T ) = (1.125, 154). When temperature is increased along an isochore,
the shear-thinning behavior in reduced units ’moves’ toward higher strain
rates. For this reason the strain rate used at the lowest studied temperature
along an isochore, can be used at any higher temperature along the same
isochore.

C.2.2 High temperature simulations presented in Chap. 4

These tests were made to verify whether the plateau of reduced viscosity
discussed in Chap. 4 is a real physical phenomenon or an artifact of the
simulation due to numerical instabilities due to precision issues. We verified
that the shear-thinning behavior in reduced units at the state points (ρ, T ) =
(1.09, 482.17) and (ρ, T ) = (1.09, 1000) is the same using the single precision
version of RUMD, the double precision version of RUMD and performing the
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Figure C.2: Shear-thinning behavior in reduced units at the state points
(ρ, T ) = (1.09, 482.17) and (ρ, T ) = (1.09, 1000). At each state point three
different simulations are performed: (a) a SLLOD simulations using RUMD;
(b) a SLLOD simulation using the double precision version of RUMD; (c) a
SLLOD simulation in reduced units (see text) using the double precision ver-
sion of RUMD. Except at the two lowest strain rates, where the results are
not reliable due to precision problems, the shear-thinning curves collapse onto
a single one, showing that the three different simulations give the same value
of reduced viscosity η̃ ≈ 0.53. The fact that at the two temperatures along
the same isochore the reduced viscosity is the same, is a confirmation that the
viscosity exhibits a plateau at high temperatures as discussed in Chap. 4.

simulation in reduced units with the double precision code. A simulation in
reduced units is accomplished by changing the potential parameters instead
of changing the thermostat temperature and the simulation box size. For
example, a simulation of the state point (ρ, T ) = (0.027, 0.5) of a system
of LJ particles with potential parameters (σ, ε) = (1.0, 1.0) is equivalent
to a simulation in reduced units in which (ρ, T ) = (1.0, 1.0) and (σ, ε) =
(ρ1/3, 1/T ) = (0.3, 2.0). All these different tests give compatible results.

In Fig. C.2 the shear-thinning behavior in reduced unit at the two
state points is compared. The results for the reduced viscosity of the two
state points confirm that at high temperature the reduced viscosity does not
depend on temperature. The use of the three different kinds of simulations
previously described at the each state point ensures that the results for
reduced viscosity are reliable. In Table C.1 the results for reduced viscosity
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t̃ precision η̃(T = 482.17) η̃(T = 1000)

0.0050 single 0.5234 0.5255

0.0050 double 0.5232 0.5308

0.0010 single 0.5212 0.5335

0.0010 double 0.5248 0.5271

0.0005 single 0.5201 0.5322

0.0005 double 0.5298 0.5277

0.0001 single 0.6065 0.6317

0.0001 double 0.5073 0.5245

Table C.1: Reduced viscosity at the state points (ρ, T ) = (1.09, 482.17) and
(ρ, T ) = (1.09, 1000). In this table the results for reduced viscosity obtained
from simulations with different reduced timestep t̃ at the two state points are
compared. For each timestep two simulations were performed, one using the
single precision version of RUMD and one using the double precision version of
RUMD. The values of reduced viscosity obtained are independent of the chosen
timestep and the results in single and double precision are consistent. The only
case in which the data significantly differs is for the choice of t̃ = 0.0001 while
using the single precision code. In this case the discrepancy is due to the choice
of a too small timestep for a single precision code.

obtained from the single precision version of RUMD are compared with the
ones from the double precision version. For the calculation of the reduced
viscosities in Table C.1, the same stain rate ˜̇γ is used. For each state point
four simulations, using different reduced timesteps t̃, performed using both
RUMD versions (single and double precision) are compared. There are no
significant differences between the values of reduced viscosity. The only
exception is the case in which the reduced timestep t̃ = 0.0001 is employed
in the single precision version of RUMD, but in this case the discrepancy is
related to the use of single precision as it can be understood from the fact
that the double precision version at the same reduced timestep gives values
consistent with the other ones.
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C.3 NVT simulations with the homemade MD code
in 2d, 3d and 4d

In the case of the NVT simulations with the homemade MD code described
in appendix A, the system size was changed when changing the number of
dimensions d. In all cases the system was large enough to ensure the half
box length being larger than the cutoff radius of the LJ potential which was
2.5σ in all cases. The shifted force cutoff method [152] has been used for
these simulations. For simulations in 2d N = 1225 particles were used, for
simulations in 3d N = 1728 and for simulations in 4d with N = 2401. The
timestep for all simulations was t = 0.001 and the simulations were 2 · 107

timesteps long. Each simulation was first equilibrated for 106 timesteps.
Only in the case of the 2d crystals the timestep was t = 0.0005 and the
simulation time 4 · 107 timesteps. The input for the relaxation time of the
thermostat was 80, i.e. the thermostat relaxation time was equal to 80
timesteps (for details see appendix A). The starting configurations were
produced using the program Nd start conf as described in appendix A.

C.4 NVT simulations of the Gaussian core system

For the NVT simulations of the Gaussian core system N = 4096 particles
were used. The cutoff used was 5σ (shifted potential) and the reduced
timestep t̃ = 0.025. These same cutoff has been used by Ikeda and Miyazaki
in Ref. [25, 140]. The potential parameters (ε, σ) were set to unity. The
starting configurations (FCC crystals) were equilibrated for 5 · 106 timesteps
and the data run were 5 · 107 timesteps long. The relaxation time was kept
fixed in reduced units. The relaxation time at the state point (ρ, T ) =
(0.05, 0.002) was τTh = 15.0.
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Freezing and melting line invariants of the
Lennard-Jones system

Lorenzo Costigliola,* Thomas B. Schrøder and Jeppe C. Dyre

The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along

the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines

of the LJ system are shown to be approximated by isomorphs. Then we show that the invariants

observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid

and crystalline phases. The structure is probed by the radial distribution function and the structure factor

and dynamics are probed by the mean-square displacement, the intermediate scattering function, and

the shear viscosity. Studying these properties with reference to isomorph theory explains why the

known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why

the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our conclusion is

that these empirical rules and invariants can all be understood from isomorph theory and that the invariants

are not peculiar to the freezing and melting lines, but hold along all isomorphs.

1 Introduction

The phase transition from liquid to crystal and vice versa is not
yet completely understood.1–3 Reasons for searching for a better
understanding of freezing/melting invariants are many. One is
the possibility of using freezing/melting invariance to evaluate
specific system properties under conditions not easily accessible
by experiments. An example could be the estimation of liquid
iron’s viscosity under Earth-core pressure and temperature con-
ditions, a quantity that is necessary for developing reliable
geophysical models for the core.4–6

In this work several freezing line and melting line invariants,
both structural and dynamical, of the Lennard-Jones (LJ) system7

are derived from isomorph theory8 and validated in computer
simulations. The existence of invariances along isomorphs is
used to explain the Hansen–Verlet and Lindemann freezing/
melting criteria as well as the Andrade equation for the freezing
viscosity for the LJ system.

Many theories have been proposed to explain freezing and
melting9,10 and why certain quantities are often invariant along
the freezing and melting lines. Examples of such invariants are
the excess entropy, the constant-volume entropy difference
between liquids and solids on melting,11–13 the height of the
first peak of the static structure factor on freezing (the Hansen–
Verlet freezing criterion14,15), and the viscosity of liquid metals
on freezing when made appropriately dimensionless.16–18 The
Lindemann19,20 melting criterion states that a crystal melts

when the mean vibrational displacement of atoms from their
lattice position exceeds 0.1 of the mean inter-atomic distance,
independent of the pressure. This is equivalent to the invariance
of hu2i/rm

2 along the melting line,20 where hu2i is the atomic root-
mean-squared vibrational amplitude and rm is the nearest
neighbor distance. The most common approaches for explaining
such invariants attempt to connect them to the kinetics of the
freezing/melting process. For instance, going back to Born it has
been suggested that a crystal becomes mechanically unstable
when hu2i/rm

2 exceeds a certain number.9 From this perspective,
it is not easy to understand why these invariants do not hold for
all systems. It is also difficult to understand why related invariants
hold for specific curves in the liquid state. Thus, in an extension
of what happens along the melting line of, e.g., the Lennard-Jones
system, the radial distribution function is invariant along the
curves at which the excess entropy Sex is equal to the two-body
entropy S2.21 Diffusivity is also constant, in appropriate units, along
constant Sex curves,22 implying (from the Stokes–Einstein relation)
an invariance of the viscosity in appropriate units along these
curves. This relationship between viscosity and excess entropy was
recently confirmed by high-pressure measurements.23

A possible explanation for the invariants along the freezing
and melting lines, as well as along other well-defined curves in
the thermodynamic phase diagram, is given by isomorph
theory.8,24–26 According to it27 a large class of liquids exists for
which structure and dynamics are invariant to a good approxi-
mation along the constant–excess–entropy curves. These curves are
termed isomorphs, and the liquids which conform to isomorph
theory are now called Roskilde-simple (R) liquids27–32 (the original
name ‘‘strongly correlating’’ caused confusion due to the existence
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of strongly correlated quantum systems). Liquids belonging to this
class are easily identified in computer simulations because they
exhibit strong correlations between their thermal-equilibrium fluc-
tuations of virial and potential energy in the NVT ensemble.24,33

Isomorph theory not only offers the possibility of explaining
the freezing/melting invariants without reference to the actual
mechanisms of the freezing/melting process itself, but by
evaluating the virial potential-energy correlation coefficient
also provides a way to predict whether these invariants hold
for a given liquid.

The main features of isomorph theory are summarized in
Section 2 where how to identify the isomorphs of the LJ system
is also shown. This is followed by a short section describing
technical details of the simulations performed. The isomorph
equations are used in Section 4 to show that the freezing line
can be approximated by an isomorph, termed the freezing
isomorph, without the need for any fitting. Section 5 deals
with freezing invariants, the Hansen–Verlet criterion,14,15 and
Andrade’s freezing viscosity equation;16–18 Section 6 focuses on
melting line invariants of the FCC LJ crystal and their connec-
tion with the Lindemann criterion.19 The last section discusses
the differences between isomorph theory and other approaches
used to describe liquid invariances in the past years and
summarizes the main results of this work.

2 Isomorphs

An R system is characterized by strong correlations between
virial and potential energy equilibrium fluctuations in the
NVT ensemble,24,33 i.e., by a virial potential-energy equilibrium
correlation coefficient R(r,T) greater than 0.9:

Rðr;TÞ ¼ hDWDUiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDWÞ2h i ðDUÞ2h i

p 4 0:9: (1)

Here D denotes the instantaneous deviations from the equili-
brium mean value, the brackets denote NVT ensemble averages,
W denotes the virial, U denotes the internal energy and (r,T)
denotes the density and temperature of the system. When such
strong correlations are present, the theory predicts the existence
of curves in the thermodynamic phase diagram along which
several structural, dynamical, and thermodynamical properties
are invariant8,24,33–35 when expressed in reduced units; these
curves are termed isomorphs.8

Reduced quantities (marked by a tilde) are defined as
follows. Distances are measured in units of r�1/3, energies
in units of kBT, and time in units of m1/2(kBT)�1/2r�1/3, where
m is the average particle mass (for Brownian dynamics, a
different time unit applies8). These reduced units should not be
confused with the so-called Lennard-Jones (LJ) units. We use the
latter units below for reporting quantities like temperature and
density.

By definition an isomorph has the following property: for
any two configurations, R1 � (r(1)

1 ,. . .,r(1)
N ) and R2 � (r(2)

1 ,. . .,r(2)
N )

r1
1/3R1 = r2

1/3R2 ) P(R1) = P(R2) (2)

where ri is the position vector of particle i, N is the number of
particles and P(Ri) is the Boltzmann statistical weight of
configuration Ri at the relevant thermodynamic state point
on the isomorph.24 In other words, configurations that are
identical in reduced units (R̃ � r1/3R) have proportional
Boltzmann factors.

The isomorph theory is exact only for systems with an Euler-
homogeneous potential energy function, for instance, inverse-
power-law (IPL) pair-potential systems.24,33 However, the theory
can be used as a good approximation for a wide class of
systems. Examples of models that are R liquids27 in part of
their thermodynamic phase diagram, in liquid and solid
states,26 are the standard and generalized Lennard-Jones systems
(single-component as well as multi-component),8,35,36 systems
interacting via the exponential pair potential,37 and systems
interacting via the Yukawa potential.28,38 R systems also include
some molecular systems like, e.g., the asymmetric dumbbell
models,39 Lewis–Wahnström’s three-site model of OTP,39 the
seven-site united-atom model of toluene,24 the EMT model of
liquid Cu24 and the rigid-bond Lennard-Jones chain model.40

Predictions of isomorph theory have been shown to hold
for experiments on glass-forming van der Waals liquids by
Gundermann et al.,41 Roed et al.,42 and Xiao et al.43 Power-
law density scaling,44 which is often observed in experiments
on viscous liquids, can be explained by isomorph theory.36

Isomorphic scaling, i.e., the invariance along isomorphs of
many reduced quantities derived from the identical statistical
weight of scaled configurations8 does not hold for all reduced
quantities. For example, the reduced-unit free energy and
pressure are not invariant, whereas the excess entropy, reduced
structure, and reduced dynamics are all isomorph invariant.8

These invariances follow from the invariance along isomorphs
of Newtonian and Brownian equations of motion in reduced
units for R liquids.8

For an R system at a given reference state point (r0,T0),
it is possible to build an isomorph starting from that point.8

For R systems, a function h(r) exists which relates the state
point (r0,T0) to any other state point (r,T) along the same
isomorph25,36 by the identity:

hðrÞ
T
¼ h r0ð Þ

T0
: (3)

The functional form of h(r) depends on the interaction
potential, and only for simple systems it is possible to find an
analytical expression. As shown by Ingebrigtsen et al.25 and
Bøhling et al.,36 if the pair potential is a sum of inverse-power
laws involving the exponents ni (i = 1,. . .,N), h(r) can be
expressed in the following way:

hðrÞ ¼
XN
i¼1

ai
r
r0

� �ni=3

: (4)

For a LJ system, the pair potential is the well-known

v(r) = 4e((r/s)�12 � (r/s)�6) (5)

Paper PCCP

Pu
bl

is
he

d 
on

 1
8 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 R
os

ki
ld

e 
U

ni
ve

rs
ity

 o
n 

27
/0

5/
20

16
 0

9:
44

:4
3.

 

View Article Online



14680 | Phys. Chem. Chem. Phys., 2016, 18, 14678--14690 This journal is© the Owner Societies 2016

where only two IPL exponents, 12 and 6, are involved. It is not
difficult to show that25,36 for the LJ system, h(r) is given by

hðrÞ ¼ g0
2
� 1

� � r
r0

� �4

� g0
2
� 2

� � r
r0

� �2

(6)

where g0 is the so-called density-scaling exponent at the reference
state point defined by the canonical averages

g0 r0;T0ð Þ ¼ hDWDUi
ðDUÞ2h i

����
r0 ;T0ð Þ

: (7)

Eqn (6) is easily derived from applying g = d ln h/d lnr25 at the
reference state point to eqn (4), adopting the normalization
h(r) = 1. The correlation coefficient R of the LJ system increases
with increasing temperature and increasing density;24 this means
that if the LJ system is an R liquid at the reference state point
(r0,T0), it will be strongly correlating also at higher densities on
the isomorph through (r0,T0).

Recently isomorph theory has been reformulated starting
from the assumption that for any couple of configurations of R
systems, the potential energies obey the relation

U(R1) o U(R2) ) U(lR1) o U(lR2) (8)

when the configurations are scaled to a different density.29 All
the results described in this section can be derived from this
simple scaling rule. The predictions of the new isomorph
theory are close to those of the old one, which is used below.

3 Simulation details

This work presents the results of molecular dynamics simula-
tions of a single-component LJ system performed using the
GPU code RUMD.45 For each liquid state point an NVT simula-
tion was used to obtain the structure and dynamics, while a
SLLOD simulation46–48 was used to find the viscosity. The
simulations were carried out using a shifted-potential cutoff
at 2.5s. In the simulations the LJ parameters were set to unity,
i.e., s = 1.0 and e = 1.0. The time step was adjusted with
increasing temperature along an isomorph to keep the reduced
time step constant, equal to 0.001 for all simulations. For
instance, the time step is 0.001 in LJ units for a simulation at
r = 1.0 and T = 1.0. At every state point the system was
simulated for 5 � 108 timesteps, which takes about 20 hours
(in the case of SLLOD simulations) on a modern GPU card
(Nvidia GTX 780 Ti). The NVT simulations used to calculate g
and R at the starting state point for any isomorph ran for 1010

time steps in order to get good statistics for g. In the NVT
simulations of the FCC LJ crystal, the thermostat time con-
stant was kept constant in reduced units. The value for the
reduced thermostat constant is 0.4. The details of how to
obtain viscosity from SLLOD simulations can be found in the
Appendix. In the liquid phase and along the freezing line,
1000 LJ particles were simulated; for the FCC LJ crystal, 4000 LJ
particles were simulated.

4 The freezing line

As mentioned in Section 2, along an isomorph scaled con-
figurations have the same statistical weight. This implies that
the freezing and melting lines of an R liquid are isomorphs:
consider a state point of the fluid state in which the disordered
configurations are the most likely, and another state point in
which the system is in a crystalline phase. Since in the latter
case the ordered configurations are most likely, these two state
points cannot be on the same isomorph. It follows that the
freezing and melting lines cannot be crossed by an isomorph
(in the region where the system is an R system), i.e., in both the
liquid and crystalline regions isomorphs must be parallel to the
freezing and melting lines, respectively. In particular, these
lines are isomorphs themselves. This statement follows from
assuming that the physically relevant states obey the isomorph
scaling conditions.8

The LJ system is an R liquid, so its freezing line is approxi-
mately an isomorph. This was first confirmed by Schrøder
et al.35 using data from computer simulations by Ahmed and
Sadus49 and Mastny and de Pablo,50 and subsequently by
Pedersen51 with data obtained by his interface-pinning method.52

Recently, the approximate isomorph nature of the freezing line
has been documented in detail by Heyes et al.53,54 The quoted
papers all focus on densities fairly close to unity (in LJ units).
From the fact that the freezing line is an isomorph it is possible to
understand the invariance along the freezing line of several
properties, as recently was shown by Heyes et al.,53 who studied
the invariance of the reduced-unit radial distribution function,
mean force, Einstein frequency, self-diffusion coefficient, and
linear viscoelasticity of an LJ liquid along the freezing line, for
densities around unity. All these quantities were found to be
approximately invariant, as predicted by isomorph theory.

In this section the validity of an equation for the freezing
line of the LJ system obtained from isomorph theory is checked
over a considerably wider range of temperatures and densities
than previously studied. In Section 5, the results of Heyes et al.53

regarding structural and dynamic invariants are extended to a
wide range of densities along the freezing line.

In Fig. 1 the agreement between the freezing isomorph and
the freezing line is shown to hold for the whole range of
temperatures and densities studied by Agrawal and Kofke.56

The red line in Fig. 1 is the prediction from isomorph theory;
this line is built by starting from the freezing point T0 = 2.0 and
r0 = 1.063, obtained by Pedersen.51 The correlation coefficient R
and the scaling parameter g at the state point (r0,T0) are:

R0 = 0.995, g0 = 4.907. (9)

Using eqn (3) and (6) and this value for g0, it is possible to
build the freezing isomorph from

TF(r) = AFr
4 � BFr

2 (10)

where TF is the freezing temperature, AF = 2.27, and BF = 0.80 as
found from the reference state-point information given in
eqn (6) and (9). The same power-law dependence for the LJ
freezing line was obtained in 2009 by Khrapak and Morfill55
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and, in fact, long ago by Rosenfeld from his ‘‘additivity of
melting temperatures’’ (derived with reference to the hard-
sphere system).57,58 This is consistent with isomorph theory
because Rosenfeld’s rule can be derived from the quasi-
universality of single-component R liquids.31,32

Fitting to the same simulations for the freezing line
as referenced above,49,50,56 Khrapak and Morfill55 found the
following values for the coefficients: A = 2.29 and B = 0.71. The line
obtained inserting these values of A and B into eqn (10) is shown in
Fig. 1(a) (black line). There is a significant difference in the second
coefficient between the two equations. The second coefficient of
Khrapak and Morfill is obtained using data for the triple point
which may explain the difference; in that region isomorph theory
does not provide a good approximation for the freezing line of the LJ
system, as Pedersen recently showed.51 Nevertheless, the two curves
are close to each other. The freezing isomorph provides a slightly
better prediction of freezing temperatures at any density when
compared to the Khrapak and Morfill fit (inset of Fig. 1(a) and (b)).

The main result of this section is that isomorph theory provides
a technique for approximating the freezing line of an R liquid from
simulations at a single state point, i.e., without any fitting, and that
this approximation is valid over a wide range of densities. The
relative difference between the predicted freezing temperature and
the one obtained from computer simulations56 is about 6% for
density change of more than a factor of 3 and temperature change
of more than a factor of 100, as shown in Fig. 1. Isomorph theory
allows, therefore, estimating the freezing temperatures with small
relative uncertainties, and it may be useful for estimating the
freezing temperatures in the high density regimes, where it is
difficult to perform direct experiments for real liquids, which are R
liquids in the relevant part of the phase diagram.

5 Invariants along the freezing line

In this section we discuss different invariants along the freezing
isomorph as well as another isomorph ‘‘parallel’’ to it in the
liquid state, generated from the state point (r,T) = (1.063,4.0).
It is demonstrated that invariants originally proposed for the
freezing line are also found along the liquid isomorph. Along
the two isomorphs investigated, the excess pressure in reduced
units is also evaluated (Fig. 2(a)). This quantity is invariant for
any IPL system, but not for the LJ system. In the framework of
isomorph theory, it is well understood why some quantities are
invariant, e.g., the reduced viscosity, while others are not, e.g.,
the reduced pressure.8 This shows that the scaling properties
studied in this work are not simply the consequences of an
effective IPL scaling. Also note that it is necessary to go to quite
high densities before g E 4, as shown in Fig. 2(b). In the same
figure, the correlation coefficient R and the reduced viscosity
are plotted as a function of density along the freezing isomorph.
The reduced viscosity is predicted to be invariant.8 For r 4 1.1,
the reduced viscosity is invariant to a good approximation.
At lower densities, the correlation coefficient R decreases and
the reduced viscosity begins to vary.

5.1 Structure and the Hansen–Verlet freezing criterion

Fig. 3 shows the radial distribution functions (RDF) g(r) at different
state points along the freezing line (a and d), the approximate
freezing isomorph (b and e), and the liquid isomorph (c and f). In
Fig. 3(a)–(c), g(r) is expressed as a function of the pair distance,
while in Fig. 3(e)–(g), the g(r) is expressed as a function of the
reduced distance, r̃ = r1/3r. When the RDFs are plotted in reduced
units, they collapse onto master curves, as predicted by isomorph
theory. The results obtained for the freezing line confirm the
recent findings of Heyes et al.,53 who showed the same collapse
albeit for a smaller density range.

Starting from the invariance of g(r) it is easy to show that the
structure factor S(q) is invariant when considered as a function
of the reduced wave vector,

SðqÞ � 1 ¼ r
ð
V

dr e�iq�rgðrÞ

¼
ð

~V

d~r e�i r�1=3qð Þ�~rgð~rÞ ¼ Sð~qÞ � 1:

(11)

Fig. 1 Freezing line of the LJ system. In (a) the isomorph approximation to
the freezing line is marked by the red line and the Khrapak and Morfill
approximation55 by the black line; freezing state points obtained in the past
years using various techniques are shown by symbols.49–51,56 Both approx-
imations reproduce the data points well; the inset focuses on low densities. In
(b) the relative difference between Agrawal and Kofke freezing-temperature
data56 and the two approximations is shown. The isomorph approximation
gives smaller deviations from the simulation data. The main advantage of
approximating the freezing line by an isomorph lies, however, in the possibility
of predicting the full freezing line from the knowledge of a single freezing
state point.
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Structure factors S(q) along the freezing line, the approximate
freezing isomorph, and the liquid isomorph are shown in Fig. 4.
The invariance of the structure factor implies the Hansen–Verlet
freezing criterion14,15 stating that the LJ system freezes when the
height of the first peak of the structure factor reaches a definite
value close to 3 (equal to 2.85 in the original work14,15): if S(q) is
invariant along an isomorph, points which are on the same
isomorph have the same height of the first peak. And since the
freezing line for R liquids is well approximated by an isomorph,
the invariance of S(q) implies the validity of the Hansen–Verlet
freezing criterion. Fig. 4 confirms this.

5.2 Dynamic invariants: mean-squared displacement and
intermediate scattering function

The dynamical behavior of the system is described by the mean-
squared displacement (MSD) and the self-intermediate scattering
function (ISF). In Fig. 5 and 6, the MSDs and ISFs are shown,

respectively, as functions of non-reduced and reduced quantities.
As for the structure, the curves collapse onto master curves.

5.3 Viscosity along the freezing line and the Andrade equation

In order to evaluate the viscosity the system was simulated
using the SLLOD algorithm48 (details are given in the Appendix).
Studies of the viscosity of the LJ system were done in the past,
e.g., by Ashurst and Hoover,59 and more recently by Galliero
et al.60 and Delage-Santacreu et al.,61 in all cases for densities
fairly close to unity.

Isomorph theory predicts the reduced viscosity to be constant
to a good approximation along an isomorph (and therefore along
the freezing line),

~Z � Z
r2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p ¼ const: (12)

From this equation it is clear that if we know the value of Z at a
given state point we can calculate the expected viscosity at any
state point on the same isomorph. Along the freezing line (F) this
equation can be written as

ZFðrÞ ¼ ~Z0 � r2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTFðrÞ

p
(13)

where the subscript F stands for freezing, TF(r) is the freezing
temperature at density r and ~Z0 = 5.2 is the reduced value of Z at
the reference state point (r0,T0) = (1.063,2.0). Eqn (13) is
identical to the Andrade equation for the freezing viscosity17,18

from 1934:

Z rF;TFð Þ ¼ b � rF2=3
ffiffiffiffiffiffi
TF

p
(14)

where rF is the density at freezing. This is well known to apply
for most metals to a good approximation.62 The parameter b in
eqn (14) depends on the system, just as the value of ~Z0 in
eqn (13) depends on the chosen potential.

In Fig. 7 viscosity results are compared to the values of the
viscosity predicted from isomorph theory using eqn (13).

The green line in Fig. 7(b) is obtained by solving eqn (10)
with respect to r2 and using the solution to remove the r
dependence from eqn (13). This results in

Z TFð Þ ¼ ~Z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTF

p BF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BF

2 þ 4AF � TF

p
2AF

 !1=3

(15)

in which AF = 2.27 and BF = 0.80 are the freezing isomorph
coefficients identified in Section 4 using eqn (6) and (9), i.e.,
based exclusively on simulations at the reference state point
(r,T) = (1.063,2.0) (the units of AF and BF are s12�e/kB and s6�e/kB,
with e and s being LJ parameters). The red dot in Fig. 7 marks
the reference state point.

In Fig. 8 we show the reduced viscosity along the freezing
isomorph as well as along the liquid isomorph with reference
state point (r0,T0) = (1.063,4.0). The figure demonstrates that
invariance of the reduced viscosity along the freezing line is not
a specific property of the freezing line, but a consequence of the
more general isomorph invariance.

Andrade’s equation for the freezing viscosity, which is
explained by isomorph theory, was also discussed recently

Fig. 2 (a) Excess pressure in reduced units, P̃ex = W/(NkBT) along two
different isomorphs, the freezing isomorph and a liquid isomorph. For inverse
power-law pair potentials this quantity is invariant, while for the LJ system
clearly it is not. This shows that isomorph scaling is not simply a trivial IPL
scaling. (b) In the top panel, the scaling coefficient g, eqn (7), is shown as a
function of density along the freezing line and the freezing isomorph. The
green line is the predicted value from g = d ln h(r)/d lnr.25,36 The middle and
bottom panels show the virial potential-energy correlation coefficient R and
the reduced viscosity ~Z along the freezing line and the freezing isomorph. The
blue symbols mark data at freezing state points taken from Pedersen;51 the red
symbols are the same quantities calculated at freezing isomorph state points.
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by Fragiadakis and Roland.63 It is interesting to compare
the temperature range accessible to experiments with that of
the present work. Fragiadakis and Roland63 reported data
on liquid argon in a range of temperatures corresponding
to [0.75,4.17] in LJ units. This is impressive, but simula-
tions allow one to cover an even wider range of freezing
temperatures.

6 Invariants along the melting line

Following the same argument as for the freezing line (Section 4),
the melting line is also an approximate isomorph. A study
similar to that of Section 5 was performed, evaluating the
structure and MSD, for an FCC LJ crystal along the melting line
as well as another isomorph in the crystalline phase. The starting

Fig. 3 Liquid results. Radial distribution function along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph (b and e) and
along an isomorph well within the liquid state (c and f); in (a–c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d–f), the RDFs
are plotted as a function of the reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in the other figures
density changed by about a factor of 3. The same holds for Fig. 4–6.

Fig. 4 Liquid results. Structure factor along the Pedersen freezing line (a and d),51 along the approximate freezing isomorph (b and e), and along an
isomorph well within the liquid state (c and f); in (a–c), S(q) is plotted as a function of wave vector in Lennard-Jones units, in (d–f), S(q) is plotted as a
function of reduced wave vector.
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point for the melting isomorph is taken from Pedersen;51 this is
the state point (r,T) = (1.132,2.0). The starting point for the
crystal isomorph is (r,T) = (1.132,1.0), which is well within
the crystalline phase. The melting isomorph equation for the LJ
system is

TM(r) = AMr4 � BMr2 (16)

where AM = 1.76 and BM = 0.69. The equation has the same
mathematical form as the freezing equation, eqn (10), (but
different coefficients) because the shape of isomorphs reflects
the pair potential, not the phase. The existence of isomorphs in
the crystalline phase was demonstrated in a recent publication
by Albrechtsen et al.;26 this paper showed that isomorph theory,
in fact, is more accurate in the crystalline phase than for

Fig. 5 Liquid results. Mean-squared displacement along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph (b and e) and
along another isomorph in the liquid state (c and f); in (a–c), the MSDs are plotted as a function of time in LJ units, in (d–f), the reduced MSDs are plotted
as a function of reduced time.

Fig. 6 Liquid results. Self-intermediate scattering function along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph
(b and e), and along another isomorph in the liquid state (c and f); in (a–c), the ISFs are plotted as a function of time in Lennard-Jones units, in (d–f), the
ISFs are plotted as a function of reduced time. All the ISFs correspond to the q value of the first peak of S(q), qmax. The quantity q̃max is invariant along an
isomorph due to the invariance of S̃(q̃), eqn (11).
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liquids. In Table 1 the predicted melting temperature at density
3.509 from eqn (16) is compared to the results for the melting
line obtained in the present work using Pedersen’s interface

pinning method.51,52 As for the liquid-state isomorphs and the
freezing line, the RDF is invariant both along the melting
isomorph and along the crystal isomorph when expressed as
a function of the reduced pair distance (Fig. 9). The MSD is
shown in Fig. 10. The plateau of the MSD at melting confirms
the pressure invariance of the Lindemann melting criterion.19,20,64

The approximate invariance of reduced-unit MSD in the crystal
implies that the value of the plateau for the mean atomic
displacement is constant in reduced units along an isomorph
(and consequently along the melting line), and is consistent
with the Lindemann criterion. At low densities the invariance of
the MSD plateau is violated. This is the region where the
melting isomorph provides a worse approximation to the LJ
melting line, Fig. 10(d), as also shown by Pedersen.51 The
Lindemann constant increases slightly with increasing density
along melting, as reported by Luo et al.65 For temperatures
above 1.8, the Lindemann criterion is accurately satisfied, i.e.,
the reduced vibrational mean-square displacement becomes
density independent, Fig. 10(d) and (e).

7 Discussion

We have studied several properties of the LJ model along its
freezing and melting lines, as well as along isomorphs well
within the liquid and crystalline phases. In Table 2 the coeffi-
cients describing the four isomorphs studied in this work are
given together with the relative reference state points. The
primary aim was not to report that these invariances hold,
which is already well known9,14,16,66,67 albeit over smaller melting
temperature/density ranges than studied here, but to relate these
invariances to isomorph theory. With this goal in mind we
investigated whether the invariants, thought to be peculiar to
the freezing/melting process, also hold along other isomorphs in
the liquid and crystalline phases. The results show that this is
indeed the case. This means that these invariants are consequences
of the LJ system being an R liquid in the relevant part of its
phase diagram, not a specific property of freezing or melting.

Fig. 7 Viscosity along the approximate freezing isomorph, eqn (10), as a
function of density (a) and temperature (b). The black dots represent results for
the viscosity obtained from our SLLOD simulations (Appendix). The green line
is the predicted viscosity assuming the invariance of reduced viscosity along an
isomorph (eqn (13)). The red dot is the viscosity of the state point from which
the freezing isomorph is built and the constant of eqn (13) determined, (r,T) =
(1.063,2.0). The reduced viscosity at this state point is ~Z0 = 5.2.

Fig. 8 Reduced viscosity along the freezing isomorph and along an
isomorph well within the liquid state.

Table 1 Comparison between the melting temperature at a given density,
predicted using eqn (16), and that calculated for the same density using the
interface pinning method.52 The freezing and melting state temperatures
at r = 3.509 have been calculated in this work, while the other data are
from Pedersen.51 The parameters in eqn (16) were calculated at the
reference state point (r,T) = (1.132,2.0)

rM TM Tpinning DT/TM

0.973 0.800 0.921 �0.132
0.989 0.900 1.006 �0.106
1.005 1.000 1.095 �0.086
1.034 1.200 1.270 �0.055
1.061 1.400 1.453 �0.036
1.087 1.600 1.636 �0.022
1.109 1.800 1.812 �0.007
1.132 2.000 2.000 +0.000
1.153 2.200 2.191 +0.004
1.172 2.400 2.371 +0.012
1.191 2.600 2.561 +0.015
3.509 258.44 275.81 +0.067
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Nevertheless it should be stressed that invariances of reduced
unit quantities, which would be exact if the freezing/melting

lines were perfect isomorphs, are violated somewhat close to
the triple point.

Fig. 9 Crystal results. Radial distribution function along the Pedersen melting line (a and d),51 along the approximating melting isomorph (b and e), and
along an isomorph well within the crystalline state (c and f); in (a–c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d–f), the
RDFs are plotted as a function of reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in the other figures
density changed by about a factor of 3. The same holds for Fig. 10.

Fig. 10 Crystal results. Mean-squared displacement along the Pedersen melting line (a and d),51 along the approximate melting isomorph (b and e), and
along an isomorph well within the crystalline state (c and f); in (a–c), the MSDs are plotted as a function of time in LJ units, in (d–f), the reduced MSDs are
plotted as a function of reduced time. The invariance of the plateau of MSD along the melting line implies the Lindemann melting criterion for R liquids
because the invariance of the reduced-unit vibrational mean-square displacement in equivalent to the invariance of the Lindemann constant (Section 6).
Along the melting isomorph diffusion of defects is observed. Defect formation is a stochastic phenomenon, as shown by the non-monotonicity of its
appearance with respect to T or r. In order to study the isomorphic invariance of defect formation, it is necessary to average over many simulations at
every state point and it could be the object of future studies. The diffusion of defects in crystal, when appropriately averaged, has been shown to be an
isomorphic invariant by Albrechtsen et al.26
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Before discussing our results in detail, we would like to
point out the differences between isomorph theory and other
approaches often used to describe the LJ system invariances.
These other attempts to describe LJ invariances are the well-
known hard sphere (HS) paradigm and the WCA (Weeks,
Chandler, Andersen) approximation. The HS paradigm and
isomorph theory are able to describe the nature of the same
invariances, but with some important differences. A first
difference is in the possibility of determining when the theory
is expected to work and when it is not. In the case of isomorph
theory there is a simple prescription: if the system is strongly
correlating then it is possible to build isomorphs along which
many reduced quantities are invariant. In the framework of
hard spheres it is not possible to proceed in this way. It is not
even possible to know from one single state point if some
invariances will hold in the region around that state point
because there is no equivalent of the correlation coefficient R
defined in eqn (1). Another fundamental difference between
the two approaches is the presence of an ad hoc-defined hard
sphere radius that is in general state-point dependent.
Isomorph theory works without the need of introducing any
ad hoc parameters. A last difference, which is perhaps the most
important, lies in the possibility of predicting which invar-
iances the system will have. According to the HS paradigm,
once the mapping from the studied system to the HS system is
done using the ad hoc defined HS radius, the invariances of the
HS system are inherited from the studied system. This means
that the structure, dynamics and thermodynamic quantities
should be invariant along constant-packing-fraction curves. In
Fig. 2 we showed that the reduced pressure of the LJ system is
not invariant along an isomorph (a) while the reduced viscosity
is (b), as predicted from isomorph theory. Another possible
comparison is between isomorph theory and the WCA approxi-
mation for the LJ system. While in isomorph theory there is
no reference system, the WCA approximation is based on the
idea that only the repulsive part of the LJ potential is relevant
to the description of the system, providing a convenient refer-
ence system, and that LJ invariances can be derived from HS
invariances.68

In Fig. 11(a) the viscosity is shown along the freezing line
data from Agrawal and Kofke56 for the LJ system and for the IPL
potential:

nIPL(r) = 4r�12 (17)

which is the repulsive term of the LJ potential. The viscosity
calculated using the two different potentials along the freezing
line is very different. The difference is larger than 10% before
reaching considerably high densities and temperatures ((r,T) =
(2.417,68.5) in LJ units). This means that the effects of attrac-
tion are not negligible up to really high densities. As Rosenfeld
wrote in 1976 ‘‘It is important here to emphasize that the r�6

term of the L-J potential gives appreciable contribution to the
thermodynamic properties of the system up to very high
temperatures’’58 regarding the difference between the freezing
line of IPL12 and LJ.

In Fig. 11(b) the diffusion constant D for the LJ system with
the WCA approximation and with the 2.5s cutoff are shown.
The WCA approximation is well known to reproduce with good
accuracy the structure of the LJ system, but it fails in reprodu-
cing the dynamics. Berthier and Tarjus69 already underlined
that this was the case for the Kob–Andersen binary LJ system,

Table 2 Coefficients A and B of the isomorph in eqn (10) for the four
isomorphs studied in this work. The first two columns contain the
coefficients and the latter four columns contain temperatures, densities,
density scaling coefficients g, and correlation coefficients R of the state
points the isomorphs studied in this work start from. A pure n = 12 IPL pair
potential leads to g = 4

A B T r g R

Liquid isomorph 4.32 1.34 4.0 1.063 4.7589 0.9966
Freezing isomorph 2.27 0.80 2.0 1.063 4.9079 0.9955
Melting isomorph 1.76 0.69 2.0 1.132 4.8877 0.9985
Crystal isomorph 0.91 0.39 1.0 1.132 4.9979 0.9986

Fig. 11 (a) Viscosities (inset) of the IPL12 system and the LJ system along
the freezing line (data from Agrawal and Kofke56) and their ratio (main
figure). The viscosities are calculated using the SLLOD algorithm.46–48 The
viscosity of the IPL12 system is substantially different from that of the LJ
system for temperatures lower than T = 68.5 in LJ units. (b) Diffusion
constant for the LJ system and the WCA system along the Pedersen
freezing line. It is well known that the WCA potential reproduces with
good accuracy the structure of the LJ system while this is not the case for
dynamics, as the figure shows.
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and Pedersen et al.70 showed how isomorph theory provides a
better description of the LJ system dynamics while preserving
the good description of the structure.

In Sections 5 and 6 we discussed the relationship between
isomorph theory and freezing/melting criteria. It was shown
that the invariance along the freezing line of the maximum of
the static structure factor S(q) (the Hansen–Verlet criterion)
results from a general invariance along isomorphs of the entire
S(q) function. The first peak of the structure factor along an
isotherm decreases gradually with decreasing density. This
means that there will be a specific value which corresponds
to the freezing phase transition. The evidence that the value of
this height is constant along the freezing line is not a peculiarity
of the freezing process itself, but a consequence of isomorph
scaling. The reason why the maximum height of S(q) is 2.8514,15

cannot be explained within isomorph theory, but is a feature of
the freezing process. In order to explain the universality of the
number 2.85, as well as the universality of the Lindemann
melting criterion number, one must refer to quasiuniversality,
a further consequence of the isomorph theory detailed, e.g., by
Bacher et al.71 Note the compatibility of the general isomorph
theory with the results of Saija et al.72 on the pair-potential
dependence of the maximum height of S(q) at freezing.

The study of the LJ structure factor along the freezing line also
allows explaining some properties of structure factors for liquid
metals observed in X-ray experiments. As shown by Waseda and
Sukuri in 1972,73 for some liquid metals the ratio of the position of
the first and second peaks in the structure factor is the same while
there are others for which this does not hold, for example, Ga, Sn,
and Bi. The first set of metallic liquids are the ones which are R
liquids (i.e., exhibit strong virial potential-energy correlations) and
therefore are similar to the LJ system studied in this work, while
those in the second do not, as shown very recently by Hummel
et al.74 from ab initio density functional theory calculations.

Along the melting line we studied the Lindemann criterion,
which has been widely discussed65,66,72,75 and also experimentally
tested,76 and the same conclusion holds as for the Hansen–Verlet
criterion. Isomorphs’ existence implies that an R liquid’s thermo-
dynamic phase diagram becomes effectively one-dimensional
with respect to the isomorph-invariant quantities. The reduction
of the 2d phase diagram to an effectively 1d phase diagram is
crucial for understanding the connection between isomorph
theory and the Lindemann criterion, because it removes one
of the main criticisms against this criterion, i.e., its being
a single-phase criterion.9 If the phase diagram is effectively
one-dimensional, there is a unique melting process and the
Lindemann constant is the value associated with this phase
transition; the invariance of the Lindemann constant along the
melting line is, in this view, a consequence of isomorph
invariance. This argument also explains why one can use a
single-phase criterion to predict where the melting process
takes place for R liquids. According to the Lindemann criterion,
the crystal melts when the vibrational MSD exceeds a threshold
value, which in reduced units is constant along the melting
line. This condition is equivalent to the invariance of the MSD
along the melting line, an isomorph prediction. Note that

isomorph theory can be used to predict for which systems the
Lindemann criterion (at least) must hold, namely all R liquids.
Recent comprehensive density-functional theory (DFT) simulation
data from Hummel et al.74 show that most metals are R liquids
and therefore the Lindemann criterion must apply for them in the
sense that the reduced-unit MSD is approximately invariant along
the melting line. On the other hand, systems that do not exhibit
strong correlations between virial and potential-energy do not
necessarily obey the Lindemann criterion. Thus as discussed by
Stacey and Irvine already in 1977,67 the Lindemann criterion
applies for systems which ‘‘undergo no dramatic changes in
coordination on melting’’. This is not the case for hydrogen-
bonding systems, which are not R liquids.24,27 The non-universal
validity of the Lindemann criterion is also supported by Lawson66

and by Fragiadakis and Roland.63 Another interesting point is the
connection between the Lindemann and Born criteria, relating
melting to the vanishing of the shear modulus in the crystal. Jin
et al.77 showed that for a LJ system when the Lindemann criterion
is satisfied, the Born criterion78 too holds to a good approxi-
mation. In view of isomorph theory this is not surprising, because
the reduced shear modulus is invariant along an isomorph and
therefore constant on melting.

In Section 5 we discussed the relation between isomorph
theory and Andrade’s viscosity equation from 1934 for the
viscosity of liquid metals at freezing. This equation is equiva-
lent to stating invariance of the reduced viscosity along an
isomorph, eqn (13) and (14). As for the Lindemann criterion,
isomorph theory provides the possibility to predict whether a
liquid will obey the Andrade equation. The DFT simulation data
from Hummel et al.74 explain why this equation holds for liquid
alkali metals (as well as other invariances79); likewise one also
expects this equation to hold for many other metals, for
example, iron. The last point is of significant interest because
the estimation of viscosity of liquid iron close to the freezing line
in the Earth core is of crucial relevance for the development of
Earth-core models,4–6 but is still widely debated.80–82 Isomorph
scaling predicts an increase of the real (non-reduced) viscosity
along the freezing line consistent with the results of Fomin et al.81

8 Conclusions

We have shown that the freezing and melting lines are approxi-
mately isomorphs and how the isomorph theory can be used to
explain why some liquids have simple behavior at freezing and
melting, i.e., have several structural and dynamical approximate
invariants along the freezing and melting lines. Thus this theory can
be used for R liquids to determine the melting and freezing physical
quantities not easily accessible by experiments, ranging from noble
gases like argon to liquid metals to certain molecular liquids.

A Determining the zero-strain rate
viscosity from SLLOD simulations

An SLLOD simulation46–48 is a molecular dynamic simulation
performed by shearing the simulation box with constant speed.
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Between the bottom part of the box and the top part there is a

relative shearing motion with a strain rate _g ¼ @ux
@y

, where ux is

the streaming velocity at ordinate y when the box is sheared in
the x direction. Under low strain-rate conditions, this kind of
simulation reproduces an ordinary, linear Coulette flow and the
linear, shear-rate-independent, viscosity can be calculated from
the stress tensor sij through the equation

Z ¼ sxy
_g

(18)

Eqn (18) holds only when the viscosity is independent of the
strain rate, i.e., at a sufficiently small shear rate. As shown by
Separdar et al.83 the strain rate _g for which the measured
viscosity starts to be strain-rate dependent is isomorph invariant
when given in reduced units.

The behavior of the reduced viscosity ~Z as a function of the

reduced strain rate ~_g is shown in Fig. 12. When the two
considered state points are on the same isomorph, they exhibit
the same shear-thinning behavior in reduced units; this is not
true if we move along an isochore or along an isotherm. The
dotted green line in Fig. 12 marks the reduced strain rate used
for the simulations along the freezing line reported in the paper.
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Abstract

Although the freezing of liquids and melting of crystals are fundamental for many areas of the

sciences, even simple properties like the temperature-pressure relation along the melting line cannot

be predicted today. We present a theory in which properties of the coexisting crystal and liquid

phases at a single thermodynamic state point provide the basis for calculating the pressure, density,

and entropy of fusion as functions of temperature along the melting line, as well as the variation

along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann

ratio) and the liquid’s diffusion constant and viscosity. The framework developed, which applies

for systems characterized by so-called hidden scale invariance, is validated by computer simulations

of the standard 12-6 Lennard-Jones system.
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I. INTRODUCTION

Melting is the prototypical first-order phase transition [1–3]. Its qualitative description

has been textbook knowledge for a century, but it has proven difficult to give quantitatively

accurate predictions. This is the case not only for the kinetics of melting and freezing,

exciting and highly active areas of research [4–8]; there is not even a theory for calculating,

e.g., the entropy of fusion as a function of temperature. The below study provides a step in

this direction by showing how the thermodynamics of melting and freezing for a large class

of systems may be predicted from computer simulations carried out at a single coexistence

state point. In particular, the theory developed quantifies the deviations from melting-line

invariants discussed for a long time [9–13].

The everyday observation that matter sticks together but is at the same time almost

impossible to compress [14] is modeled, e.g., in the system proposed by Lennard-Jones (LJ)

in 1924 [15]. Here particles interact via a pair potential that as a function of distance r is a

difference of two inverse power-law terms: vLJ(r) = 4ε((r/σ)−12 − (r/σ)−6). The first term

reflects the fact that the repulsive “Pauli” forces are harsh and short-ranged, the negative

term models the softer, longer ranged attractive van der Waals forces. The 1970s led to the

development of highly successful thermodynamic perturbation and integral-equation theories

for simple liquids [10, 16–20]. Their main ingredient is the assumption that the structure of a

dense, monatomic fluid closely resembles that of a collection of hard spheres [10, 19, 21, 22].

Confirming this, the structure of melts of, e.g., metallic elements near freezing is generally

close to that of the hard-sphere system [10, 20, 22, 23]. The term “structure” generally

refers to the entire collection of spatial equal-time density correlation functions, but our

focus below is on the pair correlation function function as the most important structural

characteristic (in the form of its Fourier transform, the structure factor).

Since the hard-sphere system has only a single nontrivial thermodynamic state parameter

(the packing fraction), the phase diagram is basically one-dimensional, which implies that

the system has a unique freezing/melting transition. Based on this one expects invariance

along the freezing and melting lines, respectively, of structure and dynamics in proper units,

as well as of thermodynamic variables like the relative density change upon melting and the

melting entropy [24]. Empirical freezing and melting rules, which follow from the hard-sphere

melting picture and are fairly well obeyed for most simple systems, include:

2



1. In crystals the ratio between the root-mean-square atomic displacement and the

nearest-neighbor distance is known as the Lindemann ratio. The Lindemann melting

rule from 1910 [9, 24–28] states that melting occurs when this ratio is about 0.1. In

the hard-sphere model the Lindemann ratio is universal at melting because there is

basically just a single melting point. In particular, for systems well described by the

HS model the Lindemann ratio is predicted to be invariant along the melting line.

2. In properly reduced units the liquid’s self diffusion constant and viscosity are invariant

along the freezing line [29, 30].

3. The Hansen-Verlet rule [21, 31] that the amplitude of the first peak of the liquid static

structure factor is about 2.85 at freezing reflects the invariance of structure along the

freezing line.

4. The entropy of fusion ∆Sfus is about 1.1kB (Richard’s rule) [3] – a more accurate

empirical finding is that the constant-volume entropy difference across the density-

temperature coexistence region is close to 0.8kB [26, 32].

This paper shows that for a large class of systems, including the LJ system, it is possible to

predict the thermodynamics along the melting line – as well as deviations from HS predicted

invariances along this line – from computer simulations carried out at a single coexistence

state point.

II. RESULTS

A. General theory

It is well-known that adding a mean-field attractive term to the hard sphere model broad-

ens the coexistence region which, on the other hand, narrows if the repulsive part is softened

[10, 18, 33–36]. Such terms are therefore expected to modify the hard-sphere predicted in-

variances along the freezing and melting line. As an example Fig. 1(a) shows that in reduced

units there is approximate identity of structure along the LJ freezing line, but the struc-

ture is not entirely invariant as seen in the inset where the dashed line marks the predicted

maximum based on simulations at T = 2.0ε/kB if the structure were invariant.
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FIG. 1. Structure of the liquid Lennard-Jones system as reflected in the structure factor. (a) Liquid

structure factor along the freezing line [37] showing results ranging from T = 0.7ε/kB, which is

close to the triple point, to T = 3.4ε/kB. The hard-sphere model predicts that the height of the

first peak is invariant along the freezing line as indicated by the blue dashed line in the inset. Small,

but systematic deviations are observed. (b) Liquid structure factor along the isomorph crossing

the melting line at temperature T = 2.0ε/kB (henceforth used as the liquid reference isomorph),

demonstrating structural invariance to a much higher degree.

In order to develop a quantitative theory of freezing and melting we take as starting point

the “hidden scale-invariance” property recently demonstrated for systems [38] characterized

by a potential-energy function U(R) where R = (r1, r2, . . . , rN) is the collective coordinate

of the system’s N particles, which to a good approximation obeys the following scaling

condition [39]

U(Ra) < U(Rb)⇒ U(λRa) < U(λRb) . (1)

Here λ is a scaling factor; it is understood that the sample container undergoes the same

scaling, and thus λ > 1 corresponds to a density decrease and λ < 1 to a density increase.

This form of scale invariance is exact only for systems with inverse power-law type interac-

tions [18]. It is a good approximation, however, for the condensed phase of many systems

in which this property is not obvious from inspection of the analytical expression for U(R),

thus it is referred to as “hidden scale invariance” [39–42]. Equation (1), which is formally
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equivalent to the conformal-invariance condition U(Ra) = U(Rb) ⇔ U(λRa) = U(λRb),

implies invariance of structure and dynamics along the configurational adiabats in the phase

diagram [39]. These lines are referred to as isomorphs [42]. It was very recently shown

by Maimbourg and Kurchan that in high dimensions all pair-potential systems obey hidden

scale invariance [43]. Experimentally, hidden scale invariance has been demonstrated directly

and indirectly for molecular van der Waals bonded liquids and polymers [44–46]. Further

evidence for the existence of isomorphs come from computer simulations of single-component

systems [40, 42] as well as, e.g., glass-forming mixtures [47], nanoflows [48], molecular mod-

els [38], and density-functional ab initio simulated metallic elements [49]. Isomorphs have

also been demonstrated in simulations of out-of-equilibrium situations like zero-temperature

shear flows of glasses or nonlinear steady-state liquid flows (see Ref. 38 and its references).

It is important to emphasize, however, that not all condensed matter exhibits hidden scale

invariance; for instance, water is a notable exception [41]. The general picture is that most

metals and organic van der Waals bonded systems obey Eq. (1) to a good approximation

in the condensed-phase part of their thermodynamic phase diagram, whereas systems with

strong directional bonding generally do not [38]. The former systems are simpler than the

latter because their phase diagram is effectively one-dimensional in regard to structure and

dynamics. Systems with hidden scale invariance are sometimes referred to as Roskilde (R)

simple [35, 50–62] to distinguish them from simple systems traditionally defined as pair-

potential systems [10]. The theory presented below makes use of the simplicity provided by

R simple systems’ almost one-dimensional phase diagram [38] and gives a correction to the

hard-sphere picture of melting and freezing based on first-order Taylor expansions. As will

be demonstrated below, this provides excellent agreement with state-of-the-art computer

simulation results.

Along an isomorph the structure is invariant in the reduced unit system defined [42] by

the length unit ρ−1/3 (ρ ≡ N/V is the number density and V is the system volume), the

energy unit kBT (T is the temperature), and the time unit
√
mρ−2/3/kBT (m is the particle

mass). Figure 1(b) shows the LJ liquid’s static structure factor S(q) along an isomorph close

to the freezing line (the one used below as the liquid-state reference isomorph) plotted for

a range of temperatures. A comparison with Fig. 1(a) confirms the recent finding of Heyes

and Branka [13] that the freezing line is not an isomorph, but it is close to one.

The melting pressure as a function of temperature, pm(T ), can be predicted from infor-
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mation obtained at a single coexistence reference state point. The details about how this

works are given in the Supplementary Information. The argument may be summarized as

follows. Recalling that the entropy as a function of density and temperature is a sum of

an ideal-gas term and an “excess” term Sex [10], isomorphs are the phase-diagram lines of

constant excess entropy for any system obeying Eq. (1) [39, 42]. A computer simulation at

the liquid/solid reference state point with density ρ0 and temperature T0 generates a series of

configurations R0
1, ...,R

0
n. Scaling each of these uniformly to density ρ one obtains configu-

rations representative for the state point with density ρ and temperature T on the isomorph

through the reference state point [39], in which T is identified from the configurational tem-

perature expression kBT = 〈(∇U)2〉/〈∇2U〉 [63]. The average potential energy U and virial

W at the state point (ρ, T ) are likewise found by averaging over the scaled configurations.

The key assumption here is that the canonical probabilities of the scaled configurations

are identical to those of the original configurations, which follows from Eq. (1) [39] (note

that no new molecular dynamics simulations are required). As shown in the Supplemen-

tary Information, in conjunction with the isochoric specific heat CV calculated from the

potential-energy fluctuations (CV = 〈(∆U)2〉/kBT 2), and the so-called density-scaling expo-

nent γ ≡ (∂ lnT/∂ ln ρ)Sex
also calculated from the fluctuations (γ = 〈∆U∆W 〉/〈(∆U)2〉),

one has enough information to determine the thermodynamics of freezing and melting as well

as the variation along the melting line of isomorph-invariant properties like the reduced-unit

viscosity and the Lindemann ratio.

B. Theory for the Lennard-Jones system

For the Lennard-Jones system a fairly simple analytic theory may be developed. It makes

use of the fact that because the structure is isomorph invariant, it is possible to calculate

the variation of the average potential energy analytically along an isomorph. This is done

as follows. In reduced coordinates the pair correlation function g(r̃) is isomorph invariant

(r̃ = ρ1/3r). Consequently, for pairs of LJ particles at distance r the thermal average 〈r−n〉
scales with density as ρn/3 along an isomorph. Thus 〈r−n〉 ∝ ρn/3 with a proportionality

constant that only depends on Sex, implying that the average potential energy U is of the

form U = A12(Sex)ρ
4 + A6(Sex)ρ

2 (where A6(Sex) < 0) [64]. Since T = (∂U/∂Sex)ρ, one

has T = A′12(Sex)ρ
4 +A′6(Sex)ρ

2. It follows that if the five quantities Sex, A12(Sex), A6(Sex),

6



A′12(Sex), and A′6(Sex) are known, the excess Helmholtz free energy, U − TSex, is known

along the reference isomorph. The required numbers are easily determined from reference

state point simulations (see the Methods section and the Supplementary Information) – for

instance the potential energy and virial give rise to two linear equations for determining

A12(Sex) and A6(Sex). Once the excess Helmholtz free energy is known along the reference

isomorph, the Gibbs free energy is found by adding the ideal-gas Helmholtz free energy

and the pV term (pV = NkBT + W in which the virial is given by W = (∂U/∂ ln ρ)Sex =

4A12(Sex)ρ
4 + 2A6(Sex)ρ

2 [42]).

C. Comparing theory to simulation results for the Lennard-Jones system

Following the above procedure we generated two reference isomorphs of the LJ system

starting from the coexistence state point with temperature T = 2ε/kB, a liquid-phase iso-

morph and a crystal-phase isomorph. Gibbs free energy of the liquid phase at coexistence,

Gl(T ), is found by utilizing the fact that the freezing line is close to an isomorph. Since

(∂G/∂p)T = V , a good approximation to Gl at coexistence is

Gl(pm(T ), T ) ∼= GI
l (T ) + V I

l (T )(pm(T )− pIl (T )) . (2)

Here pm(T ) is the coexistence pressure to be determined; GI
l (T ) is the Gibbs free energy,

V I
l (T ) the volume, and pIl (T ) the pressure along the liquid-state reference isomorph. These

are all known functions of the density on the isomorph henceforth denoted by ρI , which for

a given temperature T is found by solving T = A′12(Sex)(ρ
I)4 + A′6(Sex)(ρ

I)2.

An analogous expression applies for the crystal’s Gibbs free energy, of course, again

involving only parameters determined from reference state-point simulations. The coex-

istence pressure is calculated by equating the liquid and solid phases’ Gibbs free ener-

gies. As shown in the Supplementary Information this results in pm(T )(V I
l (T )− V I

s (T )) =

C1(T ) +C2(T )−C3(T ) in which C1(T ) is the difference between U I
s (T )− (T/T0)U

I
s (T0) and

the analogous term for the liquid reference isomorph (U I
s (T ) is the crystal’s potential en-

ergy along the reference isomorph), C2(T ) is the difference between NkBT ln(ρIs(T )/ρIs(T0))

and the analogous liquid term, and C3(T ) is the difference between (T/T0)W
I
s (T0) and the

analogous liquid term.

Figures 2(a) and (b) compare the theoretically predicted pm(T ) to the coexistence pres-
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FIG. 2. Comparing theoretical predictions (full red curves) to the results of molecular dynamics

simulations using the interface pinning method [37] (black dots) for the Lennard-Jones system.

The theoretical predictions are based on simulations at the co-existence state point indicated by

an arrow in each figure (T0 = 2ε/kB). Note that no fitting was done in these figures; the only

input to the theory is properties of the co-existing liquid and crystal at the reference state point.

(a) Temperature-pressure phase diagram. The green dashed line marks the expectation based on

a linear extrapolation of the Clausius-Clapeyron relation dpm/dT = ∆Sfus/∆V from the reference

state point, i.e., assuming that the entropy of fusion and volume change are both constant. (b)

The same data plotted with a linear pressure axis. (c) The freezing and melting lines in the

density-temperature phase diagram. (d) Fusion entropy (main panel) and enthalpy (inset).
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sure computed numerically by means of the interface pinning method [37]. The density of

the crystalline and liquid phases along coexistence may likewise be computed by means of

a first-order Taylor expansion (see the Supplementary Information). Figure 2(c) compares

the predicted (ρ, T ) phase diagram to that obtained by the interface-pinning molecular dy-

namics simulations. Finally, Fig. 2(d) shows the fusion entropy ∆Sfus and enthalpy ∆Hfus,

the latter quantity being of course measured in experiments as the latent heat. In all cases

there is good agreement between theory and simulations.

Having in mind the fact that the pressure at the triple point is very low for the LJ system,

we estimate the triple point temperature to Ttp = 0.688(2)ε/kB from the theory by assuming

zero pressure. This is within the statistical uncertainty of the triple point temperature

computed with the interface pinning method. For comparison, a linear extrapolation of the

Clausius-Clapeyron relation from the reference point (the green dashed lines on Figs. 2(a)

and (b)) predicts a triple point temperature of 0.909(2)ε/kB.

Since the melting line is not an isomorph, the Lindemann ratio is not invariant along it as

expected from the hard-sphere picture. The theory estimates the deviation from a constant

Lindemann ratio by a first-order Taylor expansion from the reference isomorph (see the

Supplementary Information). Figure 3(a) demonstrates good, though not perfect agreement

between theory and numerical computations of the Lindemann ratio. The liquids’ self-

diffusion constant plays an important role for the crystal growth rate as expressed, e.g., in the

Wilson-Frenkel law [65, 66]. This motivated us to use the theory to calculating the diffusion

constant’s variation along the freezing line (Fig. 3(b)). Another important component for

crystal growth is the thermodynamic driving force on the crystal-liquid interface, which

is determined by the Gibbs-free energy difference between the two phases, ∆G ∼= (Tm −
T )∆Sfus (∆Sfus is shown on Fig. 2(d)). Finally, Fig. 3(c) shows the viscosity along the

melting line. In all figures the blue dashed lines mark the prediction if the dynamics were

invariant in reduced units, i.e., if the freezing/melting lines were isomorphs.

III. DISCUSSION

We have presented a theory for the thermodynamics of freezing and melting of systems

characterized by hidden scale invariance. The theory enables one, in particular, to calculate

the deviations from invariance of several quantities along the melting line predicted in the
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FIG. 3. (a) Lindemann ratio along the melting line. (b) Self-diffusion constant along the freezing

line. (c) Viscosity along the freezing line. In all figures blue dashed lines show the predictions

if perfect invariance of structure and dynamics in reduced units applied along the melting and

freezing lines.

hard-sphere melting picture [9–13]. The theory is analytic for Lennard-Jones type system,

i.e., systems involving a pair potential that is a difference of two inverse power laws, but

the framework developed applies to any system with hidden scale invariance, including

molecular systems. The theory generally works well, with the largest deviations found close

to the triple point where the structure is not quite invariant along the reference isomorph

(Fig. 1(b)).

Having established a firm foundation for the thermodynamics of freezing and melting for
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R simple systems, it is our hope that it will soon be possible to address the challenging

and exciting questions how nucleation and growth proceed, processes that are not well

understood even for simple systems beyond the hard sphere system [67]. In particular,

changes of the nucleation and growth mechanisms along the melting line may be analyzed

in same way as above, i.e., by utilizing the fact that the freezing and melting lines are close

to isomorphs along which the dynamics is invariant.

It is not clear to which degree the approach to melting may be generalized to quantum

systems for which an outstanding question is the possible existence of a zero-temperature

quantum fluid of metallic hydrogen. The quantum nature of the proton modifies classical

melting, for example by increasing the value of the Lindemann ratio [68]. It would be

interesting to investigate whether melting of quantum crystals may be understood in the

above framework, but at the moment this awaits the development of an isomorph theory

for quantum systems. In ongoing work we are addressing another open question, namely

whether the above can be generalized to deal with more realistic systems, in particular metals

for which density functional theory (DFT) computer simulations nowadays give realistic

representations of the physics and have demonstrated hidden scale invariance for most metals

[49].

IV. METHODS

We studied a Lennard-Jones system of N = 5000 particles with pair interactions trun-

cated and shifted at 6σ. Coexistence pressures, pm’s, are computed with the interface pinning

method [37] in which coexistence points are determined by computing the thermodynamic

driving force on a solid-liquid interface. Table I lists the energy U0 and virial W0 at the

reference temperature T0 = 2ε/kB for both the liquid and crystal states at coexistence. The

A12 and A6 coefficients for the liquid and the crystal are computed from reference state

point data using Eq. (6) in the Supplementary Material (all equation numbers in this sec-

tion refer to the Supplementary Material). The derivative of the A coefficients with respect

to excess entropy, A′12 and A′6, are computed from reference state point data using Eq. (9)

with the γ’s listed in Table I. Melting pressures (Figs. 2(a) and 2(b)) are from reference

state point data using Eq. (19) in which the potential energies along the isomorphs are

expressed in Eq. (4). The densities along the liquid and crystal reference isomorphs are
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TABLE I. Quantities at the two reference state points in coexistence. These numbers were used for

calculating the theoretical predictions in Figs. 2 and 3 as detailed in the Supplementary Information.

T0 = 2.0 ε/kB Liquid Crystal

V0/N [σ3] 0.9403(2)a 0.8827(2)

U0/N [ε] -4.7792(2) -5.7774(2)

W0/N [ε] 17.5418(7) 16.3628(6)

γ0 4.9164(8) 4.8704(8)

CV
ex/N [kB] 1.323(5) 1.301(7)

B0N [ε/k2B] 6.9(5) 7.2(5)

L0 - 0.1398(2)

(∂L/∂T )ρ [kB/ε] - 0.041(2)

D̃0 0.02921(9) -

(∂D̃/∂T )ρ [kB/ε] 0.0201(4) -

η̃0 5.2487(6) -

(∂η̃/∂T )ρ [kB/ε] -2.60(14) -
aNumbers in parenthesis give the estimated statistical uncertainty on the last digit using a 95%

confidence interval.

found as functions of temperature by inversion of Eq. (7). The second derivative of the A

coefficients, A′′12 and A′′6, are given by Eq. (13) where the excess heat capacity CV
ex and

B ≡
(
∂(T/CV

ex)/∂ ln(ρ)
)
Sex

are listed in Table I. Densities of freezing and melting (Fig.

2(b)) are computed by combining Eqs. (20) and (23). The entropy of fusion ∆Sfus (Fig. 2d)

is computed by combining Eqs. (25) to (28). The value of the Lindemann ratio L at the

reference crystal, L0, and its temperature derivative along an isochore, (∂L/∂T )ρ, are listed

in Table I. By letting X = L in Eqs. (30) and (36) we arrive at the prediction shown in

Fig. 3(a). Similarly, the predictions of the self-diffusion constant D (Fig. 3(b)) and viscosity

η (Fig. 3(c)) are found by letting X = D̃ = Dρ1/3
√
m/kBT and X = η̃ = η/ρ2/3

√
mkBT ,

respectively. D is determined from the long-time limit of the mean-square displacement; η

was computed for a system of 4096 particles using the SLLOD algorithm as detailed in Ref.

[30] except that we here have with more particles and a larger cutoff.
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I. INTRODUCTION

A thermodynamic state point usually has a unique density ρ ≡ N/V and temperature

T . The reference state point is selected at the coexistence line, however, i.e., with known

temperature T0 and pressure p0. There are here two different reference densities, a solid

and a liquid one, below denoted respectively by ρs,0 and by ρl,0. In the density-temperature

phase diagram there are likewise two reference isomorphs. The arguments developed in the

next two sections refer to either one of these.

II. ISOMORPH CHARACTERISTICS: THE GENERAL CASE OF AN R SIMPLE

SYSTEMS

As mentioned, the temperature-pressure reference state point defines two reference

density-temperature state points, a liquid and a solid one. Let us focus on one of these

with density ρ0 and temperature T0 (dropping subscripts s and l). From an NV T molecular

dynamics equilibrium simulation (with a Nose-Hoover thermostat) several configurations

R0
1, ...R

0
n are picked out. In order to map out the reference isomorph parametrized by den-

sity, one first identifies the temperature T such that (ρ, T ) is on the isomorph through the

reference state point. This is done as follows. If the scaled configurations are denoted by

R1, ...Rn in which Ri = (ρ0/ρ)1/3R0
i , T is determined from the standard configurational

temperature expression:

kBT =
〈(∇U(Ri))

2〉
〈∇2U(Ri)〉

. (1)

This determines the function T (ρ̃I) where we define the relative density along the isomorph

by ρ̃I ≡ ρI/ρ0 with superscript I indicating “isomorph” (thus T (1) = T0). By averaging the

potential energy U(R) and virial W (R) ≡ (−1/3)R · ∇U(R) over the scaled configurations

one finds U(ρ̃I) and W (ρ̃I). CV
ex(ρ̃I) is found from the scaled configurations’ potential

energy via CV
ex = 〈(∆U)2〉/kBT 2 and γ(ρ̃I) ≡ (∂ lnT/∂ ln ρ)Sex via γ = 〈∆U∆W 〉/〈(∆U)2〉

[1, 2] (recall that isomorphs are curves of constant Sex).

As shown in Sec. IV below one now has enough information to calculate the pressure

along the melting line, pm(T ). To calculate the liquid and solid densities along the melting

line (Sec. V) one needs to know the below three partial derivatives. Denoting the derivative

2



along the isomorph with respect to ρ̃I of the virial by W ′(ρ̃I) (which is basically the so-

called hypervirial) and recalling that W = (∂U/∂ ln ρ̃)Sex and T = (∂U/∂Sex)ρ̃ [1, 2], the

three required quantities are given by

(
∂W

∂ ln ρ̃

)I

Sex

= ρ̃IW ′(ρ̃I)

(
∂W

∂Sex

)I

ρ̃

=
∂2U

∂Sex∂ ln ρ̃
=

(
∂T

∂ ln ρ̃

)

Sex

= T (ρ̃I) γ(ρ̃I)

(
∂Sex

∂ ln ρ̃

)I

T

= −

(
∂T
∂ ln ρ̃

)
Sex(

∂T
∂Sex

)
ρ̃

= − T (ρ̃I)γ(ρ̃I)

T (ρ̃I)/CV
ex(ρ̃I)

= −CV ex(ρ̃I) γ(ρ̃I) .

(2)

The entropy of fusion ∆Sfus is calculated by reference to Eq. (28) below. The three quantities

needed here are given by

(
∂U

∂ ln ρ̃

)I

Sex

= W (ρ̃I)

(
∂U

∂Sex

)I

ρ̃

= T (ρ̃I)

(
∂Sex

∂ ln ρ̃

)I

T

= −CV ex(ρ̃I) γ(ρ̃I) .

(3)

III. ISOMORPH CHARACTERISTICS FOR GENERALIZED LENNARD-JONES

PAIR POTENTIALS

The above quantities may be calculated analytically for generalized LJ pair potentials,

i.e., for systems of particles interacting via pair potential(s) given as a sum or difference of

two inverse power laws (IPLs), r−m and r−n. The below derivation applies for any m > n > 0

and for general multi-component systems; its subsequent application to freezing and melting

deals with single-component systems only. In the main paper we study the standard single

component LJ system with m = 12 and n = 6.

Invariance of the structure along an isomorph implies that the thermodynamic average

potential energy at a given state point, U , may be written U = Amρ̃
m/3 + Anρ̃

n/3 in which

the two A coefficients are functions only of the excess entropy Sex. For simplicity of notation
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we do not indicate the Sex dependence. The first and second order derivatives of Am with

respect to Sex are marked by A′m and A′′m and likewise for An.

The identity for the virial W = (∂U/∂ ln ρ̃)Sex implies

U = Amρ̃
m/3 + Anρ̃

n/3

W =
m

3
Amρ̃

m/3 +
n

3
Anρ̃

n/3 .
(4)

At the reference state point ρ̃ = 1, so for determining Am and An from reference state-point

data we have the following two equations:

U0 = Am + An

W0 =
m

3
Am +

n

3
An .

(5)

This implies

Am =
3W0 − nU0

m− n
An =

mU0 − 3W0

m− n .

(6)

From the identity T = (∂U/∂Sex)ρ̃ and the definition of the density-scaling exponent,

γ ≡ (∂ lnT/∂ ln ρ̃)Sex , we get

T = A′mρ̃
m/3 + A′nρ̃

n/3

γT =
m

3
A′mρ̃

m/3 +
n

3
A′nρ̃

n/3 .
(7)

For determining A′m and A′n from reference state-point data one has

T0 = A′m + A′n

γ0T0 =
m

3
A′m +

n

3
A′n .

(8)

This implies

A′m =
3γ0 − n
m− n T0

A′n =
m− 3γ0
m− n T0 .

(9)

4



In order to arrive at the equations for A′′m and A′′n, we first note that CV
ex =

(∂Sex/∂ lnT )ρ̃ = T (∂Sex/∂T )ρ̃, i.e., (∂T/∂Sex)ρ̃ = T/CV
ex. This implies that T/CV

ex =

A′′mρ̃
m/3 + A′′nρ̃

n/3. If we define a thermodynamic quantity B by

B ≡
(
∂(T/CV

ex)

∂ ln ρ̃

)

Sex

, (10)

one has

T

CV
ex = A′′mρ̃

m/3 + A′′nρ̃
n/3

B =
m

3
A′′mρ̃

m/3 +
n

3
A′′nρ̃

n/3 .

(11)

The two equations for determining A′′m and A′′n from reference state point data are thus

T0
CV

ex
0

= A′′m + A′′n

B0 =
m

3
A′′m +

n

3
A′′n .

(12)

This implies

A′′m =
3B0 − nT0/CV ex

0

m− n
A′′n =

mT0/CV
ex
0 − 3B0

m− n .

(13)

In summary, we have shown that (for each of the two reference isomorphs) the six num-

bers Am, An, A′m, A′n, A′′m, and A′′n may be found from reference state-point simulations

determining: 1) the potential energy U0, 2) the virial W0, 3) the temperature T0, 4) the

excess isochoric specific heat CV
ex
0 , 5) the density-scaling exponent γ0, and 6) the derivative

of CV
ex along the isomorph via the quantity B0 defined in Eq. (10). The three first quan-

tities are determined directly. The next two quantities are determined from fluctuations at

the reference state point: CV
ex
0 = 〈(∆U)2〉/kBT 2

0 and γ0 = 〈∆W∆U〉/〈(∆U)2〉. The quan-

tity B0 is most accurately found from simulations along the reference isomorph carried out

close to the reference state point, but in principle B0 can be calculated from fluctuations

at the reference state point (those needed are of third order and consequently of consid-

erable numerical uncertainty). In the analysis presented in the main paper we calculated
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B0 numerically by directly applying Eq. 10; alternatively, following the methods used in

Ref. 3 one may rewrite B as B = (ρT/CV
ex) [1 + (∂ ln γ/∂ lnT )ρ] and evaluate B0 from the

constant density-variation of γ at the reference state point.

IV. THE MELTING-LINE PRESSURE

This section shows how to calculate the pressure on the melting line as a function of

temperature, pm(T ). This quantity is determined by equating the liquid and solid phase’s

Gibbs free energies. Recalling that V = (∂G/∂p)T we estimate these from the Gibbs free

energies along the isomorphs, GI
l (T ) and GI

s(T ), as follows (below F I
l (T ) is the Helmholtz

free energy along the liquid reference isomorph, etc)

Gl(T, pm(T )) ∼= GI
l (T ) + V I

l (T )(pm(T )− pIl (T )) = F I
l (T ) + V I

l (T )pm(T )

Gs(T, pm(T )) ∼= GI
s(T ) + V I

s (T )(pm(T )− pIs(T )) = F I
s (T ) + V I

s (T )pm(T ) .
(14)

The coexistence condition Gl(T, pm) = Gs(T, pm) leads to

pm(T )(V I
l (T )− V I

s (T )) = F I
s (T )− F I

l (T ) . (15)

If Fid is the Helmholtz free energy of an ideal gas, the Helmholtz free energy along the liquid

isomorph is given by

F I
l (T ) = U I

l (T )− TSIex,l + Fid(T, ρIl (T )) . (16)

An analogous expression applies for the solid isomorph’s Helmholtz free energy, F I
s (T ). The

two constants SIex,l and SIex,s are not known, but one only needs their difference. This is de-

termined from the equilibrium condition at the reference state point, Gl(T0, p0) = Gs(T0, p0)

as expressed in Eq. (15), leading since pV = NkBT + W and Fid(T, ρl) − Fid(T, ρs) =

NkBT ln(ρl/ρs) to

T0 (SIex,l − SIex,s) = (Ul,0 − Us,0) +NkBT0 ln(ρl,0/ρs,0) + (Wl,0 −Ws,0) . (17)

The coexistence condition Eq. (15) thus becomes (dropping the explicit temperature depen-

dencies)
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pm(V I
l −V I

s ) = (U I
s−U I

l )− T
T0

(
(Us,0−Ul,0)+NkBT0 ln(ρs,0/ρl,0)+(Ws,0−Wl,0)

)
+NkBT ln(ρIs/ρ

I
l )

(18)

or, in terms of the relative density along the respective isomorphs ρ̃I ,

pm(V I
l −V I

s ) =

(
U I
s −

T

T0
Us,0

)
−
(
U I
l −

T

T0
Ul,0

)
+NkBT ln(ρ̃Is/ρ̃

I
l )+

T

T0

(
Wl,0−Ws,0

)
. (19)

In the case of an arbitrary potential there is no analytical expression for the potential

energy as a function of density, the density (of each phase) is the control parameter and T is

identified from Eq. (1), resulting by numerical inversion in two functions ρ̃Is(T ) and ρ̃Il (T ).

In the case of generalized LJ pair potentials, for a given temperature T the functions ρ̃Il (T )

and ρ̃Is(T ) are found by solving Eq. (7) (in general numerically, but analytically for the 12-6

LJ system), using the A′ coefficients of Eq. (9).

V. THE MELTING LINE-DENSITIES

To calculate the liquid and solid densities at coexistence as functions of temperature we

work from the respective reference isomorphs knowing the coexistence pressure as a function

of temperature, as well as the pressure along the reference isomorph. From this information

one calculates the solid and liquid densities by moving on an isotherm from the reference

isomorph to the freezing/melting line. In both cases we define the isothermal difference

∆W ≡ W (T )−W I(T ).

At any given temperature T the density ρ̃ of the liquid/solid at coexistence is calculated

from

∆W ∼=
(
∂W

∂ ln ρ̃

)I

T

∆ ln ρ̃ =

(
∂W

∂ ln ρ̃

)I

T

ln(ρ̃/ρ̃I) . (20)

If (∂W/∂ ln ρ̃)IT is known, we can from this determine ρ̃. The following standard identity is

used

(
∂W

∂ ln ρ̃

)

T

=

(
∂W

∂ ln ρ̃

)

Sex

+

(
∂W

∂Sex

)

ρ̃

(
∂Sex

∂ ln ρ̃

)

T

. (21)
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In the case of an arbitrary potential, the three terms on the right hand side are calculated

from Eq. (2). For the generalized LJ case, these terms are expressed in terms of the A

coefficients on the reference isomorph using Eqs. (4) and (7) as follows

(
∂W

∂ ln ρ̃

)I

Sex

=
(m

3

)2
Am(ρ̃I)m/3 +

(n
3

)2
An(ρ̃I)n/3

(
∂W

∂Sex

)I

ρ̃

=
m

3
A′m(ρ̃I)m/3 +

n

3
A′n(ρ̃I)n/3

(
∂Sex

∂ ln ρ̃

)I

T

= −

(
∂T
∂ ln ρ̃

)I
Sex(

∂T
∂Sex

)I
ρ̃

= −
m
3
A′m(ρ̃I)m/3 + n

3
A′n(ρ̃I)n/3

A′′m(ρ̃I)m/3 + A′′n(ρ̃I)n/3
.

(22)

We thus have in the generalized LJ case

(
∂W

∂ ln ρ̃

)I

T

=
(m

3

)2
Am(ρ̃I)m/3 +

(n
3

)2
An(ρ̃I)n/3 −

(
m
3
A′m(ρ̃I)m/3 + n

3
A′n(ρ̃I)n/3

)2

A′′m(ρ̃I)m/3 + A′′n(ρ̃I)n/3
. (23)

In both cases, the equation for the density ρ(T ) = N/V (T ) is found from Eq. (20) solved

numerically in the form

pm(T )V (T )−NkBT −W I(T ) =

(
∂W

∂ ln ρ̃

)I

T

ln(ρ̃/ρ̃I) . (24)

VI. THE ENTROPY OF FUSION

This section calculates the constant-pressure entropy of fusion ∆Sfus. One way to do

this is to use the Clausius-Clapeyron equation dpm/dT = ∆Sfus/∆V in which we now

know all quantities appearing except ∆Sfus. An alternative method similar to the above

proceeds as follows. Across the melting line one has ∆G = ∆Hfus − T∆Sfus = 0, i.e.,

∆E − T∆Sfus + pm(T )∆V = 0. Since the kinetic energy is the same for liquid and solid at

the given temperature T , this implies ∆E = ∆U and thus

∆Sfus =
∆U + pm∆V

T
. (25)

This equation is used for evaluating ∆Sfus from simulations. It is also used for predicting

∆Sfus(T ) by proceeding as follows. We have predictions for pm = pm(T ) and for ∆V =
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Vl(T )−Vs(T ). The missing term is ∆U = ∆U(T ), which by analogy to Eq. (20) is estimated

via

∆U = U I
l (T ) +

(
∂U

∂ ln ρ̃

)I,l

T

ln(ρ̃l(T )/ρ̃Il (T ))− U I
s (T )−

(
∂U

∂ ln ρ̃

)I,s

T

ln(ρ̃s(T )/ρ̃Is(T )) . (26)

The partial derivatives refer to the respective reference isomorph as in the last section, and

these are evaluated like those of W . Thus

(
∂U

∂ ln ρ̃

)I

T

=

(
∂U

∂ ln ρ̃

)I

Sex

+

(
∂U

∂Sex

)I

ρ̃

(
∂Sex

∂ ln ρ̃

)I

T

. (27)

In the case of an arbitrary potential, the three terms on the right hand side are calculated

from Eq. (3). For the generalized LJ case, these terms may be expressed in terms of the A

coefficients on the reference isomorph as follows

(
∂U

∂ ln ρ̃

)I

Sex

= W I =
m

3
Am(ρ̃I)m/3 +

n

3
An(ρ̃I)n/3

(
∂U

∂Sex

)I

ρ̃

= T = A′m(ρ̃I)m/3 + A′n(ρ̃I)n/3

(
∂Sex

∂ ln ρ̃

)I

T

= −

(
∂T
∂ ln ρ̃

)I
Sex(

∂T
∂Sex

)I
ρ̃

= −
m
3
A′m(ρ̃I)m/3 + n

3
A′n(ρ̃I)n/3

A′′m(ρ̃I)m/3 + A′′n(ρ̃I)n/3
.

(28)

We now have the information required for calculating the entropy of fusion.

VII. MELTING-LINE VARIATION OF ISOMORPH INVARIANTS

We finally turn to the problem of evaluating how much an isomorph invariant X, e.g.,

the reduced vibrational crystalline mean-square displacement or the reduced liquid-state

diffusion constant, varies along the freeaing/melting line. The starting point is that

X = φ(Sex) . (29)

On the one hand

(
∂X

∂T

)

ρ

= φ′(Sex)

(
∂Sex

∂T

)

ρ

= φ′(Sex)
CV

ex

T
. (30)

9



On the other hand we have the general fluctuation formula:

(
∂X

∂T

)

ρ

=
〈∆X∆U〉
kBT 2

. (31)

Combining these equations at the reference state point leads to (where subscript 0 denotes

an equilibrium average at the reference state point)

φ′(Sex) =
〈∆X∆U〉0
kBT0CV

ex
0

. (32)

Consider next an arbitrary temperature T on the melting line. We estimate X via (where

∆Sex is the difference between crystal, respectively liquid, excess entropy at melting and

that of the corresponding reference isomorph at the same temperature and ∆ρ likewise

is the difference between crystal, respectively liquid, density at melting and that of the

corresponding reference isomorph)

X ∼= X0 + φ′(Sex)∆Sex
∼= X0 + φ′(Sex)

(
∂Sex

∂ρ

)

T

∆ρ . (33)

Equation (2) implies (
∂Sex

∂ρ

)I

T

= −γCV
ex

ρ
. (34)

In summary we have

X ∼= X0 − φ′(Sex) γCV
ex ∆ρ

ρ
. (35)

This implies

X ∼= X0 −
(
∂X

∂T

)

ρ

γ T0
CV

ex

CV
ex
0

∆ρ

ρ
(36)

in which the derivative is evaluated at the reference state point. If X is a thermodynamic

quantity, one may use this fluctuation expression

X ∼= X0 −
〈∆X∆U〉0
kBT0

γ
CV

ex

CV
ex
0

∆ρ

ρ
. (37)

10



One now has expressions that may be used in the case of an arbitrary potential, as well as

for the generalized LJ systems in which case analytical expressions are available.
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Communication: Studies of the Lennard-Jones fluid in 2, 3, and 4
dimensions highlight the need for a liquid-state 1/d expansion
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Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260,
DK-4000 Roskilde, Denmark
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The recent theoretical prediction by Maimbourg and Kurchan [e-print arXiv:1603.05023 (2016)]
that for regular pair-potential systems the virial potential-energy correlation coefficient increases
towards unity as the dimension d goes to infinity is investigated for the standard 12-6 Lennard-Jones
fluid. This is done by computer simulations for d = 2,3,4 going from the critical point along the
critical isotherm/isochore to higher density/temperature. In both cases the virial potential-energy
correlation coefficient increases significantly. For a given density and temperature relative to the
critical point, with increasing number of dimension the Lennard-Jones system conforms better to
the hidden-scale-invariance property characterized by high virial potential-energy correlations (a
property that leads to the existence of isomorphs in the thermodynamic phase diagram, implying
that it becomes effectively one-dimensional in regard to structure and dynamics). The present paper
also gives the first numerical demonstration of isomorph invariance of structure and dynamics in
four dimensions. Our findings emphasize the need for a universally applicable 1/d expansion in
liquid-state theory; we conjecture that the systems known to obey hidden scale invariance in three
dimensions are those for which the yet-to-be-developed 1/d expansion converges rapidly. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4954239]

Recent years have brought notable progress in the
understanding of the liquid state coming from studies of
the high-dimensional limit. With roots back in time1–5 and
in a continuation of recent progress,6–10 Charbonneau and
collaborators in 2014 in a tour de force replica symmetry
breaking calculation solved the glass problem in high
dimensions for the prototypical hard-sphere (HS) model.11

This was followed by a proof by Maimbourg, Kurchan, and
Zamponi that the dynamics satisfies a universal equation
in high dimensions for the general case of a system of
particles interacting via pairwise additive forces.12 This is how
a “simple” liquid is traditionally defined,13–17 although during
the last 20 years it has gradually become clear that some
systems—like the Gaussian core model, the Lennard-Jones
Gaussian model, and the Jagla model—exhibit quite complex
behavior (see, e.g., Ref. 18 and its references).

Very recently, Maimbourg and Kurchan showed that
in the condensed phase, i.e., for states dominated by
hard repulsions, any well-behaved pair-potential system has
strong virial potential-energy correlations in sufficiently high
dimensions.19,20 Specifically, it was shown that the Pearson
correlation coefficient R of the constant-volume canonical-
ensemble equilibrium fluctuations of virial W and potential
energy U,

R =
⟨∆W∆U⟩

⟨(∆W )2⟩⟨(∆U)2⟩
, (1)

converges to unity as the number of dimensions d goes to
infinity. The analysis presented in Ref. 19 also showed that the
EXP pair potential (a simple exponential decay in space) plays
the role as a building block of all pair potentials.21,22 Note that,

in contrast to the inverse-power-law pair potentials ∝ r−n (r
being the pair distance), due to its rapid spatial decay the EXP
pair potential has a thermodynamic limit in all dimensions.

Systems with R close to unity are characterized by
“hidden scale invariance,” an approximate symmetry that
has been studied in several publications since its introduction
in 2008; there are now also experimental verifications of
the concept for van der Waals liquids.23–26 Systems with
hidden scale invariance are simple because they have so-
called isomorphs in the thermodynamic phase diagram, which
are lines along which structure and dynamics in suitably
reduced units are invariant to a good approximation. The
isomorph theory has been applied to atomic and molecular
liquid and crystalline models in thermal equilibrium, as
well as to non-equilibrium phenomena like shear flows of
liquids and glasses (see, e.g., Ref. 27 and its references).
Recently, it was shown from state-of-the-art DFT ab initio
simulations of 58 liquid elements at their triple points
that most metals possess hidden scale invariance.28 An
overview of the isomorph theory was given in Ref. 27
from 2014. After that paper was written, it became clear
that Roskilde (R) simple systems29–42—those with R > 0.9—
are characterized by approximately obeying the following
condition:43 U(Ra) = U(Rb)⇔ U(λRa) = U(λRb) in which
R specifies all particle positions and U(R) is the potential-
energy function. Thus hidden scale invariance is equivalent to
an approximate conformal invariance property.

The non-trivial finding of the above-mentioned works is
that many realistic model systems—as well as many real-world
liquids and solids—obey hidden scale invariance. It appears
that most metals and van der Waals bonded liquids and solids

0021-9606/2016/144(24)/000000/6/$30.00 144, 000000-1 Published by AIP Publishing.
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exhibit hidden scale invariance, whereas systems with strong
directional bonds like covalently or hydrogen-bonded systems
do not and are generally more complex.27

This paper presents computer simulations of the standard
12-6 Lennard-Jones (LJ) system in two, three, and four
dimensions consisting of particles interacting via the pair
potential

vLJ(r) = 4ε
( r
σ

)−12
−
( r
σ

)−6

. (2)

Here ε and σ define the characteristic energy and length
scales of the pair potential. The LJ system does not have a
proper thermodynamic limit in more than five dimensions,
and one may argue what is the correct generalization of
this system to arbitrary dimension d (for instance, v(r) ∝
(r/σ)−(d+9) − (r/σ)−(d+3) or v(r) ∝ (r/σ)−4d − (r/σ)−2d or a
third option). We avoided this problem by staying at low
dimensions.

It is not obvious how to compare results for different
thermodynamic state points in different dimensions. In high
dimensions one may compare different state points by scaling
the density such that the HS packing fraction remains
invariant.44 In our case of relatively low dimensions this is too
crude; in any case, we also need a scaling of the temperature
in order to be able to compare results obtained in different
dimensions. The critical point of the LJ system is known for
d = 2,3,4,45–47 and we used this as reference state point. This
choice has the further advantage that in three dimensions the
virial potential-energy correlations are weak in the vicinity
of the critical point, which allows one to monitor how R
increases when the condensed “strongly correlating” liquid
phase is approached upon increasing density or temperature.

Molecular dynamics simulations have been performed
before in four spatial dimensions.48–50 The simulations
reported below used a homemade code applicable in arbitrary
dimensions.51 The code implements NVT dynamics with
periodic boundary conditions52 based on the leap-frog
algorithm coupled with a Nose-Hoover thermostat. A shifted-
forces cutoff at 2.5σ was used in all simulations.53 The
time step ts varied with state point such that the reduced
time step, t̃s ≡ tsρ1/d√kBT/m, was 0.001 (here ρ ≡ N/V is

the particle density and m the particle mass). After melting
and equilibrating from a simple cubic configuration, the LJ
system was simulated at every liquid state point for 2 · 107

time steps. In two dimensions the system crystallized at the
three highest-density state points; simulations at these state
points were performed with a reduced time step of t̃s = 0.0005
and the number of time steps was doubled. In all cases the
thermostat relaxation time was 80 time steps. The system size
was N = 1225 in two, N = 1728 in three, and N = 2401 in
four dimensions.

Our focus is on what happens in the fluid region of phase
space in which the correlation coefficient R of Eq. (1) is
far from unity in 3d. This number is close to unity in the
“ordinary” 3d condensed liquid phase not too far from the
melting line, as well as in the entire crystalline phase,54–56 but
approaching the gas phase and, in particular, the critical point
in 3d, R drops quickly and the system is no more R simple.55

Figure 1 reports the reduced-unit radial distribution
function g(r) at the critical temperature Tc at 1.4 and 2
times the critical density; the black symbols mark g(r)
in two dimensions, the red curves in three dimensions,
and the green curves in four dimensions. Figure 1 nicely
confirms the argument of Maimbourg and Kurchan that in
higher dimensions the nearest-neighbor distance increasingly
dominates the physics.19 Thus, beyond the first coordination
shell g(r) converges quickly to unity in high dimensions.
In the words of Ref. 19, what happens in high dimensions
is that a single pair distance dominates the physics because
“particles that are too close are exponentially few in numbers,
while those that are too far interact exponentially weakly.”
This argument presupposes, of course, that the pair potential
in question has been generalized to any number of dimensions
in a way ensuring a proper thermodynamic limit, i.e., such
that it decays more rapidly than r−d at long distances.

A system for which a single pair distance dominates the
physics even in three dimensions is the hard-sphere (HS)
system for which the radial distribution function at contact
determines the equation of state.57,58 The above suggests that
one may regard the 3d HS system as a poor man’s version
of the d → ∞ limit; indeed, it has been known for some
time that the pair correlations of the HS system become

FIG. 1. Radial distribution function of the Lennard-Jones (LJ) fluid along the critical isotherm in two, three, and four dimensions (black, red, and green colors,
respectively; r̃ ≡ ρ1/dr where ρ is the particle density and r the interparticle distance). (a) shows results at 1.4 times the critical density ρc, (b) shows results
at twice the critical density. In both cases the fluid’s long-range structure becomes markedly less pronounced as the number of dimensions increases.
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FIG. 2. The LJ fluid’s virial potential-energy correlation coefficient in 2, 3, and 4 dimensions. (a) shows a sketch of the temperature-density phase diagram
in which both variables are normalized to their values at the critical point, Tc and ρc.45,47,63 The black symbols and full curves represent the phase limits
of the LJ system in 3d (see, e.g., Refs. 64 and 65 and their references). The orange crosses mark the state points simulated in 2d, 3d, and 4d, whose virial
potential-energy correlation coefficients are reported in (b) and (c), the green symbols indicate the three isomorphic state points simulated in 4d (Fig. 3). (b) The
virial potential-energy correlation coefficient R (Eq. (1)) along the critical isochore. There is generally a convergence to the hidden-scale-invariance property
characterizing R simple systems defined by R > 0.9 (dashed horizontal line), a situation that is reached much earlier in four than in three dimensions, where it is
reached much earlier than in two dimensions. In two dimensions the system developed “holes” close to the critical point (see the main text), which is indicated
by the two open symbols. (c) The virial potential-energy correlation coefficient at the critical isotherm. There is convergence to the hidden-scale-invariance
scenario characterizing R simple systems, a situation that is reached much earlier in four than in three dimensions, where it is reached much earlier than in two
dimensions. The two-dimensional system crystallized at the highest densities (ρ/ρc > 2.5), which as in (b) is indicated by black square symbols; the four open
symbols at lower densities indicate that the sample developed “holes” close to the critical point.

increasingly trivial as d increases.44,59,60 We note, however,
that the HS system is not the only possibility of a 3d poor
man’s d → ∞ limit; alternatives are the Gaussian core model61

or the Mari-Kurchan model.62

In order to systematically compare what happens in
different dimensions we studied the variation of the virial
potential-energy correlation coefficient R of Eq. (1) as
one moves away from the critical point along the critical
isochore and isotherm. In units of ε/kB for temperature
and 1/σd for density, the critical point is given by (ρ,T)
= (0.355,0.515) in two dimensions,45 by (ρ,T) = (0.316,
1.312) in three dimensions,63 and by (ρ,T) = (0.34,3.404)
in four dimensions47 (the 2d and 3d critical point data were
calculated by Monte Carlo (MC) simulations with the LJ
potential truncated at the half-box length, the 4d critical
point was determined by MC simulations with the potential
truncated at 2.5σ).

Figure 2(a) gives an overview of the density-temperature
thermodynamic phase diagram in which both variables in

the standard van der Waals way were normalized to unity at
the critical point. The full black curves indicate the freezing
and melting lines for the 3d case, and the orange crosses
mark the state points simulated. The results for R are shown
in Fig. 2(b) for the critical isochore and in Fig. 2(c) for
the critical isotherm (in both figures the horizontal dashed
lines mark the (a bit arbitrary) threshold R = 0.9 defining R
simple systems54). In two dimensions the system developed
visible “holes” close to the critical point deriving from
large density fluctuations;66 the corresponding simulations
are marked by open (black) symbols. In all cases, along
both the isochore and the isotherm the correlations increase
significantly as one moves away from the critical point. Note
that in four dimensions R is fairly large already at the critical
point.

When contemplating these findings one should keep in
mind that R is close to unity for the LJ system in three
dimensions in the “ordinary” condensed liquid phase not too
far from the melting line. Our conclusions based on Fig. 2 are
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FIG. 3. Validation of isomorph invariance in four dimensions based on simulations at three state points on the same isomorph. Starting from the reference
state point (ρσ4, kBT /ε)= (0.9,1.0) two isomorphic state points were generated as described in the text. (a) Consistency check of the two different ways of
generating isomorphs detailed in the text. The yellow, purple, and green symbols give the results of using Eq. (3) repeatedly for, respectively, a 1%, 2%, and 5%
density increase starting from the reference state point; the blue point was calculated by the h(ρ) method described in the text. (b) The pair distribution function
at the three isomorphic state points plotted as a function of the reduced pair distance. The collapse demonstrates structural invariance along the isomorph. (c)
Reduced mean-square displacement as a function of reduced time for the same three isomorphic state points, demonstrating isomorph invariance of the dynamics
(reduced units are defined in Ref. 67).

(1) the simulations confirm the prediction of Maimbourg and
Kurchan that all systems in their condensed-matter (“hard”)
regime have strong correlations in high dimensions. (2)
There is a striking difference between two, three, and four
dimensions, and already in four dimensions the correlations
are strong whenever density and temperature are above their
critical values.

Before proceeding to discuss the implications of these
findings for liquid-state theory, we take the opportunity to
demonstrate the existence of isomorphs in four dimensions.
The most general method for mapping out an isomorph in
the thermodynamic phase diagram makes use of the fact
that isomorphs are configurational adiabats43,67 in conjunction
with the following standard fluctuation identity67 (in which Sex
is the entropy minus that of an ideal gas at the same density
and temperature):

(
∂ ln T
∂ ln ρ

)

Sex

=
⟨∆W∆U⟩
⟨(∆U)2⟩ . (3)

We changed density in steps of 1%, 2%, and 5%, respectively,
in each step calculating from Eq. (3) the temperature change

needed to keep Sex constant. An alternative way of generating
isomorphic state points, which is limited to LJ-type systems,
utilizes the fact that due to invariance of the structure in
reduced units, the quantity h(ρ)/T is isomorph invariant
where h(ρ) = Aρ12/d − Bρ6/d (the two constants A and B,
which are (slightly) isomorph dependent, are determined
from simulations at a reference state point specifying the
isomorph in question; see Refs. 65 and 68 for justification
and more details of this procedure). Figure 3(a) demonstrates
consistency between the two different ways of generating an
isomorph in 4d, although for the largest density step (5%)
there is a small disagreement.

The isomorph invariance of h(ρ)/T signals a breakdown
of the theory at low density at which the above expression for
h(ρ) becomes negative. This means that along any isomorph
the virial potential-energy correlations must eventually
weaken at low densities, which is also observed.54,69 Since
R→ 1 in high dimensions for the state points not too far
away from the melting line,19 one may speculate that in the
d → ∞ limit there is a phase transition between a phase of
increasingly perfect hidden scale invariance and one of poor
virial potential-energy correlations.19,51
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Starting from the 4d state point (ρσ4, kBT/ε) = (0.9,1.0)
two isomorphic state points were found. The first one
(ρσ4, kBT/ε) = (0.945,1.23) was identified using Eq. (3) as
described above, the second one (ρσ4, kBT/ε) = (1.5,6.56)
was determined using the isomorph invariance of h(ρ)/T .
Figure 3(b) shows the pair distribution function as a function of
reduced radius for the three state points. The collapse validates
structural invariance along the 4d isomorph. Figure 3(c)
shows the mean-square displacement as a function of time
in reduced units for the same three state points, demonstrating
isomorph invariance also of the dynamics.

Turning back to the dimensionality dependence of the
virial potential-energy correlations, our findings may be
summarized as follows. Above the critical point as the number
of dimensions increases the LJ system converges rapidly to the
state of perfect hidden scale invariance shown by Maimbourg
and Kurchan to characterize the high-dimensional limit.
Assuming that the challenge of generalizing arbitrary systems
to arbitrary dimensions has been addressed, we conjecture
the following: (1) All systems (also molecular ones) obey
hidden scale invariance in sufficiently high dimensions in
their condensed phases; (2) the rate with which this property
translates into lower dimensions depends on the system
in question. In other words, if one defines the van der
Waals scaled density ρ̃ ≡ ρ/ρc and temperature T̃ ≡ T/Tc,
we conjecture that R( ρ̃,T̃)→ 1 as d → ∞ for all systems,
at least whenever ρ̃ > 1 and T̃ > 1. The rate of convergence
determines whether or not the system is R simple in three
dimensions.

If the above conjecture is correct, any system at any
given condensed-matter state point has a “transition region”
of dimensionalities above which it becomes R simple. This
range of dimensions is located below three dimensions for
systems that are R simple in three dimensions (at the state
point in question) and above three for those that are not.

An important task for the future will be to construct
a systematic 1/d expansion taking one from the case of
guaranteed R simple behavior as d → ∞ to three dimensions.
Hints of how this may be done were given in Ref. 11 for
the HS case, but a more general approach is needed. We
find it conceivable that future textbooks in liquid-state theory
start by deriving a simple and general theory in the limit of
high dimensions and subsequently translate this into three
dimensions via a 1/d expansion, but clearly much remains to
be done before this becomes reality.

We are indebted to Thibaud Maimbourg for his comments
on an early draft of this paper. This work was supported in
part by the Danish National Research Foundation via Grant
No. DNRF61.

1F. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 2048 (1964).
2H. L. Frisch and J. K. Percus, Phys. Rev. A 35, 4696 (1987).
3M. Luban and J. P. J. Michels, Phys. Rev. A 41, 6796 (1990).
4H. L. Frisch, in Condensed Matter Theories, edited by L. Blum and F. B.
Malik (Plenum Press, New York, 1993), Vol. 8, pp. 443–448.

5H. L. Frisch and J. K. Percus, Phys. Rev. E 60, 2942 (1999).
6G. Parisi and F. Slanina, Eur. Phys. J. B 8, 603 (1999).
7G. Parisi and F. Slanina, Phys. Rev. E 62, 6554 (2000).
8G. Parisi, J. Stat. Phys. 132, 207 (2008).

9P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi, Phys. Rev. Lett. 107,
185702 (2011).

10J. Kurchan, G. Parisi, and F. Zamponi, J. Stat. Mech. 2012, P10012.
11P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat.

Commun. 5, 3725 (2014).
12T. Maimbourg, J. Kurchan, and F. Zamponi, Phys. Rev. Lett. 116, 015902

(2016).
13S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Inter-

science, New York, 1965).
14H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of

Simple Liquids (Wiley, New York, 1968).
15J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex

Liquids (Cambridge University Press, 2003).
16B. Kirchner, Phys. Rep. 440, 1 (2007).
17J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids: With Applica-

tions to Soft Matter, 4th ed. (Academic, New York, 2013).
18T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011

(2012).
19T. Maimbourg and J. Kurchan, e-print arXiv:1603.05023 (2016). Q2
20J. Kurchan, T. Maimbourg, and F. Zamponi, J. Stat. Mech. 2016, 033210.
21A. K. Bacher and J. C. Dyre, Colloid Polym. Sci. 292, 1971 (2014).
22A. K. Bacher, T. B. Schrøder, and J. C. Dyre, Nat. Commun. 5, 5424 (2014).
23D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T.

Christensen, N. B. Olsen, T. B. Schrøder, D. Fragiadakis, R. Casalini, C. M.
Roland, J. C. Dyre, and K. Niss, Nat. Phys. 7, 816 (2011).

24L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and
T. B. Schrøder, New J. Phys. 14, 113035 (2012).

25L. A. Roed, D. Gundermann, J. C. Dyre, and K. Niss, J. Chem. Phys. 139,
101101 (2013).

26W. Xiao, J. Tofteskov, T. V. Christensen, J. C. Dyre, and K. Niss, J. Non-
Cryst. Solids 407, 190 (2015).

27J. C. Dyre, J. Phys. Chem. B 118, 10007 (2014).
28F. Hummel, G. Kresse, J. C. Dyre, and U. R. Pedersen, Phys. Rev. B 92,

174116 (2015).
29A. Malins, J. Eggers, and C. P. Royall, J. Chem. Phys. 139, 234505 (2013).
30E. H. Abramson, J. Phys. Chem. B 118, 11792 (2014).
31J. Fernandez and E. R. Lopez, in Experimental Thermodynamics: Advances

in Transport Properties of Fluids (Royal Society of Chemistry, 2014), Chap.
9.3, pp. 307–317.

32E. Flenner, H. Staley, and G. Szamel, Phys. Rev. Lett. 112, 097801 (2014).
33S. Prasad and C. Chakravarty, J. Chem. Phys. 140, 164501 (2014).
34U. Buchenau, J. Non-Cryst. Solids 407, 179 (2015).
35K. Grzybowska, A. Grzybowski, S. Pawlus, J. Pionteck, and M. Paluch,

Phys. Rev. E 91, 062305 (2015).
36K. R. Harris and M. Kanakubo, Phys. Chem. Chem. Phys. 17, 23977 (2015).
37D. M. Heyes, D. Dini, and A. C. Branka, Phys. Status Solidi (b) 252, 1514

(2015).
38T. S. Ingebrigtsen and H. Tanaka, J. Phys. Chem. B 119, 11052 (2015).
39W. K. Kipnusu, M. Elsayed, W. Kossack, S. Pawlus, K. Adrjanowicz, M.

Tress, E. U. Mapesa, R. Krause-Rehberg, K. Kaminski, and F. Kremer,
J. Phys. Chem. Lett. 6, 3708 (2015).

40J. W. P. Schmelzer and T. V. Tropin, J. Non-Cryst. Solids 407, 170 (2015).
41S. A. Khrapak, B. Klumov, L. Couedel, and H. M. Thomas, Phys. Plasmas

23, 023702 (2016).
42K. Adrjanowicz, M. Paluch, and J. Pionteck, RSC Adv. (in press). Q3
43T. B. Schrøder and J. C. Dyre, J. Chem. Phys. 141, 204502 (2014).
44M. Bishop and P. A. Whitlock, J. Stat. Phys. 126, 299 (2007).
45B. Smit and D. Frenkel, J. Chem. Phys. 94, 5663 (1991).
46H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).
47M. Hloucha and S. I. Sandler, J. Chem. Phys. 111, 8043 (1999).
48R. C. van Schaik, H. J. C. Berendsen, A. E. Torda, and W. F. van Gunsteren,

J. Mol. Biol. 234, 751 (1993).
49M. Bishop, A. Masters, and J. H. R. Clarke, J. Chem. Phys. 110, 11449

(1999).
50W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J.

Fennen, A. E. Torda, T. Huber, P. Krüger, and W. F. van Gunsteren, J. Phys.
Chem. A 103, 3596 (1999).

51L. Costigliola, “Isomorph theory and extensions,” Ph.D. thesis, Roskilde
University, 2016; Computer code for simulating in arbitrary dimensions
available at http://dirac.ruc.dk/∼lorenzoc.

52M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
Science Publications, 1987).

53S. Toxvaerd and J. C. Dyre, J. Chem. Phys. 134, 081102 (2011).
54N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre,

J. Chem. Phys. 129, 184507 (2008).



396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

000000-6 Costigliola, Schrøder, and Dyre J. Chem. Phys. 144, 000000 (2016)

55N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 90, 042310
(2014).

56D. E. Albrechtsen, A. E. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C.
Dyre, Phys. Rev. B 90, 094106 (2014).

57Y. Song, R. M. Stratt, and E. A. Mason, J. Chem. Phys. 88, 1126 (1988).
58Y. Song, E. A. Mason, and R. M. Stratt, J. Phys. Chem. 93, 6916 (1989).
59M. Bishop, P. A. Whitlock, and D. Klein, J. Chem. Phys. 122, 074508

(2005).
60P. A. Whitlock, M. Bishop, and J. L. Tiglias, J. Chem. Phys. 126, 224505

(2007).
61D. Coslovich, A. Ikeda, and K. Miyazaki, Phys. Rev. E 93, 042602 (2016).
62R. Mari and J. Kurchan, J. Chem. Phys. 135, 124504 (2011).

63J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998).
64D. M. Heyes, CMST 21, 169 (2015).
65L. Costigliola, T. B. Schrøder, and J. C. Dyre, Phys. Chem. Chem. Phys. 18,

14678 (2016).
66M. Rovere, D. W. Heermann, and K. Binder, J. Phys.: Condens. Matter 2,

7009 (1990).
67N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre,

J. Chem. Phys. 131, 234504 (2009).
68L. Bøhling, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 140,

124510 (2014).
69N. P. Bailey, L. Bøhling, A. A. Veldhorst, T. B. Schrøder, and J. C. Dyre,

J. Chem. Phys. 139, 184506 (2013).



RUMD: A general purpose molecular dynamics package optimized to utilize

GPU hardware down to a few thousand particles

Nicholas P. Bailey,1, ∗ Trond S. Ingebrigtsen,1 Jesper Schmidt Hansen,1 Arno A. Veldhorst,1

Lasse Bøhling,1 Claire A. Lemarchand,1 Andreas E. Olsen,1 Andreas K. Bacher,1 Lorenzo

Costigliola,1 Ulf R. Pedersen,1 Heine Larsen,1 Jeppe C. Dyre,1 and Thomas B. Schrøder1, †

1DNRF Center “Glass and Time”, IMFUFA,

Dept. of Sciences, Roskilde University,

P.O. Box 260, DK-4000 Roskilde, Denmark

(Dated: June 10, 2016)

Abstract

RUMD is a general purpose, high-performance molecular dynamics (MD) simulation package running

on graphical processing units (GPU’s). RUMD addresses the challenge of utilizing the many-core nature

of modern GPU hardware when simulating small to medium system sizes (roughly from a few thousand up

to hundred thousand particles). It has a performance that is comparable to other GPU-MD codes at large

system sizes and substantially better at smaller sizes. RUMD is open-source and consists of a library written

in C++ and the CUDA extension to C, an easy-to-use Python interface, and a set of tools for set-up and

post-simulation data analysis. The paper describes RUMD’s main features, optimizations and performance

benchmarks.
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I. INTRODUCTION

This paper describes Roskilde University Molecular Dynamics (RUMD), a Graphical Process-

ing Unit (GPU)-based molecular dynamics (MD) code developed to achieve good performance at

small and medium system sizes, while remaining competitive with other GPU-MD codes at large

sizes. The attention paid to small sizes distinguishes RUMD from many other GPU-MD codes.

It has been in development since 2009, and available as open-source software1, since 2011. The

newest version 3.1, was released May 2016.

The rise of GPU-based computation has been discussed by various authors2–8. Several groups

have developed molecular dynamics codes based on GPUs from scratch or incorporated GPU-

acceleration into existing projects. Examples of the former include HOOMD-Blue9–12, ACEMD13,

OpenMM14,15 and HAL’s MD16 while the latter include NAMD17, LAMMPS18, AMBER19 and

Gromacs20. Other works involving GPU-based MD codes, going back to 2007, can be found in

Refs. 21–32. We omit a detailed exposition of GPU programming basics here. For a good overview

of massive multi-threading using CUDA see the relevant section in the article by Anderson et al.9.

For further information the reader can consult the book by Kirk and Hwu33 as well as the CUDA

programming guide34. A technical overview of the Tesla architecture, which marks the first major

development of GPUs for scientific computing by NVIDIA, can be found in Ref. 35. The more

advanced Fermi architecture is documented in Ref. 36. The most recent architectures Kepler

(2012) and Maxwell (2014) are described in Ref. 37 and 38 respectively.

The large computational power of modern GPUs comes primarily from the large number of

hardware cores, each executing a number of software threads. As an example, the GeForce

Gtx780Ti card has 2880 cores and a theoretical single-precision peak-performance of 5.0 TFlops

(5× 1012 floating point operations per second). A key element to achieve good performance from

a GPU is that the number of active software threads should be much larger than the number of

hardware cores in order to hide latency of memory access. This makes it a challenge to utilize the

GPU hardware when the number of particles N is relatively small (N ∼ 103 − 104). The obvious

choice for parallelization, namely having one thread compute the forces for one particle, is clearly

not efficient when the optimal number of threads exceeds the number of particles. There are three

reasons to focus on utilizing the GPU hardware even at small system sizes; i) If one is interested

in investigating long time scales rather than large systems. This is the case, for example, in the

field of viscous liquid dynamics, where a system size of 104 particles is considered large, but the
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interest is in studying as long time scales as possible. Note that finite size effects are relatively

limited in these systems; for example Karmakar, Dasgupta, and Sastry39 found convergence of dif-

fusivity and relaxation time for a standard glass-forming model liquid already at N=1000. ii) As

a building block for multi-GPU simulations (RUMD currently uses one GPU per simulation). If

one wants to simulate, say, 105 particles using 10 GPU’s, the single-GPU performance obviously

needs to be good for 104 particles. iii) For the foreseeable future much of the development in GPU

and other many-core hardware will probably be in increasing the number of physical cores, much

more than increasing the computational power of the individual core. Thus, what might today be

considered a large system, might in the future be considered a small/medium sized system where

special care needs to be taken to utilize the GPU hardware. To optimize the use of the hardware

RUMD allows multiple threads per particle; this approach has also been considered in two recent

publications40,41.

The paper is organized as follows. Section II contains a brief overview of RUMD’s features.

The main part of the paper focuses on the methods used for calculating the non-bonding pair in-

teractions and the generation of the neighbor-list. These are the most computationally demanding

parts of an MD simulation and where our code distinguishes itself from most other GPU-MD

codes. Section III discusses the challenges of utilizing the GPU hardware at small system sizes,

and section IV gives an overview of the optimization strategies employed in RUMD. Section V

describes the calculation of non-bonding pair-forces, while sections VI and VII describes two dif-

ferent methods for generating the neighbor-list. Section VIII provides benchmarks of RUMD in

comparison to three different GPU extensions of LAMMPS18, as well as an analysis of the effect

of the different optimizations employed in RUMD. Section IX describes RUMD’s performance

for electrostatic (Coulomb) interactions. Section X provides a short summary.

II. RUMD: FEATURES

RUMD is a general purpose molecular dynamics code. Below we list its main features; for

more information please see the tutorial and user manual included with the software and available

from the project’s website rumd.org.

Python interface: Users control the software via a Python interface which allows simulations of

considerable complexity to be implemented straightforwardly. An example of a simple user

Python-script is given in Fig. 1.
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# Import RUMD

from rumd import *

from rumd.Simulation import Simulation

# Create a simulation object, and import an initial configuration.

sim = Simulation("start.xyz.gz")

# Create a pair potential and associate it with the simulation object

pot = Pot_LJ_12_6(cutoff_method=ShiftedForce)

pot.SetParams(0, 0, Sigma=1.0, Epsilon=1.0, Rcut=2.5)

sim.SetPotential(pot)

# Create an integrator and associate it with the simulation object

itg = IntegratorNVT(timeStep=0.004, targetTemperature=1.0)

sim.SetIntegator(itg)

# Run a simulation. Data are saved on disk and can be analyzed by a number of tools

sim.Run(1000000)

FIG. 1: Script showing the python code needed to run a very simple simulation, in this case a single-

component Lennard-Jones fluid simulated at constant temperature 1.0 for one million time steps of size

0.004 in Lennard-Jones units. The number of particles and the density is determined by the initial configu-

ration contained in the file start.xyz.gz

Pair potentials: 12-6 Lennard-Jones, generalized Lennard-Jones, inverse power law, Gaussian

core, Buckingham, Dzugotov, Girifalco, Yukawa, and more. New pair potentials are easily

added, as described in the tutorial. Three different “cutoff methods” for truncating the pair

potential are provided: simple truncation with no shift; truncation plus shift of the poten-

tial energy to ensure continuity; and truncation plus shift of the pair force42 to ensure its

continuity (this corresponds to adding a linear term in the potential).

Other interactions: Intramolecular interactions including constraints, bond-stretching forces,

angular forces and dihedral forces.

Integrators: NVE (Verlet/Leap-frog), NVT (Nosé-Hoover), NPT43, NVU (geodesics on the con-

stant potential energy surface)44,45. Couette shear flow using the SLLOD equations of mo-

tion and Lees-Edwards boundary conditions.

File formats: configurations are stored in xyz format with extensions, compressed using gzip;
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data can be saved logarithmically in time for efficient use of disk space while allowing the

study of a large range of time scales in a single simulation; molecular structure (bonds,

angles and dihedrals) is specified in separate topology files. Tools for creating initial con-

figurations and topology files are provided.

Analysis tools: Basic statistics of energy, pressure, etc. for thermodynamics. Measures of struc-

ture; radial distribution function, static structure factor, radius of gyration, mean-square end-

to-end distance. Measures of dynamics; mean-square displacement, incoherent intermediate

scattering function, non-Gaussian parameter, end-to-end vector autocorrelation function,

Rouse-mode autocorrelation function. New analysis tools are continuously being added.

Analysis tools work on data stored during simulations and can thus be applied at the end of

(or during) a simulation run. In addition the user can define customized on-the-fly analysis

tools written in Python.

Auto-tuner: A script for optimizing internal parameters—specifically, the choice of algorithm

for generating the neighbor list, the neighbor-list skin size, and the way the generation of

the neighbor list and the calculation of non-bonding forces are distributed among the GPU

threads.

RUMD is mostly implemented in single precision. This leads to a drift in the total energy

when running long constant-energy (NVE) simulations, but is not an issue for NVT and NPT

simulations where a thermostat is applied. RUMD can be made fully double precision by a search

and replace in the source code - we are planning to implement a more elegant way for the user to

choose between single and double precision. RUMD uses a single GPU per simulation; support

for multiple GPU simulations is planned for future development.

III. THE PROBLEM OF UTILIZING THE DEVICE AT SMALL SYSTEM SIZES

Consider NVIDIA’s Kepler GK110 architecture that appeared in 2013. One of the Kepler de-

sign goals was power efficiency, which was partly achieved by increasing the number of cores

while decreasing the clock speed compared to the previous Fermi architecture. Thus each stream-

ing multiprocessor (of type SMX) has 192 cores, and the GPU has up to 15 SMX units. The GTX

780Ti card contains the maximum 15 SMX units, giving 2880 cores. Furthermore, the CUDA

model requires a much greater number of threads to be active, in order to hide memory access
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FIG. 2: Schematic diagram representation of the two algorithms for neighbor-list generation, and the force

calculation algorithm. The latter uses multiple threads per particle (tp), but an implementation also exists

for the special case tp=1.

latency. This poses a challenge when small systems of the order of thousands of particles are con-

cerned. Logically, in order to use as many threads as possible, one must therefore have multiple

threads computing the force on one particle.

Having multiple threads per particles entails some overhead, in particular the summing of the

force contributions over the threads allocated to a given particle. This means that as the system

size increases, it becomes less useful to have more than one thread per particle. We control this

by the parameter tp (threads per particle, denoted TPerPart in the code), and let the auto-tuner

pick the optimal value for a given simulation. The optimal value of tp depends primarily on the

number of particles, but also on density and the range of the potential. We use a separate kernel

involving a single thread per particle for larger sizes (see Fig. 2); this is faster than setting tp = 1

in the general kernel.

Rovigatti et al. have recently discussed the possible advantages of “vertex-based” (atom-
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decomposition46, one thread per particle) versus “edge-based” (force-decomposition46, one thread

per interaction) parallelism47. Our approach includes the former, and a range of intermediate cases,

while not taking it to the extreme of one thread per interaction.

IV. OVERVIEW OF OPTIMIZATION STRATEGIES USED IN RUMD

As in any general purpose MD software some kind of data structure to keep track of neighbors

for the non-bonding pair interactions is necessary to reduce the complexity of the force calculation

from O(N2) to O(N). We use a classical Verlet-type neighbor list, stored as 2-dimensional fixed-

size array of size Nnmax where nmax is the assumed maximum number of neighbors per particle. If

this happens to be exceeded the neighbor-list is automatically re-allocated with doubled capacity.

For smaller systems we set nmax = N from the start to avoid the overhead of checking for overflow.

Neighbors within rc + s are listed, where rc is the maximum cut-off associated with the potential,

and s is the extra skin included so that the neighbor-list does not need to be rebuilt every step. The

optimal value of the skin is determined by the auto-tuner.

We now describe the methods employed in the calculation of short-range non-bonding forces

and the generation of the neighbor-list. The main four optimizations are as follows:

1. Multiple threads per particle (tp ≥ 1) in force calculation and neighbor-list generation. The

auto-tuner chooses the best value for tp.

2. Two methods for rebuilding the neighbor-list: O(N2) method (tp ≥ 1) for small system

sizes, and an O(N) method (tp = 1) for larger sizes. The auto-tuner picks the best method.

3. Use of the so-called “read only data-cache” for reading positions (for devices of compute

capability at least 3.5 this can be done straightforwardly via the function __ldg()).

4. Use of pre-fetching when reading from the neighbor-list to compensate for memory access

latency.

V. FORCE CALCULATION

The force calculation kernel (routine executed on the GPU) is shown in Fig. 3. Short-hand

notation for common quantities used in this and the following CUDA-kernels are given in Table
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__global__ void Calcf_NBL_tp( ... )

[ Declare shared memory ]

float4 my_f = {0.0f, 0.0f, 0.0f, 0.0f}; // Initialize the force of this thread

float4 my_r = LOAD(r[MyGP]); // Read position of this particle

int type_i = __float_as_int(my_r.w); // Type of this particle

[ Read information on the simulation box from device memory ]

[ Copy potential parameters to shared memory ]

__syncthreads(); // Parameters loaded to shared memory before proceeding

int nb, my_num_nbrs = num_nbrs[MyGP]; // Read number of neighbors

nb_prefetch = nbl[nvp*MyT + MyGP]; // Read index of first neighbor

for (int i=MyT; i<my_num_nbrs; i+=TPerPart) { // Loop over neighbors

nb = nb_prefetch;

if(i+TPerPart < my_num_nbrs)

nb_prefetch = nbl[nvp*(i+TPerPart) + MyGP];

float4 r_i = LOAD(r[nb]); // Read position of neighbor

int type_i = __float_as_int(r_i.w); // Type of neighbor

// Add contribution from this pair to my_f:

fij( potential, my_r, r_i, &my_f, [parameters, simulation box] );

}

__syncthreads();

// Now use the shared memory for summing force contributions:

s_r[MyP+MyT*PPerBlock] = my_f;

__syncthreads();

// Sum over threads associated with the same particle:

if( MyT == 0 ) {

for( int i=1; i < TPerPart; i++ ) my_f += s_r[MyP + i*PPerBlock];

my_f.w *= 0.5f; // Compensate for double counting of potential energy

// Write result to device memory

if(initialize) // Flag (templated) for whether to initialize forces

f[MyGP] = my_f; // (can be false when multiple potentials present)

else {

atomicAdd(&(f[MyGP].x), my_f.x);

[also y, z, w]

}

}

}

FIG. 3: Kernel calculating forces on particles given the neighbor-list (nbl) shown in the simplest version

where only forces and potential energy of each particle are computed. For a given particle each of tp threads

(MyT = 0, 1, ..., tp − 1) computes part of the total force, which is summed up at the end. The function fij

(not shown) adds an individual pair contribution to the current thread’s force (my f). Note the use of

syncthreads to synchronize threads within a thread-block. This is to ensure that all data are available

in shared memory before any thread reads from it (first and third occurrences) or that all threads are done

with the data in shared memory before it is used for other data (second occurrence). LOAD() is a macro

that reads from device memory via the read only data-cache using ldg() on cards where this is available.
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TABLE I: Short-hand notation for common quantities used in CUDA-kernels.

quantity name in kernel CUDA variable

Number of thread-blocks NumBlocks gridDim.x

Number of particles per (thread-)block (pb) PPerBlock blockDim.x

Number of threads per particle (tp) TPerPart blockDim.y

Particle index within block for current thread MyP threadIdx.x

Thread index w.r.t. given particle MyT threadIdx.y

Index of current thread-block MyB blockIdx.x

Global index of current thread’s particle MyGP MyP+MyB*PPerBlock

I. The force kernel uses in general tp ≥ 1, although a separate implementation for tp = 1 (not

shown) was made because at large sizes it is no longer beneficial to have more than one thread

per particle (there are many threads anyway), and the overhead associated with summing over

threads is noticeable. The neighbor-list is arranged in column-major order, i.e., the first neighbors

of all particles are consecutive in memory, then the second neighbors, etc. This allows for efficient

(coalesced) memory access.

Note the use of pre-fetching when reading from the neighbor-list; while the force contribution

of neighbor i is computed, the index of neighbor i + 1 is being read from the neighbor list.

Within the kernel a call is made to a function fij (not shown), which calculates the contribu-

tion to the pair force on the current particle from a neighbor particle. fij itself calls a function

ComputeInteractionwhich is unique to each type of pair potential, and selected via templat-

ing. Templating is used so that it is known when compiling fij which potential, and thus which

ComputeInteraction, is to be called. Templating is also used for some of the other user-

chosen variables, including the type of boundary conditions (represented by a SimulationBox

class) and the cutoff-method. This means that the force calculation kernel is compiled for all pos-

sible combinations of these parameters, and the user can choose the appropriate one at run time.

The code for the conditional statements which allows this is tedious, but can be generated auto-

matically by a Python script. The main disadvantage of using templating is that it increases the

compile time considerably.

9



__global__ void calculateNBL_N2( ... ) {

const unsigned int tid = MyP + MyT*PPerBlock; // Thread-index within block

[ Declare shared memory: s_r, s_Count, s_cut_skin2 ]

if (updateRequired[0]) {

if (MyT==0) s_Count[MyP]=0; // Count of neighbors for this particle

[ Copy cut-offs plus skin squared to shared memory]

float4 my_r = r[MyGP]; // Position of this particle

// Loop over blocks of particles

for (FirstGP=0; FirstGP<numParticles; FirstGP+=TPerPart*PPerBlock) {

// Read particle positions in block into shared memory

if (FirstGP + tid<numParticles) s_r[tid] = r[FirstGP + tid];

__syncthreads(); // Shared data in s_r ready

// Loop over particles in block

for (int i=0; i<PPerBlock*TPerPart; i+=TPerPart) {

OtherP = i + MyT; OtherGP = FirstGP + OtherP;

if (MyGP<numParticles && MyGP!=OtherGP && OtherGP < numParticles) {

float4 r_i = s_r[OtherP]; // Position of other particles

[ Read squared cutoff distance from shared memory based on types ]

[ Calculate squared distance dist2 ]

if (dist2 < RcutSk2) {

// Atomically increment counter for this particle:

unsigned int nextNbrIdx = atomicInc(&s_Count[MyP], numParticles);

[ If space insert index into NB-list at position nextNbrIdx ]

} // if(dist2 ... )

} // if (MyGP ... )

} // for(int i ... )

__syncthreads();

} // for (int firstGP ... )

__syncthreads();

if (MyT == 0) {

[ Store this particles number of neighbors ]

[ Store its position so can check when rebuild needed ]

[ Detect whether ran out of space and set flag to inform host ]

if (MyP == 0) atomicDec(&(updateRequired[0]), NumBlocks);

} // if (MyT == 0 ... )

} // if(update_required[0])

}

FIG. 4: Kernel for order-N2 neighbor-list generation. Note that because the number of particles is not

in general a multiple of pb, there are some threads in the last block which should not do anything, hence

statements such as if(MyGP<numParticles).10



VI. NEIGHBOR-LIST GENERATION: ORDER-N2

This neighbor-list generating algorithm has O(N2) complexity and is thus suitable only for

small system sizes. In a serial code there would be a double loop; in a parallel code one loop (over

particles whose neighbors are to be found) are handled completely by parallelization. Part of the

loop over “other” particles is handled by looping over tp-sized groups, while parallelization (the tp

threads for that particle) accounts for looping within these groups (we do not make use of Newton’s

third law). Shared memory is used to reduce the amount of reads from device memory; in a

straight-forward implementation without shared memory, a total of N2 reads of particle positions

is necessary. By using a block-wise reading into the shared memory, this is reduced to N2/pb,

where pb is the number of particles in a block (denoted PPerBlock in the code). From this

consideration pb should be as large as possible, but on the other hand a too large pb value would

mean that the number of blocks (≈ N/pb) becomes too small to occupy the number of SMX

multiprocessors. RUMD uses the auto-tuner to pick the best value for pb.

The kernel uses tp threads for a given particle to search for neighbors. This means that we

have to deal with the situation that several or all of them find a neighbor at the same time, and the

writing to the neighbor list should be performed without race-conditions. This is achieved by a so-

called atomic operation. When several threads perform an atomic operation on the same variable,

all the operations are guaranteed to be performed in (an unspecified) sequential order. Here we

use the atomic increment function, atomicInc(), which ensures that the number of neighbors

is counted correctly. When a thread is calling atomicInc(), the function returns the value that

the variable had before the increment of the given thread is performed. This is here used to specify

an unique position in the neighbor list (nextNbrIdx).

The information about whether the neighbor-list needs to be rebuilt is on the device, gen-

erated by a different kernel. The kernel in Fig. 4 is called at every timestep, and then checks

via if(updateRequired) whether there is anything to be done. This is faster than copy-

ing the value of a flag to the host and having the host decide whether to launch the rebuild-kernel.

updateRequired is initially equal to the number of thread-blocks. One thread from each block

decrements it with an atomic operation (atomicDec()) when it (its thread-block) is done, so that

when all blocks are finished it is zero. At the next time step, assuming no particles have moved

more than half the skin distance, updateRequired will still be zero and therefore the kernels

will immediately exit. Using an atomic operation to decrement updateRequired is necessary

11



because the thread-blocks execute asynchronously, so none of them knows when/whether the oth-

ers are finished, or even started–any unfinished blocks need to be able to see a non-zero value of

the counter.

The above means that for small systems the simulations are performed entirely on the GPU

without any communication with the CPU (except when output is required). Avoiding the overhead

associated with communication between the GPU and CPU is important for the performance at

small system sizes.

VII. NEIGHBOR-LIST GENERATION: ORDER-N

The order-N algorithm is based on a cell-index method48 and involves (1) dividing the simula-

tion box into rectangular spatial cells whose size is related to the potential cutoff; (2) associating

particles with the appropriate cell based on the coordinates; (3) sorting the particles according to

cell-index and rearranging all particle data to the sorted order (this can be done quickly with the

Thrust library49). The advantage of rearranging the particle data to the sorted order is two fold;

i) the information about which particles are in a given cell can be stored simply as two integers

indicating the first (cellStart) and the last particle (cellEnd); ii) better performance of the

data-cache when reading the particle information both in the neighbor list creation in the force

calculation.

The kernel in Fig. 5 is called after steps (1) to (3) have been carried out via a series of small

kernels and Thrust operations. It involves, for a given particle, identifying its cell coordinates and

looping over neighboring cells in three dimensions to find neighbors. We have chosen cell lengths

in each direction to be of order (not less than) (rc + s)/2, where s is the neighbor-list skin. This

means that the loop extends to plus/minus two cells in each direction, or 125 cells altogether. Such

a choice of cell length means one searches a volume 58% [(125/8)/27] of that searched when using

cells of length rc+s. This kernel is called with one thread per particle, since that is generally most

efficient at larger sizes, which is also when the linear method of neighbor-list generation becomes

relevant. It is conceivable that some gain at intermediate sizes could be achieved by implementing

a tp > 1 version of the kernel, but this has not been tried yet.

In this case the information about whether to rebuild the neighbor-list must be communicated

to the host because several kernels and Thrust functions must be called (the use of Dynamic

Parallelism, available since CUDA 5.0, could change this, but has not been tried). Thus the

12



__global__ void calculateNBL_CellsSorted( ... ) {

gtid = blockIdx.x*blockDim.x + threadIdx.x; Count = 0;

[ Declare shared memory: s_r, s_cut_skin2 ]

[ Copy cut-offs plus skin squared to shared memory ]

__syncthreads();

if (gtid<numParticles) {

float4 my_r = r[gtid];

int3 my_CellCoordinates = calculateCellCoordinates(my_r, ...);

int3 OtherCellCoordinates;

// Loop over neighboring cells, applying periodic boundary conditions

for (int dZ=-2; dZ<=2; dZ++) {

OtherCellCoordinates.z = (my_CellCoordinates.z + dZ + num_cells_vec.z)%num_cells_vec.z;

for (int dY=-2; dY<=2; dY++) {

OtherCellCoordinates.y = (my_CellCoordinates.y + dY + num_cells_vec.y)%num_cells_vec.y;

for (int dX=-2; dX<=2; dX++) {

OtherCellCoordinates.x = (my_CellCoordinates.x + dX + num_cells_vec.x)%num_cells_vec.x;

// Loop over particles in cell

int otherCellIndex = calculateCellIndex(OtherCellCoordinates, num_cells_vec);

int Start = cellStart[otherCellIndex];

int End = cellEnd[otherCellIndex];

for (int OtherP=Start; OtherP<=End; OtherP++) {

if (gtid != OtherP) {

float4 r_i = LOAD(r[OtherP]);

[ Read squared cutoff distance from shared memory based on types ]

[ Calculate squared distance dist2 ]

if (dist2 < RcutSk2)

[ If space insert index into NB-list and increment Count, else break]

}

} // end for (int OtherP....)

}

}

} // end for (int dZ ... )

[ Store this particles number of neighbors]

[ Store its position so can check when rebuild needed ]

[ Detect whether ran out of space and set flag to inform host]

if ( gtid==0 ) updateRequired[0] = 0;

} // if(gtid < numParticles)

}

FIG. 5: Kernel for order-N neighbor-list generation. calculateCellCoordinates(...) calculates

the coordinates of the cell that a particle belongs to. calculateCellIndex(..) calculates the index

of a cell given its coordinates. The arrays cellStart and cellEnd contain the indices of the first and

last particles, respectively, associated with a given cell.
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FIG. 6: The LAMMPS benchmark: a melting FCC crystal is simulated at constant energy. The vertical axis

shows the number of simulated time steps per second of wall-clock time. At large system sizes all codes

follows the ideal 1/N scaling, and the GPU’s are 10-20 faster than LAMMPS running on 12 xeon cores.

For RUMD good scaling is maintained down to quite small systems N ∼ 2000, and at small system sizes

RUMD is thus considerably faster than the three GPU versions of LAMMPS.

updateRequired flag is not used in the kernel because the kernel only runs at all if a rebuild

is required; the flag is simply set to zero at the end by the thread handling particle 0.

VIII. BENCHMARKS AND PERFORMANCE ANALYSIS

To benchmark RUMD we use the Lennard-Jones benchmark described on the LAMMPS home-

page, involving an FCC crystal of Lennard-Jones material which is given a kinetic energy sufficient

to melt it and then run for 104 time steps at constant total energy (NVE). Figure 6 shows as black

filled symbols the number of timesteps per second (TPS) RUMD can perform on a Gtx780Ti

GPU card as a function of system size. For comparison we show also the results published on

the LAMMPS homepage for different versions of LAMMPS: A pure CPU version of LAMMPS

running on 12 Intel Xeon cores (dual hex-core 3.47 GHz Intel Xeons X5690), and three different

GPU-extensions, KOKKOS/CUDA, USER-CUDA, and GPU, all running on a K20x card with

2688 cores (these results are for 100 timesteps). All the GPU-accelerated versions of LAMMPS,

together with RUMD, give similar performance for large N (above ∼ 3×105). In this regime near

perfect scaling with N is observed, and the GPU versions are 10-20 times faster than LAMMPS

running on 12 Intel Xeon cores. Differences show up at small sizes: the number of simulated

time steps per second plateaus already at a few tens of thousands of particles for two of the GPU
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TABLE II: Performance parameters chosen by the auto-tuner and the resulting TPS (Timesteps Per Second)

on a Gtx780Ti card.

N NB pb tp skin TPS

512 N2 16 14 0.452 23281

1024 N2 16 10 0.452 20446

2048 N2 48 8 0.5 20068

4096 N2 96 4 0.675 11794

8192 N 64 2 0.746 5847

16384 N 192 1 0.611 4440

32768 N 128 1 0.452 2484

65536 N 96 1 0.409 1409

131072 N 96 1 0.370 764

262144 N 128 1 0.370 390

524288 N 128 1 0.370 200

1048576 N 128 1 0.335 104

2097152 N 96 1 0.335 51

versions of LAMMPS. This plateau means running a simulation with 2000 particles takes as much

time as one with 20000 particles; clearly the GPU hardware is under-utilized in this size regime. In

fact, for these two implementations (the red and blue curves), it is faster to use the pure CPU ver-

sion of LAMMPS at the smallest sizes. RUMD, on the other hand, maintains reasonable (though

not perfect) scaling down to around N = 2000. We have included even smaller system sizes in

the benchmarking of RUMD, to illustrate that it eventually also begins to plateau - but this only

happens when the system size is less than 2000.

Table II gives the parameters chosen by the auto-tuner, as a function of system size. Note that,

except for the two smallest system sizes, the auto-tuner chooses the number of threads (N × tp)

to be at least 16000. This illustrates the point made in the introduction, that the number of threads

should be much larger than the number of physical cores (here 2880) to get good performance.

The reason that fewer threads are used for the two smallest system sizes is probably that the

required large tp values inflict too large a penalty due to the sequential summation of the tp different

contributions to the force (see Fig. 3). The switch between the two methods for neighbor-list
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FIG. 7: Analyzing the effect on performance of features of RUMD. The upper panel shows, plotted as in

Fig. 6, the performance of the full-RUMD and three other versions in which one feature has been disabled:

multiple threads per particle (tp > 1), use of read only data-cache to read positions ( ldg()), and pre-

fetching. The lower panel shows the same data in terms of the relative boost in performance each feature

gives, as a function of system size.

generation happens at around 8000 particles. In this range of system sizes both methods are sub-

optimal and the auto-tuner compensates by increasing the skin size to make neighbor-list updates

less frequent.

Figure 7 shows the effect of disabling different optimization features. The upper panel shows

the same quantity as in Fig. 6, but with different curves representing different disabled features (the

black curve is with all features enabled). The most dramatic difference is when tp = 1 is enforced,

for small and medium systems (N < 104). No difference is observed at larger N because there

tp = 1 is the optimal choice, see table II. Disabling the use of the read only data-cache gives the

green curve, a significant drop in performance across all sizes except the very smallest N < 2000,

while disabling pre-fetching gives a slight drop, more at larger sizes. The lower panel of Fig. 7
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N 2 · 103 2 · 104 105

LAMMPS SP 3.26 5.66 6.06

LAMMPS WOLF 2.21 3.57 3.40

LAMMPS PPPM 0.54 0.40 0.35

RUMD SF 9.41 11.3 16.1

TABLE III: Benchmarks for a system of charged Lennard-Jone particles (see text for details) for LAMMPS

(CPU) and RUMD (GPU). The metric shown is MATS (millions of atom time steps per second). LAMMPS

benchmarks were performed on a Dell 630 server with dual Intel Xeon E5-2699 v3 2.3 GHz CPU’s for a

total of 36 cores. Coulomb interactions were evaluated using a simple shifted-potential cutoff at distance

6.0 (“SP”), using the Wolf method with the switching parameter α set to zero (“WOLF”, equivalent to the

shifted force method), and the Particle-Particle Particle-Mesh method (“PPPM”). RUMD benchmarks were

performed on an nVidia GTX 780 Ti, using a shifted force cut-off (SF) at distance 6.0.

shows the same data, but plotted as the ratio of the speed of the full RUMD to the speed of RUMD

with the given feature disabled. Plotting this ratio, on a linear scale, shows the relative effects

more clearly. In particular, reading via the read only data-cache gives an effect of order 40%,

while pre-fetching has an effect of order 10% at the largest sizes.

IX. ELECTROSTATICS

A general purpose MD code should include electrostatic (Coulomb) interactions and these

should be sufficiently accurate and computationally efficient. While an Ewald-based method

which can efficiently handle the long range part of the electrostatic interactions is planned, for

our needs so far we have found it sufficient to use Coulomb forces with a long range shifted-force

cut-off as documented in Ref. 50. In that paper it was shown that a shifted-force cutoff of order

five inter-particle spacings gives, similar to the Wolf51 method, results in good agreement with

Ewald-based methods in bulk systems.

To benchmark the performance of Coulomb interactions, we performed simulations of a model

molten salt in RUMD and the CPU version of LAMMPS. Details of the system simulated are

as follows: All particles have identical Lennard-Jones parameters ǫ and σ. The charges are

±√
4πǫ0ǫσ (50% each). The density was 0.3677 σ−3 and the temperature 2 ǫ/kB . The density

is the same as was used by Hansen and McDonald in their study of a similar model salt52. In
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Ref.50 it was shown that a cutoff of 6.0σ, corresponding to ∼ 330 neighbors per particle at this

density, was sufficient to get satisfactory accuracy. The time step is 0.004
√

m/ǫσ.

The data in Table III compare RUMD and the CPU-version of LAMMPS with different meth-

ods of evaluating Coulomb interactions and different numbers of CPU-threads. The benchmarks

are expressed as MATS (million atom timesteps per second) for ease of comparing different sys-

tem sizes. The smallest speed-up of RUMD over LAMMPS is here a factor of two. This smaller

speed-up compared to the previous section is mostly due to the LAMMPS benchmarks being run

on a faster CPU system, a Dell 630 server with 36 XEON cores. For comparison, at the time of

writing the cost of the Dell 630 server is roughly 10.000$, whereas the cost of the GTX 780 Ti

card is less than 1000$ (to this should be added the cost of a fairly standard PC, which can hold

three GPU cards).

X. SUMMARY

We have described the RUMD software package for molecular dynamics simulation on GPUs,

concentrating on the optimization strategies that distinguish it from most other GPU MD codes.

We have documented its strong performance at small and medium system sizes and performance

comparable to other GPU-based MD codes at larger sizes. Work will continue on RUMD both

with regard to features (for example, many-body interactions and efficient long-range Coulomb

interactions) and optimization opportunities (for example, dynamic parallelism). The ability to

split a simulation over multiple GPUs will also be considered, which will not just allow larger

systems (more than the approx. 3 million particles a single card can handle), but also allow even

faster simulations of medium systems, given that RUMD already make good use of the hardware

for such sizes.

XI. APPENDIX: THE AUTOTUNER

Here we describe the algorithm used by the autotuner. The basic strategy is to run a series of

short simulations (a few hundred to a few thousand time steps) varying the different parameters,

to find a set of of parameters giving (close to) optimal performance. Not all possible combinations

of parameters are attempted in order to reduce the time taken for tuning (for Lennard-Jones-type

systems without molecules or Coulomb interactions this is under a minute for small systems,
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several minutes for larger systems). The initial state of the system is stored so that all comparisons

made by the autotuner involve runs of the same length starting from the same configuration.

If the autotuner is not used, RUMD uses default values which depend on the system size:

“n2” neighbor-list method for N < 8000, otherwise “sort”; pb = 32, tp = 4 for N ≤ 10000,

pb = 64, tp = 1 otherwise. The default skin value is 0.5, which assumes units of length such

that the interparticle spacing is of order unity. In principle the default skin should be based on the

interparticle spacing (e.g. ρ−1/3/2), but in practise length units in MD are generally of order the

interparticle spacing and the autotuner can quickly deal with a discrepancy. For some very small

systems N < 200 with not too small cutoff it can be faster not to use a neighbor-list at all. The

autotuner checks this possibility for systems with N < 5000.

The dependence of performance on the parameters pb, tp and neighbor-list skin is simple: the

time taken shows a single minimum as a function of the parameter. This allows a relatively

straightforward optimization strategy to be used. The number of steps run for the different stages

depends on the system size (larger for smaller systems sizes to get better timing) and can be altered

by the user but should not need to be. The overall strategy is as follows:

1. Run some steps before tuning (default: 10000) to avoid the influence of transient effects

(associated for example with having changed the temperature)

2. Run with default parameters to get a baseline performance.

3. Phase 1 optimization: With the default pb and tp run with the different neighbor-list methods,

“none”, “n2”, “sort”. For each one the skin is optimized separately.

4. For the fastest neighbor-list method, and any others within 20% of the fastest, carry out

phase 2 optimization: Optimize the parameters pb and tp using a double loop: first pb con-

sidering the values 16, 32, 48, 64, 96, 128 and 192. For each pb, values of tp are tested

starting from 1 and increasing until 64. For each combination of pb and tp the skin length is

re-optimized starting at the last identified optimal value.

5. If the neighbor-list method “n2” is included in phase 2, it can still help to sort the particles

once every few hundred times, typically for system sizes near the crossover from “n2” being

optimal to “sort” being optimal. This is checked and the optimal sorting interval found.
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6. If more than one neighbor-list method was optimized in phase 2, make a final comparison

between the phase 2-optimized sorting methods to choose the overall optimized set of pa-

rameters (generally, except close to the cross-over from one method to another, the phase

2 optimization does not change which method is chosen, and in that case the difference is

small anyway).

7. Run, using the optimized parameters, the same number of steps as for the baseline run to

determine the overall improvement due to autotuning.

8. Write the tuned parameters to a file so that repeating the simulation in the same directory

with the same “user parameters” does not require re-tuning. For this purpose, “same user

parameters” means: same number of particles of each type, same density and temperature

and potential parameters (within a tolerance), same integrator type and timestep (within

tolerance), and same GPU-type. The actual configuration does not have to be the same. If

there is any doubt about re-using the previously found parameters the file can just be deleted.

Some further details are noted here:

• The skin optimization starts from the default value (phase 1) or previously identified phase

1-optimal value (phase 2). Its value is increased and decreased in steps of 20% (phase 1) or

10% (phase 2) until a minimum is identified in the time taken. Attempting to optimize the

skin to a precision of better than 10% is not worth the effort.

• The loop over tp breaks out when one of the following three conditions is met: (i) the time

taken exceeds the minimum time so far three times (ii) the time taken exceeds the minimum

time so far by 5% (iii) some GPU resource-limit is exceeded, either the number of threads

per block (pbtp) or the total register count per block.

• The loop over pb breaks out when the time taken (having optimized tp and skin) exceeds the

previous best by 10% or more.

• For very large systems it doesn’t make sense to use anything other than the “sort” method

for the neighbor-list. The autotuner omits “none” for N > 5000 and “n2” for N > 50000.

Moreover, large systems generally require larger pb and so the autotuner omits pb = 16 for

N > 4000 and pb = 32 for N > 105. Also for the largest systems only tp = 1 is relevant;

the autotuner omits checking other values for N > 105. These various cutoff-parameters
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can be changed by the user if (s)he knows their names, but it should not be necessary and

this is not included in the documentation.
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Lennard-Jones system
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I: Isomorph theory

According to isomorph theory there are some liquids, called Roskilde

liquids, for which some structural and dynamical quantities are con-

stant along determinate curves in the (ρ, T ) phase diagram. These

curves are named isomorphs[1].

One of the simplest Roskilde liquid to study is the Lennard–Jones

(LJ) systems, i.e. a system of particles interacting via a LJ potential:

u(r) = 4ϵ



(
σ

r

)12

−
(
σ

r

)6



For this system it is possible to write a simple expression for the

isomorph curves:

T ∝ h(ρ) =

(
γ0

2
− 1

)
 ρ

ρ0


 −

(
γ0

2
− 2

)
 ρ

ρ0




2

γ0 =
⟨∆W∆U⟩
⟨(∆U)2⟩

II: Is Lennard–Jones melting line an isomorph?

One of the interesting results of isomorph theory is that the melt-

ing/freezing line for a Roskilde liquid is an isomorph. It is therefore

possible to derive an equation for the melting point of the LJ system:

T (ρ) = 2.27 · ρ4 − 0.80 · ρ2

This equation is in good agreement with melting point data from

computes simulations[2] and previous hypothesis on melting line

equation[3].

Density and temperature are in reduced LJ units.
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III Measuring viscosity in computer simulations

In this work we measured LJ viscosity using the SLLOD algorithm.

The viscosity is measured from the response of the system to the

shearing of simulation box’s walls:

η =
τ

u,y

IV Reduced viscosity along the melting line

Isomorph theory states that dynamical quantities are invariant along

an isomorph if expressed in reduced units.

This means that reduced viscosity η̃ is invariant along the freez-

ing/melting isomorph similarly to what Andrade supposed for liquid

methals[4].

η̃ =
η

ρ2/3
√

T

Knowing η̃ at one point allows to predict the behavior of η along the

isomorph.
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Conclusions

•We show that the freezing/melting line is an isomorph and we gave an analytical equation for it valid in a wide range of T and ρ;

•The isomorph invariance of viscosity along the freezing/melting line can be successfully used to describe viscosity behavior.
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Studies of the Lennard-Jones fluid in 2, 3 and 4 dimensions
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I: Theory

According to isomorph theory there are some systems, called Roskilde

(R) systems, for which several structural and dynamical quantities

are constant along specific curves in the (ρ, T ) phase diagram. These

curves are named isomorphs[1]. R systems are identified by strong

correlations between virial and potential energy fluctuations.

R =
〈∆W∆U〉

√
〈(∆W )2〉〈(∆U)2〉

> 0.9 (1)

It has been recently suggested that all pairwise model systems become

R simple in a part of their (ρ, T ) phase diagram in an high enough

number of dimensions[2]. We verified[3] this conjecture for the Lennard–

Jones (LJ) model system, i.e. a system of particles interacting via a

LJ potential:

u(r) = 4ǫ



(
σ

r

)12

−
(
σ

r

)6

 (2)

Isomorphs for the LJ system in 2d, 3d and 4d have the functional

shape:

T (ρ)

T0
=


d

6
γ0 − 1




 ρ

ρ0




12/d

−

d

6
γ0 − 2




 ρ

ρ0




6/d

(3)

II: LJ phase diagram in 2d, 3d, 4d

The first problem in this kind of study is the choice of how to compare

state points in different dimensions. Our choice was to use the critical

point as reference point for investigating the behavior of correlation

coefficient R in the phase diagram. A reason for this choice is that

the density and temperature for the critical point of the LJ system are

known in 2d, 3d and 4d.
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III: Results for the correlation coefficient R
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R = 0.9

At any studied state point, the correlation coefficient increases when

increasing dimensionality.

IV: Isomorphs in 4d

The 4d LJ system is an R system in a wide region of its phase diagram

and therefore isomorphs should exist for this system. In the figures

below, the radial distribution function (RDF) and the mean squared

displacement (MSD) are plotted in reduced units, i.e. made dimen-

sionless using the macroscopic quantities ρ, T and m (particle average

mass). Reduced RDF and MSD are invariant along an isomorph.

1.0 2.0 3.0
~r = ρ1/4

r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
~ r)

ρ=0.900 T=1.00
ρ=0.945 T=1.23
ρ=1.500 Τ=6.56

(a)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

t~ = ρ1/4
(k

B
T/m)

1/2
t

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
ed

uc
ed

 M
SD ρ=0.900 T=1.00

ρ=0.945 T=1.23
ρ=1.500 Τ=6.56

(b)

Conclusions

•We proved that the conjecture of Ref. [2] is correct for the LJ system;

•These findings[3] together with the general argument of Ref. [2] highlight the need for an 1/d expansion in liquid-state theory.
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