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Dansk abstract:

Afhandlingen består af en engelsksproget tekst på 114 sider samt 5 videnskabelige artikler. 
Hovedfokus er på undersøgelser af underafkølede væskers, gelers og glassers dynamik. 

To af artiklerne præsenterer målinger af det frekvens-afhængige shear modul vha PSG-teknikken 
udviklet af “Glas og Tid” gruppen. I den første artikel præsenteres målinger på fem seje væsker tæt 
på deres glasovergang. Analysen af data inkluderer en karakterisering af temperaturafhængigheden 
af relaxationstiden, såvel som af relaxationsfunktionens form. Disse målinger gør det muligt at teste 
shoving modellen som knytter den strukturelle relaxationstid til højfrekvens shear modulet. I den 
anden PSG artikel præsenteres målinger af det dynamiske shear modul på to monoalkoholer. Disse 
målinger sammenlignes med dielektriske målinger på de samme væsker og under identiske 
eksperimentelle forhold. Artiklen konkluderer at de karakteristiske Debye-processer, som 
dominerer det dielektriske respons af monoalkoholer, ikke kan observeres i shear modulet. Denne 
mekaniske responsfunktion har altså kun bidrag fra den strukturelle relaxation, et resultat som er 
konsistent med resultater fra dynamisk lysspredning og fra kalorimetri (kapitel 2).

Dynamikken af geler og glasser som er ude af ligevægt studeres i to artikler, dels eksperimentelle 
og dels teoretiske (via computer-simuleringer). Depolariseret dynamisk lysspredning blev benyttet 
til at studere en geldannende kolloid-opløsning ude af ligevægt. Der blev også foretaget Kerr-effekt 
målinger på dette system. Kombinationen af disse to teknikker gør det muligt at vise, at 
fluktuations-dissipations (FD) teoremet er brudt og at beregne den effektive temperatur af systemet. 
Disse resultater præsenteres og diskuteres i kapitel 3A, hvor resultaterne af computer-simuleringer 
af brud på FD-teoremet også diskuteres. Sidstnævnte resultater refererer til et standard model-
system som bringes ud af ligevægt ved hurtig afkøling og/eller en hurtig densitetsstigning. Det vises 
at hvordan egenskaberne af modelsystemet - som dog deles med hele klassen af ”strongly 
correlating liquids” - medfører at den effektive temperatur efter et hop mellem to tilstande kun 
afhænger af slutdensiteten. Det vises endvidere hvordan man for denne klasse af væsker ud fra en 
enkelt off-equilibrium simulering kan forudsige den effektive temperatur for en glas produceret ved 
et vilkårligt densitets/temperatur – hop (kapitel 4).

Dynamisk heterogenitet af dynamik, både i og uden for ligevægt, diskuteres i kapitel 5. Ny shear 
målinger præsenteres ud fra hvilke den dynamiske korrelationslængde kan bestemmes som 
beskrevet i en af de fem publikationer (hvor en 4-punkts korrelator beregnes via en eksperimentelt 
lettere tilgængelig 3-punkts korrelator). Sammenligning med 4-punkts korrelatorerne fra 
dielektriske målinger viser at antallet af dynamisk korrelede molekyler generelt er lidt forskellig fra 
den tilsvarende størrelse beregnet ud fra målinger af shear modulet. Analysen viser imidlertid også, 
at de to karakteristiske korrelationsvolumener er proportionale i deres stigning når temperaturen 
sænkes. 
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Kapitel 5 diskuterer endvidere et nyt eksperiment som gør det muligt direkte at måle 4-punkts 
susceptibiliteten ved at kombinere forskellige lysspredningsteknikker. I kapitel 6 præsenteres en ny 
model som forbinder de frekvensafhængige shear og dielektriske responsfunktioner, en model som 
bygger på antagelsen af dynamisk heterogenitet.
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Abstract

This PhD thesis is accompanied by a number of papers whose main focus is the
investigation of the dynamics of supercooled liquids, gels and glasses. Moreover new
theoretical and experimental results are presented.

Two of the articles presented report frequency-resolved (broad-band)
shear-mechanical measurements acquired via a unique technique developed by our
group (the piezo-shear-gauge (PSG) method). In one of these we measure the dy-
namic shear modulus of five glass-forming liquids close to the glass transition tem-
perature. The analysis includes a characterization of the temperature-evolution of
the relaxation time of the mechanical response and of its shape. The measurements
of the dynamic shear modulus allow for a test of the shoving model that links the
structural relaxation time to the infinite-frequency shear-modulus. In the second
work employing the PSG method the dynamic shear-modulus of two monohydroxy
molecular liquids (monoalcohols) is determined. These measurement are compared
with dielectric-spectroscopy measurements performed on the same liquids and in the
same experimental conditions. The findings of this work indicate that the additional
Debye-process (that dominates the dielectric response of these monoalcohols) can not
be detected in the frequency-resolved shear-modulus. This mechanical response func-
tion displays indeed only a clear structural relaxation in agreement with dynamic
light scattering and calorimetric measurements. These results are illustrated and
expanded in Chapter 2.

The off-equilibrium dynamics of gels and glasses was also subject of investigations
as it can be found in the other companion articles. These studies have been carried
by means of experiments and computer simulations. An off-equilibrium gel-forming
colloidal solution is studied combining depolarized dynamic light scattering mea-
surements and Kerr-effect response measurements. The combined use of these two
measurements allow one to determine whether the fluctuation-dissipation theorem is
violated out of equilibrium and what is the effective temperature associated with this
non-equilibrium condition. The findings of this work are presented in Chapter 3. A
computer simulation study of the violation of theorem is also presented. This is done
for a widely studied a model glass-former taken out of equilibrium via fast cooling
and/or densification. It is shown how the special properties of this liquid (shared by
the entire class of strongly correlating liquids) imply that the effective temperature
depends only on the final density of the off-equilibrium jump. In addition it is shown
how only for these liquids a single off-equilibrium simulation allows one to predict
the effective temperature of any glass produced by an arbitrary density/temperature
jump. This work is illustrated and expanded by new findings in Chapter 4.

The dynamic heterogeneity of the glassy dynamics in and out of equilibrium was
studied as a further subject. Additional shear-modulus measurements were studied
extracting the characteristic dynamic correlation volumes associated with this me-
chanical relaxation. A separate paper was dedicated to this analysis. The estimation
of the four-point correlator reported in this work is based on some approximation
schemes that allow one to quantify this via a more accessible three-point suscepti-
bility A careful comparison of this quantity obtained by means of dielectric mea-
surements reveals that the number of dynamically correlated molecules estimated is
generally slightly different for the shear and dielectric response. Nevertheless the
analysis indicates that these characteristic correlation volumes grow proportionally
as the temperature is lowered. These results are presented in Chapter 5 where we
also illustrate a new experiment for the direct measurement of the four-point sus-
ceptibility obtained by combined dynamic light scattering techniques. In Chapter 6
we present a new model for the connection of the shear and the dielectric response
accounting for the presence of the dynamic heterogeneities.
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Chapter 1

Introduction

This chapter contains a very brief introduction to the phenomenology of su-
percooled liquids and glasses. Illustrating shortly these basic concepts we also
mention the main subjects of investigation of the thesis. A number of excellent
and far more detailed reviews [1, 2, 3, 4, 5, 6] have inspired this introductory
chapter.

1.1 Dynamic Glass Transition and Relaxation Time

Let us imagine to cool a liquid and to measure its volume (Figure 1.1(A)). The
liquid will contract as we lower the temperature. This process can be thought
as a time series of small steps in temperature followed by little changes in
volume (Figure 1.1(B)). After each temperature change the liquid’s volume
will take a given time to reach is new equilibrium state. Naturally the lower
is the temperature the longer will be this relaxation time needed by the liquid
to re-equilibrate. Equally expected there will be a temperature Tg low enough
at which the liquid cannot equilibrate before the next temperature down-step.
At this temperature, where the relaxation time is of the order of the cooling
rate, the liquid falls out of the equilibrium and the glass is formed.

In this cooling process the liquid passes the melting temperature Tm below
which it might crystallize. However if the cooling-rate is high enough crystal
formation can be avoided and the liquid is said to be supercooled. This can be
done keeping the liquid in the supercooled equilibrium state that is metastable
with respect to the crystal the latter having lower free-energy.

It is clear that the glass-transition temperature defined here depends on
the cooling rate: if we cool the liquid slower we get a lower Tg. Conventionally
Tg is also defined as the temperature where the the relaxation time reaches an
arbitrary large value (typically this is 102 or 103s).

1.2 Fragility and Stretched Relaxation

The relaxation time τ grows differently for different liquids as they are cooled.
Some liquids indeed show a relaxation time that increases exponentially with
the inverse temperature:

1



1. Introduction

Figure 1.1: Sketch of the phenomenology of the glass transition as seen by
measuring the volume[7] of the liquid upon cooling. (A) shows the behavior
of the liquid’s volume as the temperature is lowered and the crystallization at
Tm is avoided. Below Tm the liquid is supercooled and when the relaxation
time reaches a value of the order of the cooling rate at Tg the glass transition
occurs. If the cooling is slower Tg is lower (dashed green line). As shown in (B)
the cooling process can be imagined as a series of temperature steps in time
(red line). At each step the volume as to re-equilibrate to the new volume in a
given relaxation time (blue line). The equilibrium volume obtained after each
temperature-step is represented by circles. The characteristic relaxation time
grows as T is lowered when the it is comparable with the inverse cooling rate
the following cooling step acts on an non-equilibrated system and the glass is
formed.
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Fragility and Stretched Relaxation

Figure 1.2: Sketch of the behavior of the logarithm of the relaxation time as
a function of the inverse temperature (Agell’s plot). This plot underlines the
differences between strong liquids following (Equation (1.1)) with constant E
and fragile liquids showing a steeper increase of relaxation time upon cooling.

τ = τ0 exp
(

E

kBT

)
(1.1)

where τ0 ' 10−14s is the high temperature limit of the relaxation time and
E is the activation energy. The liquids showing the Arrhenius temperature
dependence of the relaxation time (Equation (1.1)) are also called strong liq-
uids, examples of liquids belonging to this class are SiO2 (ordinary silica glass)
and GeO2. Other liquids (like toluene or o-terphenyl) display instead a much
steeper increase of the relaxation time as they are cooled. To account for this
fragile behavior Equation (1.1) can be modified by making E temperature de-
pendent letting E = E(T ) to be a (decreasing) function of T . The temperature
dependence of the relaxation time can be characterized by the fragility [8]

m =
d log10 τ

d(Tg/T )

∣∣∣∣
T=Tg

(1.2)

One of the fundamental questions is glass science is which microscopic proper-
ties of a liquid determinate its fragility. In the same spirit fragility has been
correlated with many other properties of the supercooled liquid and of the glass
[9, 10, 11, 12, 13]. Paper I, (see also Chapter 2) reports a test of the shoving
model [14] connecting the relaxation time to the shear-modulus.

In addition to the relaxation time of the liquid response it is interesting
also to look at its shape (Figure 1.3). The response function represents the

3



1. Introduction

Figure 1.3: Shape of the time-dependent response function at high and low
temperature (Top). At high temperatures the shape of the function is expo-
nential while for the supercooled liquid the response is more stretched. This
can be seen also looking at the (frequency dependent) Laplace transform of the
response (Bottom).

time-evolution of a property of the liquid after the application of a small per-
turbation. This is the case of the volume relaxation after the temperature step
described above, but in principle one can apply any field and measure any
observable responding. The shape of the response function χ(t) in the high
temperature liquid is well approximated by an exponential (Debye-relaxation)

χ(t) = exp(−t/τ) (1.3)

while in the supercooled state the response is generally more stretched than
a simple exponential [15, 16]. A study of the non-exponential shape of the
shear-mechanical response is reported in Paper I and Paper II.

1.3 Linear Response and Fluctuation-Dissipation
Theorem

The concept response function intuitively introduced above can be formu-
lated more generally within linear response theory [17, 18, 19]. Moreover the
fluctuation-dissipation theorem allow us to relate the response of a system sub-
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Heterogeneous Dynamics

ject to a (small) external perturbation to the spontaneous fluctuations of the
same system in the un-perturbed condition.

Let us imagine to monitor an observable of the system B when a small time-
dependent perturbation ε(t) is applied. The variable B will change from its
value 〈B〉0 of the unperturbed system reacting to the external field. Assuming
that the external stimulus depends on time as a Heaviside step-function applied
at t′ (ε(t) = ε0θ(t − t′)) with infinitesimal amplitude (ε0 → 0) we define the
response function χ as

〈B(t, t′)〉 − 〈B〉0 = ε0χ(t, t′) (1.4)

The fluctuation-dissipation theorem (FDT) establishes relationship between
the response function χ of the system induced by the perturbation and its
spontaneous dynamics. Assuming that the external field introduces an energy
contribution to the system that is −εA (where A is the variable coupled to
the field), the FDT expresses the response function via the correlation function
〈B(t)A(t′)〉0 of the variables A and B at the thermodynamic equilibrium

kBTχ(t, t′) = 〈B(t′)A(t′)〉0 − 〈B(t)A(t′)〉0 (1.5)

The FDT expressed in Equation (1.5) has fundamental importance in
condensed-matter physics since it establishes that probing the system via an
external perturbation one is actually measuring its intrinsic properties. Never-
theless the FDT is, in principle, restricted to equilibrium conditions and thus
it is interesting to ask if and how it ceases to hold out of equilibrium.

As briefly illustrated above when the liquid becomes a glass it falls out of
the equilibrium. This makes the off-equilibrium regime and the deviation from
the FDT a major subject of study in glass-science [20, 21, 22, 23, 24]. Paper
III (Chapter 3) reports an experimental investigation of the violation of the
FDT in an off-equilibrium colloidal gel-forming solution. Paper IV (Chapter
4) contains a computer-simulation study of the violation of the FDT and the
associated effective temperature in a special class of glasses.

1.4 Heterogeneous Dynamics

Another intriguing feature of the relaxation in a supercooled liquid is its spa-
tial heterogeneity. The motion of the molecules of the liquid varies consider-
ably among space as revealed by computer simulations performed well above
the experimental Tg [25, 26, 27, 28]. Experimental evidences of dynamical
fluctuations significantly larger that the molecules’ size were also collected
[29, 30, 31, 32, 33].

Multi-point correlation functions have been used intensively to characterize
the spatially heterogeneous dynamics in computer simulations [25, 26, 27, 28],
although measuring these quantities by direct experiments remains a major
challenge. A significant advance in accessing experimentally these multi-point
susceptibilities has been achieved recently [34, 35, 36]. The central idea of these
works is to use the FDT to relate the three-point susceptibility to the change in
any standard (two-point) response function following a change in temperature
or pressure. Moreover it is shown that the the three-point function can be
used to approximate an even higher order correlation function, namely the

5



1. Introduction

four-point susceptibility. These techniques have been used to obtain the multi-
point correlation functions from a number of experimental data [37, 38] and to
study in detail their temperature-dependence in comparison with the different
models for the glass transition [39].

Thanks to these theoretical developments we can associate a three-point and
an (approximated) four-point susceptibility to each dynamic response function
measured at different temperatures. Paper V (Chapter 5) reports a systematic
comparison between these high order correlation functions obtained from two
different dynamical responses: the dielectric and the shear-mechanical one. In
Chapter 5 we also present a new experiment capable of measuring directly the
four point susceptibility in nano-particle colloidal suspensions. In Chapter 6
we introduce a new model for the direct connection of the shear and dielectric
response accounting for the dynamic heterogeneity.

6



Chapter 2

Equilibrium Shear-Mechanical
Response of Several Glass-Formers

This chapter illustrates briefly the concept of shear-mechanical relaxation and
it summarizes the main findings of Paper I and Paper II. The measurements
presented in these two articles are enriched here by further analysis and dis-
cussion that was not included in Paper I and Paper II.

2.1 Shear-Mechanical Response

The basic concepts defining the shear-mechanical relaxation may be sketched
as follows [40, 41]. Let us imagine a small shear deformation imposed instanta-
neously to a cubic solid body as shown in Figure 2.1. The axial displacement ux
along x of the body from its initial position depends on the height y at which it
is measured. From the construction of Figure 2.1 it is clear that ux = (A/L)y.
It is therefore convenient to introduce a dimensionless quantity (the strain) for
characterizing the deformation γ = ∂ux/∂y = (A/L). Note that for more com-
plicated deformations of the solid uxy = ∂ux/∂y generally defines the strain
tensor.

The solid reacts elastically to the imposed change of shape opposing a force.
The force per unit area opposed by the solid body is the stress (tensor) σxy
that defines the shear modulus G as

σxy = Guxy = Gγ (2.1)

In a solid σxy does not decay to zero as the time increases meaning that the
system does not flow.

Allowing for the time-dependence of the shear-modulus we can describe
the shear-mechanical response of a liquid. For example at high temperatures,
where the relaxation is pretty exponential, we can set (Maxwell model) G(t) =
G∞ exp(−t/τ) where G∞ is the infinite frequency (or zero time) shear modulus.
Notice again the central role of timescales defining the liquid and the glassy
regimes: if the relaxation is fast the system flows and it is considered a liquid.
Differently if the relaxation time is long enough one will never observe the
system flowing and that will appear as a (solid) glass.

7



2. Equilibrium Shear-Mechanical Response of Several
Glass-Formers

Figure 2.1: Pictorial representation of an axial (volume-preserving) deforma-
tion. The maximum displacement of the solid cubic body is ux = A located at
y = L. This defines the strain γ = ∂ux/∂y = (A/L).

2.2 Features of The Mechanical Relaxation in Five
Supercooled Liquids

Paper I reported high-quality dynamic shear-modulus measurements for five
glass-forming liquids. The full names of the liquids studied and the abbrevia-
tions used are reported in Table 2.1. These measurements1 were obtained by
the piezoelectric shear-modulus gauge (PSG) method that allow one to measure
the frequency-resolved (complex) shear-modulus (G = G′+iG′′) of supercooled
liquids in a wide dynamical range spanning from 10−3 Hz to 10 kHz. All tech-
nical details about the PSG technique and the experimental set-up used for
the measurements can be found in Ref.s [42, 43, 44].

These broad-band shear-mechanical measurements allow one to characterize
the temperature evolution of the relaxation time of the shear response. A
simple way of defining the relaxation time is by locating the maximum G′′max of
the mechanical loss G′′(ω) (imaginary part) as shown in Figure 2.2. Once the
angular frequency ωmax corresponding to this maximum is found, the relaxation
time τ is computed as τ = ωmax

−1. Plotting τ as a function of the inverse
temperature as in Figure 2.3, we can appreciate the significant increase of the
shear-mechanical relaxation time upon cooling. Figure 2.3 also shows fits of

1All the shear-mechanical data reported in Paper I are available in the “Glass and Time:
Data Repository” found online at http://glass.ruc.dk/ data.

8



Features of The Mechanical Relaxation in Five Supercooled Liquids

Liquid Abbreviation Tg [K] m (clear) β-process
pentaphenyltrimethyltrisiloxane DC705 227.5 117.6 no
dibutyl phthalate DBP 175.4 91.8 yes
diethyl phthalate DEP 180.2 89.1 yes
1,2-propanediol - 162.5 62.4 no
m-touluidine - 182.9 110.9 yes

Table 2.1: Names and abbreviations of the liquids studied in Paper I. The glass
ransition temperature Tg and the fragility m are calculated from the fits with
the VFT equation (2.3). The table also reports if the liquids shows or not a
clear Johari-Goldstain β relaxation.

Figure 2.2: Shear-mechanical response of DC705 at T = 240 K. In (A) and (B),
respectively, the real (G′) and imaginary part (G′′) are plotted as a function
of log10(ω). The vertical dashed line in (B) locates the maximum of the loss
of the shear modulus, the corresponding inverse ωmax defines the relaxation
time. The full lines are fits with the functions (2.4) (green) and (2.5) (red).
(C) shows the quality of the fits on a double-log scale.
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2. Equilibrium Shear-Mechanical Response of Several
Glass-Formers

the shear relaxation times with two frequently used fitting functions. One is
the Avramov equation [45, 46, 47, 48, 49, 50] (full lines in Figure 2.3)

τ(T ) = τ0 exp
(
B

Tn

)
(2.2)

The other is the Vogel-Fulcher-Tammann (VFT) equation [51, 52, 53] (dashed
lines in Figure 2.3)

τ(T ) = τ0 exp
(

A

T − T0

)
(2.3)

the parameter τ0 was fixed to τ0 = 10−14 s in the fitting. This two functions
were compared systematically in fitting dielectric relaxation times in a recent
publication by our group [54]. In agreement with the findings of Ref. [54]
the VFT equation (2.3) fits the shear relaxation data slightly better than the
Avramov equation (2.2). However the difference in the quality of the fits is
lower that that reported in Ref. [54] since the dynamical range of the shear
measurements is narrower than that of dielectric measuremts. These fits allow
an easy estimation of the glass transition temperature Tg and the fragility m
(see Sec. 1.2). For example from Equation (2.3) we can compute Tg (that is
defined as the temperature where τ = τg = 100 s) as Tg = [T0 + A/ ln(τg/τ0)]
and the fragility m = ATg/[ln 10(Tg − T0)]. The values of Tg and m computed
with these formulas are listed in Table 2.1 for the five liquids studied. The
marked non-Arrhenius (Sec. 1.2) behavior of the shear relaxation time of these
liquids is shown in Figure 2.4 where the deviation from the Arrhenius tem-
perature dependence is evident. Paper I reported also a test of the shoving
model [14, 55, 4] for DC705 and 1,2-propanediol. This models relates directly
the temperature-dependent activation energy of the supercooled liquid to the
infinite frequency shear modulus.

The non-exponential form of the dynamic shear modulus is shown by Figure
2.2 for DC705 at T = 240 K where the shear-dynamical relaxation is fitted with
two non-Debye functions: the Havriliak-Negami (HN) function [56, 57] and the
modified stretched exponential (MSE) recently introduced by our group in Ref.s
[58, 59]. The HN function can be written as follows to fit the shear response:

G(ω) = G∞

(
1− 1

[1 + (iωτHN)α]β

)
(2.4)

where G∞ is the infinite-frequency shear modulus, τHN is the relaxation time
that is different from τ = ωmax

−1 used above, and α and β are the stretching
exponents characterizing the shape of the function. Equation (2.4) reduces to
an exponential relaxation when α = 1 and β = 1. The MSE function is easily
written in the time domain for G as

G(t) = G∞ exp[−t/τMSE − k(t/τMSE)1/2] (2.5)

to fit the data of Figure2.2 the Laplace transform of Equation 2.5 is performed
numerically (see Section 6.3 for more details). As seen from Figure2.2 the
functions (2.4) and (2.5) fit almost equally well, although the HN functions
has one extra fitting parameter with respect to the MSE. More precisely the
HN function has two free shape parameter (α and β), while the MSE has only
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Features of The Mechanical Relaxation in Five Supercooled Liquids

Figure 2.3: Relaxation time as a function of the inverse temperature. The full
line is a fit with the Avramov equation (2.2), the dashed line represents a fit
with VFT equation (2.3).

one (k), but the reduced χ2 resulting from the fitting is only few percents lower
for the function (2.4).

An alternative way of visualizing the non-exponential shape of the mechan-
ical relaxation (not presented in Paper I) is the Nyquist plot reported in Figure
2.5 for the five liquids studied. In this graph, where G′′ is reported as a func-
tion of G′, we can see the deviation from the Debye (symmetric) form of the
relaxation (dashed line). Moreover Figure 2.5 reports the normalized Nyquist
plots to illustrate another important feature of these relaxation, namely time-
temperature superposition (TTS) [60, 61, 62, 63, 64]. If TTS holds a response
function changes only its amplitude and relaxation time when temperature
changes, while its shape remains unchanged. Mathematically if G obeys TTS
it can generally be rewritten as G(ω, T ) = A(T )φ(τ(T )ω). When TTS is ap-
plies for a liquid all the response functions measured at different temperatures
collapse on the same master curve in the normalized Nyquist plot of Fig 2.5.
From this Figure is clear that DC705 and 1,2-propanediol show TTS to a very
good degree. Differently the other liquids (DBP, DEP and m-touluidine) show
a deviation from the master curve at the right end of the Nyquist plot cor-
responding to high frequency. The failure of TTS in these liquids at high
frequency can be explained by the presence of a mechanical Johari-Goldstein
β relaxation [65, 66, 67, 68, 69, 70, 64, 71, 72, 73]. As documented in de-
tail in Paper I all the liquids diplaying a rise of the shear modulus at high
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2. Equilibrium Shear-Mechanical Response of Several
Glass-Formers

Figure 2.4: Angell’s plot of the shear relaxation time and for the five liquids
studied. The full lines are fits with the VFT equation(2.3). The dashed line
represents the case of an Arrhenius increase of the relaxation time.

frequencies have been found to have a clear β peak in the dielectric spectra
measured by other groups. Table 2.1 reports wether a liquid has or not a clear
Johari-Goldstein secondary relaxation. As analysis of the shape of the shear re-
laxation functions Paper I contains the estimation of the minimum logarithmic
slope [64, 72, 73, 74, 75, 76] of the high frequency side of the shear-mechanical
response.
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Features of The Mechanical Relaxation in Five Supercooled Liquids

Figure 2.5: Normalized Nyquist plot of the shear-mechanical response for five
glass-forming liquids at several temperatures (see legend). The real G′ and
the imaginary part G′′ of G are normalized to their values at ωmax. The
frequency is a parameter in these plots, the left end of the plot corresponds to
low frequencies while the right end corresponds to high frequencies. The dashed
line is the Nyquist plot corresponding to an exponential shear relaxation (i.e.
Equation (2.4) with α = 1 and β = 1.). If TTS is obeyed the data at different
temperatures collapse on the same master curve. This is the case of DC705
and 1,2-propanediol.

13



2. Equilibrium Shear-Mechanical Response of Several
Glass-Formers

Figure 2.6: (A) Imaginary part ε′′ of the dielectric susceptibility ε as a function
of ω (circles) for . The filled circles are the points fitted with a Debye relaxation
Equation (2.6). The fitting function (dashed line) is subtracted from the full
spectrum and the structural α relaxation time is associated with the peak of
the resulting points (diamonds). The vertical lines indicate the positions of
the peaks. (B) Imaginary part G′′ of the shear modulus G as a function of ω
(squares). The mechanical spectrum is dominated by a mechanical α process
with evidence of an intense β activity at high frequency. The vertical line
indicates the position of the α peak.

2.3 Mechanical Relaxation and Dielectric Relaxation in
Two Monoalcohols

Paper II presents frequency-resolved dielectric and shear-mechanical measure-
ments of two supercooled monohydroxy liquids (monoalcohols): 2-butanol and
2-ethyl-1-hexanol. The particular feature of monoalcohols is that they ex-
hibit an intense Debye-like relaxation dominating the dielectric susceptibility
[77, 78]. In addition the dielectric spectra of this liquid show a standard α
relaxation [79, 80, 81] and a Johari-Goldstain β process [65]. Figure 2.6.A
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Mechanical Relaxation and Dielectric Relaxation in Two Monoalcohols

Figure 2.7: Relaxation time as a function of the inverse temperature. The full
line is a fit with the Avramov equation (2.2), the dashed line represents a fit
with VFT equation (2.3).

shows an example of the measured dielectric susceptibility ε. In Figure 2.6.A
ε′′ (imaginary part) is plotted as a function of frequency for 2-ethyl-1-hexanol
at T = 157 K. Figure 2.6.A also illustrates the procedure followed in Paper II
to extract the peak position of the structural α dielectric process. A fit of the
points close to the Debye peak is performed with the Debye function

ε = ε∞ +
∆ε

1 + iτω
(2.6)

This fitting function is then subtracted from the full spectrum and the peak of
the resulting dielectric loss is identified as the dielectric α relaxation time.

As seen in Figure 2.6.(B) our shear measurements show that the Debye
process is not seen in the mechanical relaxation. The measured mechanical
spectrum is featured by a clear (non-Debye) α process and the rise of G′′ at high
frequency hints for the presence of a mechanical β relaxation 2. This findings
are in agreement with a number of different measurements like calorimetry,
photon-correlation spectroscopy and ultrasonic mechanical measurements (See
Ref.s 7-19 of Paper II). These experiments did not reveal any clear signature
of the Debye process as seen in dielectrics.

Our results show clearly that the shear and dielectric α relaxation times
at the same temperature are found within the same decade as seen in Figure
2.7 (see also the vertical lines of Figure 2.6). This is in agreement with the
scenario established from the comparison of dielectric and mechanical measure-
ments carried out by our group on a number liquids: the shear-mechanical α

2See also Figure 1 in Paper II where the beta peak is fully resolved.
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2-butanol 2-ethyl-1-hexanol
Tg [K] (dielectric Debye) 125.0 153.9
Tg [K] (dielectric α) 119.9 142.3
Tg [K] (shear α) 118.9 142.0
m (dielectric Debye) 27.5 31.0
m (dielectric α) 55.1 48.4
m (shear α) 67.7 63.8

Table 2.2: Properties of the shear-mechanical and dielectric relaxation of the
two monoalcohols studied in Paper II. The glass ransition temperature Tg and
the fragility m are calculated from the fits with the VFT equation (2.3) of the
relaxation times of the various processes.

relaxation is always faster than the dielectric one, but they are usually not
separated by more than a factor ten [72, 73]. Differently the dielectric Debye
process is separated by about a factor 103 from the mechanical α relaxation
both in 2-butanol and 2-ethyl-1-hexanol. As done in Sec. 2.2 we show in Fig-
ure 2.7 the fits of the relaxation times of the different process (dielectric-Debye,
dielectric α and shear α) with Avramov equation (2.3) and the VFT equation
(2.3).

The glass transition temperatures and the fragilities of the processes es-
timated with the VFT fits are reported in Table 2.2. The estimated glass
transition temperatures are very close for the shear and dielectric α relaxation
times, while for the Debye process Tg is significantly higher. Moreover fragility
obtained for the Debye process is lower than the one estimated for the dielec-
tric and shear α relaxation times. This can be seen also in the Angell plot
of Figure 2.8, where the less fragile behavior of the Debye relaxation time is
evident. In Figure we show the (normalized) Nyquist plot of the dielectric and
shear-mechanical response. A comparison with a Debye fitting shows clearly
the good agreement of the dielectric response with Equation (2.6) while the
shear-mechanical spectra show a very clear non-Debye form.
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Mechanical Relaxation and Dielectric Relaxation in Two Monoalcohols

Figure 2.8: Angell plot of the dielectric relaxation time and of the shear-
mechanical relaxation time for two monoalcohols. The full lines are fits with
the VFT equation(2.3). The dashed line represents the case of an Arrhenius
increase of the relaxation time.
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2. Equilibrium Shear-Mechanical Response of Several
Glass-Formers

Figure 2.9: Normalized Nyquist plot of the dielectric (left) and of the shear-
mechanical response (right) for the two monoalcohols studied in Paper II. The
dominating Debye relaxation of the dielectric data is fitted with Equation (2.6)
(dashed line).
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Chapter 3

An Experimental Study of The
Off-Equilibrium
Fluctuation-Dissipation Relation

In this chapter we briefly illustrate the generalized fluctuation dissipation rela-
tion (FDR), moreover we summarizes shortly the main findings of the experi-
ment described in Paper III reporting many experimental details. The experi-
ment (Paper III) investigates the FDR in a gel-forming colloidal suspension by
the combination of two different dynamic light scattering techniques.

3.1 Generalized Fluctuation-Dissipation Relation

As mentioned in Sec. 1.3 an interesting problem in glass science is the char-
acterization of the off-equilibrium glassy state obtained by quickly cooling the
supercooled liquid. Within this context it is important to understand the re-
lationship between the fundamental quantities describing the dynamics of a
many-body system: the correlation function and the response function. We
recall briefly here the FDR proposed for glassy systems by J. Kurchan and L.
F. Cugliandolo [20, 21, 22, 23]. Let us start by casting the equilibrium FDT
[17, 18, 19] in its differential form (compare with Equation (1.5) in Sec. 1.3)

T∂t′χ(t, t′) = −∂t′C(t, t′) (3.1)

Where χ is the response function and C is the correlation function as de-
fined in Sec. 1.3. At the equilibrium these functions satisfy time translational
invariance (TTI), i.e. they are function of the time-difference (t − t′) only
(C = C(t− t′) and χ = χ(t− t′)).

Let us imagine now to cool instantaneously our equilibrium liquid to a
very low temperature. In this process the liquid falls out of equilibrium being
unable to equilibrate to the new temperature within our observation time-scale.
This regime is called physical aging regime and in this the correlation and the
response function do not obey TTI. In the off-equilibrium condition described
above the FDT can be generalized to the FDR introducing the violation factor
X(t, t′) in the expression (3.1) as
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Figure 3.1: (A) Sketch of the FD-plot for an out of equilibrium structural
glassy system. The two slopes define the bath temperature at which the fast
dynamics is in equilibrium and the effective temperature for the slow structural
rearrangements. (B) Aging of the correlation function and decomposition in a
short times stationary part Cst(t − t′) and a long times aging part Cag(t, t′).
(C) Scaling of the slow aging component of the correlation function Cag(t, t′)
in the full-scaling case Cag = Cag(t/t′). (D) Various scenarios of the FDT
violations. A two-lines form of the FD-plot is found for structural glasses and
some spin systems corresponding to two well separated time-scales. A curved
FD-plot corresponding to many times scales is found in some spin-glasses as the
SK spin-glass. A flat off-equilibrium section is found for coarsening systems,
this corresponds to an infinite Teff .
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Generalized Fluctuation-Dissipation Relation

T

X(t, t′)
∂t′χ(t, t′) = −∂t′C(t, t′) (3.2)

Where X(t, t′) = 1 when (t − t′)/t′ � 1, i.e. the standard FDT holds for
the fast (vibrational) dynamics that equilibrates practically instantaneously to
the new temperature; while X(t, t′) < 1 when (t − t′)/t′ � 1 i.e. the FDT is
violated by the (off-equilibrium) slow structural rearrangements. Moreover it is
assumed that in for long time-scales (t− t′)/t′ � 1 the violation factor depends
on the times t and t′ only through C, i.e. X(t, t′) = X(C(t, t′)). Equation (3.2)
suggests to define an effective temperature for the slow structural dynamics as

Teff =
T

X(t, t′)
(> T ) (3.3)

when (t − t′)/t′ � 1, meaning that the slow dynamics behaves as if it where
thermalized at the (higher) temperature Teff . From the experimental and the
computational point of view is more convenient to work with the integrated
responses and correlation rather than with the time derivatives appearing di-
rectly in the FDR (Equation (3.2)). What is usually done in practice is to
build a parametric FD-plot reporting χ(t, t′) as function of C(t, t′). This has
the typical form composed by two lines as shown Figure 3.1(A). Since we can
rewrite X = ∂Tχ(t, t′)/∂C(t, t′) the violation factor is estimated as the inverse
slope of the FD-plot. Knowing the violation factor we can estimate the effective
temperature (Equation (3.3)).

This scenario was found to apply remarkably well in analytically solvable
models for the glassy dynamics and simulations of some spin-glasses and struc-
tural glasses [82, 83, 84, 20, 85], at least in the limit in which both t and t′

are large enough. Consistently with the two-step behavior of Teff described
above in these systems the dynamic correlation function can be divided in a
stationary term Cst plus an aging term Cag as follows (see Figure 3.1(B))

C(t, t′) = Cst(t− t′) + Cag(t, t′) (3.4)

In a structural glass this decomposition corresponds to the separation between
the fast vibrational dynamics and the slow structural dynamics. The same de-
composition is possible for the off-equilibrium response χ(t, t′). The stationary
components of the dynamic functions, i.e. Cst(t−t′) and χst(t−t′), satisfy TTI
and the FDT as if they were at the equilibrium at the quenching temperature
T . Differently the aging functions Cag(t, t′) and χag(t, t′) age and their decay
becomes slower as the aging times increases.These functions violate the TTI
and the FDT. Moreover a full-aging scenario is found in these numerical and
theoretical works in which Cag simply scales as Cag(t, t′) = Cag(t/t′) (see Fig-
ure 3.1(C)). The same scaling is found for the response χag(t, t′) = χag(t/t′).
In this case is the relaxation time τ of the aging functions grows as the aging
time τ ∼ t′ and is also obvious that if X = X(C).

Although the full-aging picture illustrated above is found in many mean-
field glassy models and in numerical simulations of structural glasses there are
cases where deviations from the full aging are evident. Noticeable examples of
this are found in theoretical and simulation studies of coarsening systems and
spin-glass systems with a more complicated free-energy landscape. This is im-
portant to stress since the aging process of the colloidal suspension in Paper III
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is very different from the full-aging scenario described above. In the experiment
we find that the relevant time scale defining whether the FDT is violated or not
is not simply the aging time tw, but rather the aging-time dependent relaxation
time of the correlation function τ(tw). It is interesting to notice also that some
systems exhibit an FDT violation qualitatively different from the one depicted
above [20]. Some spin systems as the Sherrington-Kirkpatric (SK) spin-glass
show an infinite series of relaxation time-scales with a broad spectrum of ef-
fective temperatures associated. In these cases the FD-plot has a curved form
as shown in Figure 3.1(D). Moreover in models where the cooling induces a
coarsening process the off-equilibrium part of the FD-plot is flat (see Figure
3.1(D)), a feature that is associated with an infinite effective temperature.

3.2 An Experimental Study of The Off-Equilibrium
Fluctuation-Dissipation Relation

Although several theoretical and computer simulation studies of the FDR can
be found in literature [82, 83, 84, 85, 86, 87, 88], few experiments were per-
formed so far. This kind of experiment constitutes a major experimental chal-
lenge, since one has to measure simultaneously the correlation function and the
response function. Moreover one has to obtain these measurements after an
extremely fast cooling process of the sample.

Despite fluctuations are notoriously difficult to measure, the magnetization
fluctuations together with the response to the external magnetic field were
measured in some spin-glasses [89, 90, 91]. Unfortunately these experiments
were restricted to time-scales (t− t′)/t′ . 1 and did not detect any systematic
deviation from the FDT. Later on a clear FDT violation was measured in an
experiment performed on an insulating spin glass [92]. Nevertheless the effec-
tive temperature measured from these violations was found to be much higher
than the initial equilibrium temperature at which the samples were kept before
the quench, making difficult the interpretation of the effective temperature.

Even more puzzling results were found in structural systems. The FDR was
studied in glassy glycerol by combined voltage noise and resonance measure-
ments [93]. Surprisingly the FDT was found to be significantly violated also in
the time regime where (t−t′)/t′ � 1. Similar results were also found in a poly-
mer glass (polycarbonate) with an affective temperature orders of magnitude
higher than the bath temperature [94].

Paper III studied the FDR in an aging colloidal solution of Laponite.
Laponite is a synthetic clay intensively studied for its intricate dynamical and
structural behavior [95, 96, 97, 98, 99, 100, 101] and its numerous applications
[102, 103, 104]. Several features of these colloidal suspensions make them par-
ticularly suitable for studying their off-equilibrium dynamics. These colloids
are found to age spontaneously after the preparation at room temperature and
pressure (without requiring any fast cooling procedure) toward an arrested
state. The suspension is easily prepared by stirring vigorously (purified) water
with the addition of the Laponite powder. The aging process of the colloidal
solution proceeds very slowly ranging from several hours to days depending on
the concentration of the colloid in the solvent.

In the experiment described in Paper III a low concentration solution of
Laponite was chosen to have a very slow aging process and to obtain several
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Figure 3.2: FD plot (response function vs correlation function) for a low con-
centration Laponite solution in aging (see Paper III and the Auxiliary Material
for Paper IV ). The violation of the FDT is clearly seen for short aging times.
This is located at timescales of the order of the relaxation time. The violations
found to decrease as the aging time increases recovering the standard FDT at
the longest aging time.

measurement of the correlation function and the response response function
during aging. The correlation function of the spontaneous fluctuations is easily
accessible in colloids by dynamic light scattering. The experiment made use of
depolarized dynamic light scattering measurements combined with DC Kerr-
effect response measurements (see the following Section for the experimental
details). This combination of experiments allowed for the comparison of the
correlation and response functions in the aging process. A clear violation of the
FDT was observed at short aging times and at timescales of the order of the
relaxation time of the (aging) correlation function (see Figure 3.2). At these
short aging times an effective temperature about five times higher than the bath
temperature was measured. The intensity of the violation was found to decrease
systematically as the aging proceeds re-obtaining the FDT at the longest aging
time. It is worth to notice that a number of other experiments (employing
different techniques) have investigated the FDR in aging colloidal solutions of
Laponite so far. The conflicting results of these experiments are summarized in
Sec. I of Paper III. Nevertheless the experiment of Paper III is the only one in
the literature where the measurements are specifically sensitive to the dynamics
of the Laponite colloidal particles. It is interesting to add to the discussion of
Paper III the findings of a recent experimental work [105] employing time-
dependent nonlinear optical absorption measurements and polarized dynamic
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light scattering measurements for the study of aging Laponite solutions. In
this work some indirect evidence of the FDT violation was found in qualitative
agreement with the results of Paper III.

The intrinsic difficulty of the measurements required and the unclear re-
sults reported so far have not decreased the experimental effort in studying
the violations of the FDT and the effective temperature in various systems.
Indeed the FDR was investigated recently in a liquid crystal at the electric-
field driven (nematic) phase transition [106]. Very recently the violation of the
FDT was measured in a quenched polymer (polyvinyl acetate) by electric force
microscopy techniques [107].

3.3 Experimental Details

In this Section we provide an accurate analysis of the main experimental and
conceptual problems we have find in the realization of the experiment of Paper
III . In Sec.3.3.1 we recall some basic dynamic light scattering theory specialized
for the case of cylindrical macromolecules in solution. This is needed to discuss
in detail the assumption that the depolarized component of the scattered light
is a function of the colloids reorientation angles only (Sec.3.3.2 and 3.3.3). This
special assumption is accompanied by the results of some preliminary tests. We
discuss in Sec.3.3.4 the birefringence measurement and the test performed to
ensure that the response function is linear in the applied external field. In
Sec. 3.3.5 we report all the important technical details about the experiment
performed.

3.3.1 Dynamic light scattering of cylindrically symmetric
macromolecules

In Paper III we claim to be able to measure the correlation function of the
rotations of the Laponite colloidal particles (or macromolecules). We will see
in the following sections that this conclusion is very reasonable if we have a
rather good filtering of the polarized contribution to the depolarized scattered
light and if we have decoupling between rotation and translation motions of
the Laponite particle suspended in the solution. We also provide experimental
tests to verify the approximations we make.

We start recalling some basic dynamic light scattering theory regarding the
time-correlation function being this the dynamic quantity measured in photon-
correlation spectroscopy (PCS) [108, 109, 110, 111]. This is done in the case
of the polarized and depolarized components of the scattered electric field.
In a light scattering experiment a polarized laser beam (with wavelength λ)
is directed to the sample and the scattered light at a given angle is collected
selecting its polarization. The wavevectors of the incoming beam and of the de-
tected field (ki and kf ) define the scattering plane and the scattering vector as
k = kf−ki. The propagation vectors ki and kf form the scattering angle ϑ that
determine the modulus of the exchanged wavevector |k| = k = 4πn sin(ϑ/2)/λ,
n being the refraction index of the scattering medium.

The orientations of the polarization vectors respect to the scattering plane
define the scattering geometry. If the initial and the final polarization vectors
(ni and nf ) are both perpendicular to the scattering plane we select the so
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called VV scattering geometry, while, if ni and nf are respectively perpendic-
ular and parallel to it, we have the VH scattering geometry.

We consider a sample consisting of macromolecules suspended in a solution
where the significant fluctuations of the scattered field are due to the macro-
molecules and not to the solvent molecules. We furthermore assume that the
colloidal particles are non-spherical, but they have a cylindrical symmetry. This
is the case of Laponite particles since, when dissolved in water, the Laponite
particle assumes the form of a flat cylinder with a diameter of 25 nm and a
thickness of about 1 nm. If the mentioned assumptions apply we can find that
the correlation function of the scattered electromagnetic field in the VV and
VH scattering geometry are respectively proportional to

IV V (k, τ) = α2〈
∑
i

e−ik·ri(0)
∑
j

eik·rj(τ)〉+
4
3
IV H(k, τ) (3.5)

IV H(k, τ) =

β2

15

〈∑
i

{e−ik·ri(0)P2[cos(θi(0))]}
∑
j

{eik·rj(τ)P2[cos(θj(τ))]}
〉

(3.6)

In Eqs. (3.5) and (3.6) α and β are the isotropic and anisotropic parts of
optical polarizability tensor, ri(τ) is the position of the center of mass of the
i-th particle at the time τ , θi(τ) is the angle that the symmetry axis of the
i-th macromolecule forms with the vertical coordinated axis at the time τ , P2

is the second order Legendre polynomial (P2(x) = (3x2 − 1)/2), and the sums
are extended over all the particles contained in the scattering volume. Note
that α and β are given by α = (α‖ + 2α⊥)/3 and β = (α‖ − α⊥) where α‖, α⊥
are the components of the polarizability tensor α. This tensor is diagonal in
the molecule-fixed reference frame with the z axis that lies along the molecule’s
symmetry axis. Note that in the following we will set

F (k, τ) = 〈
∑
i

e−ik·ri(0)
∑
j

eik·rj(t)〉

that is proportional to the intermediate scattering function.
We remark that, in our experiment, we use the Gaussian approximation to

obtain the scattered field autocorrelation function. This establishes a relation-
ship between correlation function I the field component E and the correlation
function I(2) of its intensity |E|2 that is

I(2)(τ) = 〈|E(0)|2|E(τ)|2〉 = [〈|E|2〉]2 + [〈E∗(0)E(τ)〉]2 = |I(0)|2 + |I(τ)|2

I(2) and I are respectively called homodyne and heterodyne correlation func-
tion. This approximation holds if the scattered field is the result of the super-
position of many independent stochastic contributions (see Chapter 5):

E(τ) =
∑
n

En(τ)
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In this way I(2) is determined by I.
In the following we will focus our attention on the normalized auto-correlation

functions

g(τ) =
〈E∗(0)E(τ)〉
〈|E|2〉

g(2)(τ) =
〈|E(0)|2|E(τ)|2〉
〈|E|2〉2

so that the Gaussian approximation is

g(2)(τ) = 1 + |g(τ)|2

Note that, in actual experiments, one has that the previous equation be-
comes

g(2)(τ) = 1 + σ|g(τ)|2 (3.7)

where σ < 1 is an instrumental coherence factor (also called dynamical contrast
factor) that depends mainly on the number of coherence areas exposed on the
detector’s photosensitive area.

3.3.2 Filtering the VV contribution to the depolarized light
scattering

Eqs. (3.5) and (3.6) apply when the polarization selection of the scattered light
is perfect. In actual experiments one has polarizer filter with a finite rejection
factor. The rejection factor f is defined considering the ratio between the
intensities IV and IH detected after filtering a linearly polarized beam set in
parallel and orthogonally to the polarizer axis: f = IH/IV . We can take in to
account the finite value of f approximating the measured correlation functions
Ĩ as

ĨV V (k, τ) ' (1− 2f1/2)α2F (k, τ) +
4
3

(1− f1/2/2)IV H(k, τ) (3.8)

ĨV H(k, τ) ' 2f1/2α2F (k, τ) +
4
3

(3/4− f1/2/2)IV H(k, τ) (3.9)

The correction in Equation (3.8) can be neglected in our experiment since
we use the best filter available (with f < 10−7) to select the scattered light
reducing ĨV V to IV V . On the other hand (3.9) becomes equal to (3.6) only if
2f1/2α2 � 4β2/45 (or equivalently if the depolarization ratio r = β2/(15α2)�
(3/2)f1/2 ). This simply means that only if the polarizer can efficiently depress
the polarized component of the scattered wave we have

ĨV H = IV H (3.10)

Note that if, contrarily, the polarization ratio is

r ∼ f1/2 (3.11)
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Figure 3.3: VH (left) and VV (right) correlation functions measured at two
different angles and at different aging times. Note that the VH correlation
function does not depend on the scattering angle ϑ while the VV function
does.

there must be a dependence of ĨV H on k (and therefore on the scattering angle
ϑ) introduced by the term α2F (k, τ).

We have carried out preliminary tests for our experiment to check if the
depolarized time-correlation function shows any significant dependence on the
scattering angle. We have measured the correlation functions g(2)

V H and g(2)
V V at

two different scattering angles for Laponite aqueous sample. The sample has a
1 % Laponite weight fraction as the one used in the FDT experiment. The VV
geometry and the VH geometry correlation functions have been measured at
the scattering angles ϑ = 15o, 90o and at different aging times. This change in
ϑ makes k vary, approximately, of a factor 5. The results are shown in Figure
3.3. As it can be clearly seen the VH correlation function does not dipend on
k while the VV function does. The relative difference between the ϑ = 15o VH
function and the ϑ = 90o VH function is always below the 10 %. We can state
that the term F (k, τ) in (3.9) is efficiently eliminated by the polarizer giving
ĨV H = IV H . Furthermore the k-dependence is not found in IV H(k, τ). This
means that that the function gV V is dependent on k only through F (k, τ). The
remarkable fact that gV H is independent on the exchanged wavevector will be
interpreted in the next Section leading to the result that the VH correlation
function is the correlation function of a rotational variable only.
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3.3.3 Roto-translational decoupling and separation of
timescales

In general a colloidal particle suspended in a solvent moves accordingly to a
Brownian motion. Thermal fluctuations in the solvent often push the particle
some direction so that its center of mass moves experiencing the random force
and the solvent friction. The particle can also rotate in a similar manner since
an instantaneous torque can act on it.

If we assume that these rotational and translational motions of the colloidal
particle are uncorrelated over appreciable long times. The average defining the
scattering functions can be rewritten in a simplified way, if we set.

〈e−ik·rj(0)P2(θi(τ))〉 = 〈e−ik·rj(0)〉〈P2(θi(τ))〉 = 0

we have that Eqs. (3.5) and (3.6) reduce to

IV V (k, τ) = F (k, τ)
[
α2 +

4
45
β2〈A(0)A(τ)〉

]
(3.12)

IV H(k, τ) =
β2

15
〈A(0)A(τ)〉F (k, τ) (3.13)

where we have defined A(τ) =
∑
i P2(θi(τ)). Note that, to obtain this equa-

tions, we do not have to assume that the two are not correlated at all, but
only on the timescales (µs - ms) and the length-scales (q−1(' λ) ' 500 nm)
probed in our experiment We can clearly see that this approximation separates
the function F (k, τ) (containing the information about the translation of the
colloidal particle) from 〈A(0)A(τ)〉 (that is related to the rotation of its sym-
metry axes) in the VH function. In this way the k dependence is extracted
form the angular correlation function.

When the rotational and the translational relaxation processes are uncor-
related they likely take place on different timescales. If we assume that the
characteristic time for the rotational relaxation is much smaller that the char-
acteristic time of the translational one we have that

IV V (k, τ) ' α2F (k, τ) +
4β2

45
〈A(0)A(τ)〉 (3.14)

IV H(k, τ) ' β2

15
〈A(0)A(τ)〉 (3.15)

Note that if this approximation is valid the relaxation time of the function
IV V is approximately given by the (k-dependent) relaxation time of F (k, τ).
An easy consistency check of this approximations can be done verifying if the
relaxation times are well separated. A rough estimation of the relaxation time
τr is given by (twice) the time at which the function g(2) − 1 reaches the
value σ/e (see Equation (3.7)). This corresponds to model the heterodyne
relaxation as a simple exponential, assuming that the factor σ depends weakly
on the polarization. In this way σ can be found form the short-time value of
gV V : σ ' g

(2)
V V (1µs) − 1. This estimate gives for the functions gV H and gV V

the relaxation times τV V = 120µs and τV H = 8µs (see Figure 3.3). This is
compatible with the results of Ref. (Laura Zulian) in which the (integrated)
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relaxation time of the VV correlation function, for a low concentration Laponite
solution, is estimated to be around 200 µs at the beginning of its aging process.

In summary we can state that the VH scattering correlation function is,
at very good approximation, the correlation function of the angular variable
A(τ) only. This conclusion can be obtained assuming that: (i) The polarized
contribution to the VH scattering can be neglected since the rejection factor
of the polarizer is high enough. (ii) The rotational and translational motions
are not coupled and the rotational characteristic time is much shorter than
the translational one. These approximations have been checked with prelim-
inary experimental tests covering the aging time interval studied in the FDT
experiment.

3.3.4 Linearity check for the response function

When performing an experiment that measures a response function one should
be careful that the response is a linear response. If the field acting on the
system is too intense, linear response theory does not apply and the FDT is
not satisfied. Being aware of this fact one has to be sure of measuring a linear
response when he needs to check if the FDT is violated. In a response experi-
ment we measure the change in dynamic variable induced by an external field.
If linear response theory applies the change in the observable A is proportional
to the external force. We can thus write that

〈A(τ)〉 ∝ Fχ(τ)

where F is the external force and χ(τ) is the response function associated with
the variable A.

In the experiment of Paper III we apply an external electric field to the col-
loidal solution to measure the induced birefringence. The sample is sandwiched
between two plane electrodes contained in a cell provided with windows (Kerr
cell) (see Sec. 3.3.5). The quantity we can measure, with the proper optical
set-up, is the dynamic birefringence δn(τ) that is proportional to the average
of angular variable introduced in Sec.3.3.3 in presence of the external field

δn(τ) ∝ 〈A(τ)〉
The change in A induced by the external field can be rewritten in therms of
a response function and of the external perturbation. In our case the Kerr-
effect response is proportional to the intensity of the applied electric field. The
anisotropic colloidal particle under the effect of the filed develops an induced
dipole, this interacts itself with the field. It can be shown very easily [112, 113,
114] that the energy contribution introduced by the external electric field is
given by −E0

2A(τ), where E0. This means that, if the response is linear, the
average change in A is proportional to the square of the field modulus:

〈A(τ)〉 ∝ E0
2χ(τ) (3.16)

This linearity can be checked easily in our experiment since we can monitor
the voltage applied to the cell. Indeed the Kerr cell is nothing but a planar
capacitor so that the applied voltage is proportional to the filed: E0

2 ∝ V0
2.

We tested the validity of Equation 3.16 varying the voltage applied to the Kerr
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Figure 3.4: Intensity of the birefringence response at τ = 1 ms as a function
of the applied voltage. The measurement are performed at the beginning of
the aging process of the colloidal solution tw ' 2 hours. This preliminary test
for the FDT experiment provides a value for the applied field at which the
response is a linear response.

cell and measuring the intensity of the induced birefringence at τ = 1 ms. The
tests where performed on a Laponite sample at the same concentration of the
one used for the FDT experiment and at the beginning of the aging process
(tw ' 2 hours) where the violation of the theorem is more intense. These
data are reported in Figure3.4, where we can see that a small deviation from
linearity is present when V0 ' 400 Volts. The FDT experiment has then been
carried out in the linear regime for the response, at an applied voltage of 250
Volts.

3.3.5 Experimental set-up

The experiment is designed to give the PCS measurement and the Kerr-effect
measurement on the same sample (see Figure 3.5).

The same laser is used as a probe of the spontaneous fluctuations of the
orientation dynamics and also as a probe of the induced birefringence when
performing the Kerr-effect measurement. This is a mono-mode DPSS green
laser (λ = 532 nm) with a 100 mW power output. The initial polarization
of the light produced is 1:100 and the beam is additionally polarized with a
standard-grade Glan-Thompson polarizer (P1) with rejection factor f < 10−5.
The angle that the polarization axis of P1 forms with the vertical (respect to
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Figure 3.5: Sketch of the experimental set-up. The laser radiation (λ=532
nm) is polarized by the polarizer P1 and focused by the lens L1 at the center
of the cell containing the sample. The scattered light is collected by the lens
L2 and selected by the polarizer P2 (orthogonal to P1). A photomultiplier
tube (PMT) detects the scattered photons. When no electric pulse is applied
to the cell, the output of the PMT is acquired by a computer equipped with
a custom digital correlator, this measures and stores the correlation function.
The Kerr cell containing the sample is provided by two electrodes connected
to a source of amplified electric pulses. The forward-scattered light (rotated
by the electrically stimulated sample) is collected by the lens L3 and passes
through a quarter-wave plate (QWP) and the polarizer P3 (orthogonal to P1).
The transmitted light is detected by a photodiode connected to a digital oscil-
loscope. This is triggered to the source of electric pulse measuring and storing
the Kerr-response function.
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the scattering plane) is 30o. The angles for the axis of the polarizers P1 and P3
and the quarter-wave plate (QWP) are selected to maximize the birefringence
response [112, 113, 114].

The polarized laser-light is directed to the Kerr-cell by a lens L1 having
the focus placed at the center of the cell. The cell is composed by a PVC
envelope containing the two plane copper-electrodes (dimensions 4× 50× 135
mm) and its provided by glass windows on three sides to let the light pass
through. The sample is sandwiched between the two electrodes. Note that one
of the electrodes has small hole (5 mm diameter) to allow the light scattered
at 90o to pass through.

The voltage is applied to the electrodes by means of a gated RF amplifier
connected to a wave generator providing the sinusoidal voltage oscillating at
a frequency around 10 MHz. Note that this high frequency component of the
applied electric field is not seen by the rotating colloidal discs responding to
the square of the applied electric filed and having characteristic relaxation time
much larger than this inverse frequency. Note also that it is important to use
an high-frequency oscillating filed in order to suppresses the ionic conduction in
the solution that would be present if a static DC filed was used. The maximum
duration of the high-voltage pulses is restricted to 1 ms.

When the amplifier is activated the response measurement is performed.
The light transmitted by medium is collected by the lens L3 having its focus
in the center of the cell (coinciding with the focus of L1). This light beam
passes through a quarter-wave plate (QWP) set with its principal axis vertical
and the analyzer P3 with its polarization forming an angle of 45o with the
vertical. P3 is a standard-grade Glan-Thompson polarizer with rejection factor
f < 10−5. The analyzed light is then measured with an high-speed Si detector
whose output is amplified by a custom-built amplifier with a 20 dB gain. This
detector is triggered with the RF amplifier. The time-dependent output voltage
of the Si detector is measured and stored by means of a digital oscilloscope. It
can be shown easily [112, 113, 114] that, with this optical set-up, the intensity
of the light detected is proportional to the induced birefringence δn introduced
in Sec. 3.3.4. Each response function has been efficiently measured averaging
it for approximatively 10 min.

When the electric pulses are not provided to the cell the PCS measurement
at a 90o scattering angle are performed. The light is collected by the lens L2
with its focus coinciding with the focus of L1. The scattered electromagnetic
wave passes through the analyzer P2 that is an high-quality Glan-Thompson
polarizer with rejection factor f < 10−7. The polarization axis of P2 is set
horizontally respect to the scattering plane. The selected radiation is then
collected by a collimator. This directs the light to an optical fiber connected
to it that delivers the photons to a photo-multiplier-tube (PMT). The PMT
(approx. 300 dark counts) produces a digital output that is acquired by a
National Instruments card and processed by the software package PhotonLab1

performing real-time multi-tau autocorrelation. The correlation function are
averaged approximatively for 20 min and stored in a computer.

1PhotonLab is a Python extension for the acquisition and analysis of photon counts
developed by R. Di Leonardo
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Chapter 4

Computer Simulation Studies of
The Off-Equilibrium
Fluctuation-Dissipation Relation

This chapter summarizes and expands the results of Paper IV. The simulations
of Paper IV are focused on the study the FDR, and the related effective tem-
perature, in a special class of liquids. We review the main features of these
liquids that characterize their out of equilibrium behavior and the properties
of the effective temperature. Moreover we present additional analysis showing
some intriguing analogies with spin-glass systems.

4.1 Density-Scaling Effective Temperature in Strongly
Correlating Liquids

In Paper IV the FDR is studied in computer simulations applying new theoret-
ical concepts introduced by our group (see Ref.s [115, 116, 117, 118, 119, 120]).
These works identified and characterized a class of liquids, named strongly cor-
relating liquids (SCLs), having strong correlation between the instantaneous
equilibrium fluctuations of potential energy and virial (at fixed density ρ and
temperature T )

∆W (t) ' γ∆U(t) (4.1)

where W/V = p − NkBT/V is the configurational (excess) component of
the pressure of the liquid system (the virial), and ∆U(t) = U(t) − 〈U〉 and
∆W (t) = W (t) − 〈W 〉 are, respectively, the fluctuations of potential energy
and virial. The fundamental property (4.1) can be equivalently expressed by
the correlation coefficient between ∆W and ∆U that is close to unity, i.e.

〈∆U(t)∆W (t)〉√〈[∆U(t)]2〉〈[∆W (t)]2〉 ' 1 (4.2)

The validity of the properties (4.1) and (4.2) can be explained by the fact that
the pair interaction potential vSCL(r) of a SCL is very well approximated by
an inverse power law potential plus a linear term of the form (see Ref. [118])
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vSCL(r) ' Ar−3γ +Br + C (4.3)

where r is the interparticle distance. This implies that a SCL acquires many
(but not all) of the scaling properties of systems interacting via inverse power
law potential (soft spheres). SCLs include van der Waals liquids like Lennard-
Jones type liquids but not, e.g., hydrogen-bonding liquids.

The numerical work of Paper IV illustrate why for SCLs the effective tem-
perature depends only on final density of the glass produce by any cooling
and/or compression procedure applied to an equilibrium liquid (see Figure
4.1). This result is a consequence of the existence of isomorphs in the phase
digram of SCLs (the concept of isomorphs was introduced in Ref. [120]). The
isomorphic line in the (T, ρ) plane is defined by the density scaling equation
ργ/T = const and jumping along this line (by changing T and ρ) takes the sys-
tem instantaneously at the equilibrium. Moreover two transformations bring-
ing the system from two initial states (T1, ρ1) and (T2, ρ2) that are isomorphic
(ργ1/T1 = ργ2/T2) to the same final state (T3, ρ3) show an identical aging be-
havior. In particular these two transformations must have the same (aging)
correlation and response function and, therefore, the same violation factor and
the same effective temperature. In practice for each crunch (instantaneous
density increase) it exists a quench (instantaneous temperature decrease) with
an identical aging pattern. This explains the findings of a previous work [84]
on the FDR in which it was found that Teff depends only on the final den-
sity for the single-component Lennard-Jones model liquid. These results must
hold for all SCLs, and in Paper IV they are verified accurately for the Kob-
Andersen binary Lennard-Jones (KABLJ) liquid [121, 122, 123] that belongs
to the SCL class. In this article it is also shown a specific counter-example,
i.e. the monatomic Lennard-Jones Gaussian liquid (MLJG) [124] (that is not
a SCL), for which Teff does not depend only on the final density.

Using another property of SCLs it is also shown that the effective temper-
ature obeys a density-scaling equation

ργ

Teff
= const (4.4)

This follows from the fact that two jumps (T1, ρ1) → (T2, ρ2) and (T3, ρ3) →
(T4, ρ4) between mutually isomorphic states, i.e. with ργ1/T1 = ργ3/T3 and
ργ2/T2 = ργ4/T4, have identical reduced-unit dynamics and therefore identical
scaled (see the next Section for more details) Tχ(t, t′) and C(t, t′). When this
is the case we have the same violation factor in the two jumps X2 = X4, and
Equation (4.4) follows simply by plugging T2 = Teff2X2 and T4 = Teff4X4 into
the equation ργ2/T2 = ργ4/T4.

The validity of Equation (4.4) can be extended beyond jumps involving only
two isomorphic lines . This can be done if we add to the property illustrated
above the fact that Teff is independent from the initial and final states if the
system is a rapidly relaxing liquid in the initial state and if the system is
taken in a very viscous regime by the jump into the final state (T2, ρ2). These
extreme transformations in which Teff is well defined independently on the
particular initial and final (T, ρ) might be sinthetically expressed as (ργ1/T1 ∼
0) → (ργ2/T2 ∼ ∞). Under these conditions Equation (4.4) is valid to a very
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Figure 4.1: FD plot for the KABLJ in various quenches and/or crunches (see
Paper IV and Sec. 4.1.1). All FD-plots have fixed t = 104 (MC steps) and t′
varying from 103 to 104. All functions plotted here have the same reduced k-
vector with respect to the final density of (©) and the same reduced microscopic
time (see Sec. 4.1.1). In the crunch (©) we set |k| = 7.81 corresponding to
the reduced k-vector |k̃| = 6.78 (see Sec. 4.1.1 for details). The crunch (©)
overlaps very well with the quench (2) that takes the system from an initial
state isomorphic to the one of the crunch to the same final state. Note also the
good superposition of the additional quench (5) that takes the system from a
state isomorphic to the initial state of (©) to a state isomorphic to the final
one of (©). The full lines have the slopes predicted from the density scaling
relation Equation (4.4) for Teff = T/X, adjusted only by a vertical shift to fit
the data (−X is the slope of the FD-plot at long times). The procedure followed
to extract the characteristic value q of C at which the FDT is violated is shown
by the vertical dashed lines. This is defined as the intersection between the full
lines predicted for the long-timescales FD-plot and the equilibrium FDT line.
As it is seen X and q appear to be correlated (see Sec. 4.1.3).
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good approximation for any glass produced by an arbitrary densification and/or
cooling of the SCL system.

As discussed in Paper IV the implication of this scenario is that the effec-
tive temperature of any SCL-glass, resulting from an arbitrary density and/or
temperature jump, can be predicted from a single out-of equilibrium simulation
providing the value of γ and of the constant appearing in Equation (4.4).

4.1.1 Simulation details

The SCL systems studied in Paper IV is a binary mixture (80:20) of 1000
particles interacting via Kob-Andersen Lennard-Jones potential. Simulations
are performed in the canonical (NVT) ensemble using the Metropolis Monte
Carlo (MC) algorithm [125, 126]. Simulation parameters are taken from Ref.s
[121, 122, 123]. The observables A and B considered for studying the FDR are

Ak(t) =
1
N

N∑
j=1

ηj cos[k · rj(t)] (4.5)

and

Bk(t) = 2
N∑
j=1

ηj cos[k · rj(t)] (4.6)

where rj(t) is the position of the jth particle at time t, k is the exchanged
wavevector, ηj is a bimodal random variable with zero mean assuming the
values ±1, and the sum is extended to all the N particles of the system (both
species). With this choice of variables the correlation function C is the self
intermediate scattering function that may also be rewritten as

C(t, t′) = 〈Ak(t)Bk(t′)〉 =
1
N

N∑
j=1

〈cos[k · (rj(t)− rj(t′))]〉 (4.7)

The integrated linear response function χ(t, t′) is the variation of the variable
Ak to the infinitesimal field h (coupled to Bk) that introduces an energy contri-
bution −hBk. If the field h depends on time as a delta function h = hδ(t− t′)
the response function can be rewritten as

χ(t, t′) =
∫ t

t′
dt′′

∂〈Ak(t)〉
∂h(t′′)

∣∣∣∣
h→0

(4.8)

In Paper IV we refer often to the reduced-units dynamics. The correct
reduced units for the Newtonian dynamics and for the Brownian dynamics
were reviewed in Ref. [120]. For the MC dynamics the reduced length is given
by l̃ = ρ1/3l. This defines the reduced k-vector k̃ = ρ−1/3k implying that,
given a wave-vector k1 at density ρ1, the k-vector with equivalent k̃ at density
ρ2 is k2 = (ρ2/ρ1)1/3k1. The microscopic time τ in the MC dynamics is set by
the maximum random step attempted by the particle δmax, i.e. τ = τ(δmax).
This is fixed to minimize the relaxation time of the (equilibrium) correlation
function at a given intermediate T and ρ (we set δmax at the same value chosen
in Ref.s [122, 123]. minimizing the decay-time of C at T = 0.75 and ρ = 1.2). It
follows that two MC simulations (performed at ρ1 and ρ2 respectively) have the
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same reduced time τ̃ if δ̃max is the same, that is when δmax2 = (ρ1/ρ2)1/3δmax1.
However note that this is a minor adjustment of δmax: in the density range
explored (in our simulations ρ varies from 1 to 1.53) δmax changes at most
15%.

The response function is computed without applying the perturbing field
following the new method introduced by L. Berthier in Ref. [123] for MC
simulations of liquid systems. To illustrate the method let us recall that in
a MC simulation [125, 126] we start from the system having a configuration{
rN
}
t
at time t given by the position of each of the N particles{

rN
}
t

= {r1(t), ..., rN (t)} (4.9)

To probe the phase space statistically a new random configuration
{
rN
}′
t
is

proposed. The acceptance rate of this move, indicated by A(
{
rN
}
t
→ {

rN
}′
t
),

is set by the energy difference of the configurations
{
rN
}
t
and

{
rN
}′
t
according

to the Metropolis rule [125, 126].
The system might assume the trial configuration at the next time-step t+1,

i.e.
{
rN
}
t+1

=
{
rN
}′
t
, or remain in the previous configuration,

{
rN
}
t+1

={
rN
}
t
, depending on the acceptance rate A. This defines the transition prob-

ability W as

W (
{
rN
}
t
→ {

rN
}
t+1

) =



A(
{
rN
}
t
→ {

rN
}′
t
)

if
{
rN
}
t+1

=
{
rN
}′
t

1−A(
{
rN
}
t
→ {

rN
}′
t
)

if
{
rN
}
t+1

=
{
rN
}
t

(4.10)

The probability Pα(t′ → t) that the system follows a specific trajectory α
taking it from the configuration

{
rN
}α
t′
at time t′ to the configuration

{
rN
}α
t

at time t is given by the combined transition probabilities W , i.e.

Pα(t′ → t) =
t−1∏
t′′=t′

W (
{
rN
}α
t′′
→ {

rN
}α
t′′+1

) (4.11)

An average quantity in the MC simulation is given by the average over all the
M sampled trajectories weighted by their probability so that the correlation
function (4.7) becomes

C(t, t′) = 〈Ak(t)Bk(t′)〉 =
1
M

M∑
α=1

Pα(t′ → t)Ak(
{
rN
}α
t

)Bk(
{
rN
}α
t

) (4.12)

Similarly the response function (4.8) of the variable Ak can be rewritten as

χ(t, t′) =
∂

∂h

[
1
M

M∑
α=1

Pα(t′ → t)Ak(
{
rN
}α
t

)

]
h→0

(4.13)

were the probabilities are now affected by the infinitesimal field h.
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The method proposed in Ref. [123] is based on the idea of taking the
derivative of Equation (4.13) inside the sum in order to differentiate and take
the limit h → 0 before computing the average. In this way we will be able
to compute the response function without actually including the external-field
contribution −hBk into the energy of the system. To show this in practice we
rewrite the probability of Equation (4.11) using the identity x = exp[ln(x)] as

Pα(t′ → t) = exp

[
t−1∑
t′′=t′

ln
[
W (
{
rN
}α
t′′
→ {

rN
}α
t′′+1

)
]]

(4.14)

If we take the derivative with respect to h of Equation (4.14) we get

∂

∂h
Pα(t′ → t) =

t−1∑
t′′=t′

∂

∂h
ln
[
W (
{
rN
}α
t′′
→ {

rN
}α
t′′+1

)
]
Pα(t′ → t) (4.15)

Using Equation (4.15) into Equation (4.13) we obtain

χ(t, t′) =

1
M

M∑
α=1

Pα(t′ → t)Ak(
{
rN
}α
t

)×

t−1∑
t′′=t′

[
∂

∂h
ln
[
W (
{
rN
}α
t′′
→ {

rN
}α
t′′+1

)
]]
h→0

(4.16)

Notice that the limit h → 0 has been taken for all the terms in Equation
(4.16) so that the probability Pα(t′ → t) has reduced to the un-perturbed one.
Introducing the quantity

R(t′ → t) =
t−1∑
t′′=t′

[
∂

∂h
ln
[
W (
{
rN
}α
t′′
→ {

rN
}α
t′′+1

)
]]
h→0

(4.17)

Equation (4.16) that can be rewritten in the simpler form

χ(t, t′) = 〈Ak(t)R(t′ → t)〉 (4.18)

that is now an average on the un-perturbed trajectories.
As we have shown the issue of computing χ(t, t′) has been reduced to the

simpler task of obtaining the function R(t′ → t) that is composed by the
derivative of the logarithms of the transition probabilities (Equation (4.18))
with h → 0. To do this practically in a MC-Metropolis simulation we can
proceed examining the transition probabilities in all the possible situations. In
the case the trial configuration

{
rN
}′
t
is accepted (i.e.

{
rN
}
t+1

=
{
rN
}′
t
) we

have
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W (
{
rN
}
t
→ {

rN
}
t+1

) =

exp
[
− 1
T

[U(
{
rN
}
t+1

)− hB(
{
rN
}
t+1

)+

− U(
{
rN
}
t
) + hB(

{
rN
}
t
)]
]

(4.19)

when

U(
{
rN
}
t+1

)− hB(
{
rN
}
t+1

)− U(
{
rN
}
t
) + hB(

{
rN
}
t
) > 0 (4.20)

and

W (
{
rN
}
t
→ {

rN
}
t+1

) = 1 (4.21)

when

U(
{
rN
}
t+1

)− hB(
{
rN
}
t+1

)− U(
{
rN
}
t
) + hB(

{
rN
}
t
) ≤ 0 (4.22)

According to these Equations we have that the needed derivatives are given by

∂

∂h
ln
[
W (
{
rN
}
t
→ {

rN
}
t+1

)
]
h→0

=
1
T

[
B(
{
rN
}
t+1

)−B(
{
rN
}
t
)
]

(4.23)

when U(
{
rN
}
t+1

)−U(
{
rN
}
t
) > 0, or when U(

{
rN
}
t+1

)−U(
{
rN
}
t
) = 0 and

B(
{
rN
}
t+1

)−B(
{
rN
}
t
) < 0. Differently we have that

∂

∂h
ln
[
W (
{
rN
}
t
→ {

rN
}
t+1

)
]
h→0

= 0 (4.24)

when U(
{
rN
}
t+1

)−U(
{
rN
}
t
) < 0, or when U(

{
rN
}
t+1

)−U(
{
rN
}
t
) = 0 and

B(
{
rN
}
t+1

)−B(
{
rN
}
t
) ≥ 0.

The last case to consider is when the trial configuration is rejected. When
this happens the configuration remains the same

{
rN
}
t+1

=
{
rN
}
t
6= {

rN
}′
t

and the transition probability is 1−W (
{
rN
}
t
→ {

rN
}
t+1

), where W is given

by Equation (4.19) having
{
rN
}
t+1

replaced by
{
rN
}′
t
in the expression. In

this situation we have

∂

∂h
ln
[
W (
{
rN
}
t
→ {

rN
}
t+1

)
]
h→0

=

(
1
T

)
B(
{
rN
}′
t
)−B(

{
rN
}
t
)

1− exp
[
U({rN}′t)− U({rN}t)

] (4.25)

39



4. Computer Simulation Studies of The Off-Equilibrium
Fluctuation-Dissipation Relation

Concluding by computing the Equations (4.23), (4.24) and (4.25) we can
calculate the response function without applying the external field as proposed
in Ref. [123]. This method, used in Paper IV, provides a great simplification
since one does not have to run many preliminary simulations to check the
linearity of the response function in the filed (see also Section 3.3.4).

4.1.2 Equilibrium and off-equilibrium energy landscape in
strongly correlating liquids

Studying in detail the off- equilibrium dynamics of the SCL we have investi-
gated the relationship between the inherent state (IS) energy [127, 128, 129]
and the effective temperature by additional simulations. While the fast vi-
brational dynamics is associated with the rapid oscillations of the system in a
potential energy minimum, the transitions between ISs correspond to the slow
structural rearrangements. This schematic division suggest that the effective
temperature measured from the FDR individuates the typical basins visited
during aging as it was originally suggested by F. Sciortino and P. Tartaglia in
Ref. [129].

To test these ideas we have calculated the off-equilibrium average IS energy
〈eIS(t)〉 for a number of off-equilibrium jumps at long times (t = 104 MC steps),
and in the same simulation we have obtained the the effective temperature Teff

from the FDR. After Teff is determined in the off-equilibrium simulation, we
have simulated the system at the equilibrium at T = Teff and we have computed
the equilibrium average IS energy 〈eIS〉T=Teff . In Figure 4.2 we 〈eIS〉T=Teff as a
function of 〈eIS(t)〉. As it can be seen from Figure 4.2 the equilibrium and the
off-equilibrium IS energies are found to coincide to a very good approximation,
i.e.

〈eIS〉T=Teff = 〈eIS(t)〉 (4.26)

This means that for the SCL system Teff indicates which part of the potential
energy landscape is visited during the aging with respect to the equilibrium
states. In contrast (see Figure 4.2), this interpretation is clearly not valid
(Equation (4.26) does not apply) for the (non-SCL) MLJG system, confirming
the idea that SCLs have simpler glassy behavior than liquids in general.

The correspondence between the equilibrium and off-equilibrium ISs sug-
gests that a SCL system has to follow a precise aging pattern during the ther-
malization. This route to the dynamical arrest is restricted to the same ISs
that the system visits by a series infinitesimal changes of temperature (at fixed
volume) taking the liquid from the initial IS to the IS in which it remains
trapped during aging. So far we have found no clear way to obtain this aging
property directly from the constitutive properties of the SCLs (Equations (4.1),
(4.2), (4.3)).

Moreover these considerations do not clarify why an aging non-SCL system
visits ISs that it would not probe at the equilibrium. In this case it is interesting
to consider that by simply quenching a non-SCL system this might be avoiding
an equilibrium liquid-to-liquid transition [130, 131, 132, 133, 134, 135]. This
idea has to be confirmed more accurately by comparing the structure of an
aging and of an equilibrium non-SCL system as the MLJG liquid. Nevertheless
this scenario may be understood qualitatively considering the typical behavior
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Figure 4.2: Comparison between the (average) equilibrium inherent states en-
ergy (at T = Teff(t)) and the off-equilibrium inherent states energy (at time
t) in several jumps in the glass (see legend). For the KABLJ systems (red
symbols) these two quantities coincide, indicating that the aging system at t
visits the same inherent states of the system in equilibrium at the temperature
T = Teff(t) given by the FDR. This is clearly not the case for the MLJG sys-
tems (green symbols). The energy values of the MLJG are scaled by a factor
2.5 for an easier comparison with the KABLJ energies.

of the structure of water or silicon upon cooling. These systems are non-SCL
systems as discussed in Ref.s [117, 120] and they shows clearly the emergence
of a very open and empty structure at low temperatures promoted by the
formation of a large number directional bonds. It reasonable to imagine that
the formation of this structured liquid requires the system to be annealed at
some temperature that is low enough to favor the new structure. If such a
complicated liquid were taken out of the equilibrium by a sudden temperature
decrease starting from high temperature the different structure could still be
the favored one, but the significant rearrangements required to form it would be
highly suppressed. Note that this possible scenario is qualitatively analogous
to the description of an avoided crystallization leading to a stable supercooled-
liquid regime [136, 137, 138, 6]. In practice we could think that the equilibrium
non-SCL system at T = Teff is very different from the aging system since the
latter did not have time to perform the transition to the new liquid phase. This
picture would qualitatively explain why the off-equilibrium system is visiting
some ISs that are un-accessible at the equilibrium. Furthermore this scenario
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suggests to allow density to change in order to obtain an equilibrium system
structurally more similar to the aging one defining in this way some sort of
effective density. One can imagine that, in the case of water, by restricting
the liquid in smaller volumes (obtaining a higher pressure) we could suppress
the open structure creating an equilibrium system that has a short-range order
more similar to the one of the quenched system (at large volume). Certainly
more work is needed to clarify these issues and computer simulations might
open the way to a new series of studies.

4.1.3 A correlation between the non-ergodicity factor and
the violation factor

The results of Paper IV, summarized at the beginning of Sec. 4.1, focused
mainly on the FDT violation factor and the effective temperature. Another
interesting feature to consider is the value of the correlation function C(t, t′) at
which the standard FDT is violated. This parameter represents off-equilibrium
non-ergodicity factor of the structural glass. To define sharply the characteris-
tic value q of C at which the FDT is violated we can proceed as follows (as it
is shown in Figure 4.1). First we fit the points of the FD-plot corresponding to
long time-scales (t−t′)/t′ � 1 with a straight line (the slope of this line defines
the violation factor X), then we identify the intersection of this line with the
FDT line (the abscissa of this intersection point defines q). Notice that this is
the same approach used in Paper III to define q.

It is quite clear from Figure 4.1 that if X is lower the deviation from the
FDT appears at values of C(t, t′) closer to the unity. On a more general
ground we already know, from the properties of SCLs illustrated in the previous
Section, that the violation factor is a function only of the final state of the
transformation. Mathematically speaking we have that X = X(ργ2/T2), when
(ργ1/T1 ∼ 0)→ (ργ2/T2 ∼ ∞). In particular if we plug the definition Teff = T/X
(Equations (3.3)) into Equation (4.4) we obtain

X(ργ/T ) = const
T

ργ
(4.27)

where we have dropped the index 2 since it is clear that from now on we refer
only to the final state of the off-equilibrium jump.

As stated in Sec. 4.1 jumping between mutually isomorphic states gives
the same scaled Tχ(t, t′) and C(t, t′) and therefore the same q. Moreover it
is found that whenever Equation (4.4) applies we have that also q depends
only on the scaling parameter of the final state ργ/T . This can be appreciated
from Figure 4.3 that reports the values of q and X for a number of jumps
in the glass not only involving initial and final state points that are mutually
isomorphic. From this Figure it is clear that, to a very good approximation,
each value q corresponds to a single value of X = X(ργ/T ) leading us to
conclude that q = q(ργ/T ). As we did for X we can state that the non-ergodic
factor q depends only on the final scaling parameter but, unfortunately, we do
not know a priori the functional form of q(ργ/T ). Differently we know that X
is given by the simple Equation (4.27).

It is intriguing to notice that a very similar situation, where X and q are
functions of the same thermodynamic parameter, is found in those spin sys-
tems with quenched disorder exhibiting the so called one-step replica-breaking
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Figure 4.3: Violation factor as a function of the non-ergodicity factor in the
off-equilibrium simulations of the KABLJ for a number of off-equilibrium tem-
perature and/or density jumps not only involving initial and final state points
that are mutually isomorphic. Notice that, to a very good approximation,
each value q corresponds to a single value of X = X(ργ/T ), indicating also
q = q(ργ/T ). The full line is a fit with the Equation (4.30) similar to (4.30)
describing the connection between q and X in the p-spin spherical model.

(1-RSB) scenario [139, 140, 141, 142, 143, 144, 145]. More generally these spin-
systems have a number of properties in common with structural supercooled
liquids and glasses. For example they show a two step-relaxation in the equilib-
rium correlation function and a two time-scales violation of the FDT as found
in structural glasses. Moreover some of their thermodynamic observables, as
the specific heat, show a temperature behavior similar to the one found in
supercooled structural systems. These analogies were noticed by Kirkpatrick,
Thirumalai and Wolynes in a series of works [146, 147, 148] and led to the for-
mulation of the Random First Order Transition Theory of the glass transition
[149, 150, 151, 152].

An important spin-glass model belonging to the 1-RSB class is the spherical
p-spin model [153, 154, 20, 144, 145], since its statics and dynamics can be
solved exactly. This model is defined by the Hamiltonian:

H = −
∑

1≤i1<...<ip≤N
Ji1..ipSi1 ...Sip (4.28)

where the Si are N continuous spins interacting in groups of p elements via
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Figure 4.4: Xq plotted as function of (1 − q). The full lines are fits with
Equation (4.31) and (4.31) (parameters from the off-equilibrium simulations of
the KABLJ). Notice that the fitting function (4.32) has an intercept compatible
with zero.

the random couplings Ji1..ip . These couplings are distributed according to
a Gaussian with variance equal to (J2p!N1−p/2). A final requirement of the
model is that the spins satisfy the global constraint

∑
i Si

2 = N . The dynamics
of this model can be solved exactly at the equilibrium obtaining a two-step
relaxation for the spin-spin correlation function [154, 145]. Out of equilibrium it
can be shown that a FDR with the same form of Equation (3.2) holds [154, 144].
Finally it can be proved [154, 144] that the value of the spin-spin correlation
function q at which the FDT is violated and the violation factor X are related
by the following equation

X =
(p− 2)(1− q)

q
(4.29)

It turns out that an equation similar to Equation (4.29) can be used to
describe the bound between X and q observed for the KABLJ liquid illustrated
above. The function relating X to q in the KABLJ can be well fitted by a
function of the form (see Figure 4.3)

X = α
1− q
q

(4.30)
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where α is a free fitting parameter. To test further the quality of the function
(4.30) in describing the correlation between X and q we fit the quantity Xq
as a function of (1− q) with a straight line forced to pass through zero and a
straight line with free intercept (see Figure 4.4). This corresponds to fit with
the two functions

Xq = α(1− q) (4.31)

and

Xq = α(1− q) + β (4.32)

As seen from Figure 4.4 the fitting function (4.32) has a intercept compatible
with zero, making the simpler Equation (4.31) preferable for fitting. It has
also to be noticed that, if Equation (4.31) applies well, from a single out of
equilibrium jump we can not only predict the effective temperature but the full
FD-plot. Indeed from a single quench simulation we can obtain γ, the constant
of Equation (4.27) as const = Xργ/T , and the parameter α of Equation (4.31)
as α = Xq/(1−q). Once these values are obtained from a single off-equilibrium
simulation, we can predict X and q by using Equation (4.27) X = constT/ργ

and

q(ργ/T ) =
α(ργ/T )

α(ργ/T ) + const
(4.33)

The FD-plots predicted from Equations (4.27) and (4.33) are illustrated in
Figure 4.5 (colored surface). In Figure 4.5 the prediction is compared with three
FD-plots corresponding to off-equilibrium jumps to states with well separated
ργ/T .

Perhaps it is interesting to consider more in detail the qualitative physical
meaning of an equation of the kind (4.29)-(4.30) [154, 145, 144]. To do this we
recall that the phase space of the p-spin model can be uniquely partitioned in
ergodic sub-components (states) separated by free-energy barriers diverging in
the thermodynamic limit. When the spin-system is taken out of equilibrium by
a quench below the dynamic transition temperature Td it remains trapped for
ever in some of these states with higher energy than the final equilibrium state.
In this context the parameter q represents the overlap between configuration
belonging to same state for one single realization of the disordered couplings
J . Qualitatively speaking q quantifies the similarity between two different
spin configurations belonging to the same free-energy basin that have evolved
for a large, but finite, time. Notice that q = 1 if we consider the overlap
between two copies of the same configuration. Alternatively 1 − q can be
interpreted as a measurement of the characteristic size of the sub-component
of the phase space, i.e. a large q indicates that the configurations of a single
portion of phase space are very close to each other meaning that the component
is, in some sense, small. On the other hand 1−X is the probability that two
randomly chosen configurations belong to the same component of the phase
space, and therefore that they have overlap q. This means that, if X is small,
the trapping states for the off-equilibrium dynamics have small degeneracy (i.e.
they have small configurational entropy), so that there is an high probability
that two configurations fall in the same state. Contrarily if X is large the
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Figure 4.5: Three-dimensional FD-plots for the KABLJ. The surface is pre-
dicted via Equations (4.27) and (4.33). This is compared with three FD-plots
corresponding to off-equilibrium jumps to states with well separated ργ/T .

off-equilibrium states have large multiplicity and it is un-probable that two
configurations belong to the same state.

According to these considerations Equation (4.29) gives us a qualitative
description of the topological properties of the free-energy landscape of the
p-spin model. In particular it tells us that if those trapping states dominating
the off-equilibrium dynamics are small (and with high overlap) they are few,
differently if those states are large (and with small overlap) they are many.
At this point is natural to ask if the same qualitative correlation between X
and q seen for the KABLJ glass is telling us that a similar structure of the
landscape is present in this liquid system. This would be interesting to study
in more detail, especially using the frequently employed mapping between the
states and potential energy minima in structural supercooled liquids and glasses
mentioned above [127, 128, 129].
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Chapter 5

Experimental Studies of The
Heterogeneous Dynamics

This Chapter is dedicated to the study of the heterogeneous dynamics. We
start by giving some useful definitions of the multi-point susceptibilities. More-
over we review the relationships linking the three-point susceptibility to the
temperature-induced change in a standard correlation function. We illustrate
the main findings of Paper V based on these theoretical developments. Finally
we present a new experiment capable of measuring directly the four-point sus-
ceptibility in systems of nano-particles.

5.1 Multi-Point Susceptibilities

As mentioned in Section 1.4 an interesting feature of the structural dynam-
ics of supercooled and glassy systems is its spatial heterogeneity. Qualitative
speaking this corresponds to say that some of the atoms (or of the molecules)
constituting the liquid system move very differently from the average on the
timescale of the structural relaxation. The existence of this heterogeneous
motion imply a that the dynamics fluctuates considerably among space also
meaning that the molecular motions are correlated. The situation is captured
very clearly by computer simulations as seen in Figure 5.1(A) and (B). In this
Figure we show the displacement vector-filed

∆rj(t ' τα) = rj(t ' τα)− rj(0)

of the particles for the KABLJ liquid (see Section 4.1.1) after a time comparable
to the structural relaxation time. The system is simulated by MC dynamics at
density ρ = 1.2 and temperature T = 0.42. As it is seen from Figure 5.1(A) a
large number of particles in left-upper corner of the simulation box has much
larger displacement than the rest of the particles. This can be seen even more
clearly in Figure 5.1(B) where a slice of the 3D box has been reproduced. This
shows a rather heterogeneous displacement filed evidenced by the coloring.

Computer simulations have easy access to the study of this scenario, al-
though they are restricted to short time-scales of few hundreds of nanoseconds.
In this context multi-point susceptibilities have been use very often to statis-
tically characterize the heterogeneous dynamics [25, 26, 27, 28]. To fix the
ideas let us consider a standard (two-point) correlation function C [17, 18, 19]
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Figure 5.1: (A) displacement filed of the particles of a Kob-Andersen Binary
Lennard Jones liquid simulated for a time of the order of the relaxation time
at T ' 0.42 and ρ = 1.2. The heterogeneous motion is clearly seen as a group
of particles in left-upper corner of the simulation box having a much larger
displacement than the average. The plane evidenced by the red lines indicates
the slice of the box reproduced in (B) this is taken at height z ' 8. (B) shows
the displacement filed of this slice when projected on the horizontal plane
(vectors). The coloring is produced by smoothing a function that associates to
the position of each particle at t = 0 a color close to red if the displacement is
high and close to blue if the displacement is low.
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(see also Section 1.3 and 4.1.1) of the fluctuations of the variable A at the
equilibrium

C(t) = 〈C(0, t)〉 = 〈δA(t)δA(0)〉 (5.1)

where and C(0, t) = δA(t)δA(0) and δA(t) = A(t) − 〈A〉 is the instantaneous
fluctuation of the observable A. As illustrated in Section 1.3 and 4.1.1 the cor-
relation function C(t) represents the statistical quantity describing the spon-
taneous dynamics of a many-body system.

From the qualitative description of the heterogeneities given above, it is
clear that when the dynamics is heterogeneous one expects large deviations of
the molecular motions from the average and, consequently, large fluctuations of
the de-correlations from the average correlation function (5.1). It is therefore
natural to associate the heterogeneity with the fluctuations of the whole corre-
lation function around its average value by defining a four-point susceptibility
χ4(t) as the variance of the function C(t)

χ4(t) = N
[〈[δA(t)δA(0)]2〉 − 〈δA(t)δA(0)〉2] (5.2)

that may be rewritten more synthetically as

χ4(t) = N
[〈C2(0, t)〉 − 〈C(0, t)〉2] = N〈[δC(0, t)]2〉 (5.3)

where N is the number of particles of the system and δC(0, t) = C(0, t) −
〈C(0, t)〉. Note that multiplying the variance 〈[δC(0, t)]2〉 by the factor N is
needed in order to promote χ4(t) to be an intensive (system’s size indepen-
dent) quantity that can be associated with a well defined spatial extent of the
dynamical correlations. This is because a properly normalized auto-correlation
function is also an intensive (dynamic) quantity. This is the case, for example,
of the self-intermediate scattering function defined in Section 4.1.1. For this
reason the fluctuations of the correlation function are expected to decrease as

〈[δC(0, t)]2〉 ∼ 1
N

(5.4)

in the thermodynamic limit. The situation is completely analogous to the more
familiar case of an intensive static quantity [17, 18, 19]. In general the variance
〈(δO)2〉 of any intensive observable O decreases when the system’s size grows
as

〈(δO)2〉 ∼ 1
N

(5.5)

while its average stays constant (〈O〉 ∼ const) as N grows. This gives the usual
small fluctuations, with respect to the average values, in the thermodynamic
limit1

〈(δO)2〉
〈O〉2 ∼ 1

N
(5.6)

1Notice that small fluctuations are expected also for an extensive variable (〈O〉 ∼ N )
whose variance grows linearly with the system’s size 〈(δO)2〉 ∼ N , giving 〈(δO)2〉/〈O〉2 ∼
N−1 in the thermodynamic limit.
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It is instructive to consider more in detail the reason why the dynamic
variance of Equations (5.2) and (5.3) contains informations about the spatial
correlations. To illustrate this let us start by a simpler case considering which
spatial correlations are involved in the standard correlation function C(t). For
doing this we rewrite the instantaneous value of the variable A as a space-
average of instantaneous local contributions a(r, t) as follows

A(t) =
1
V

∫
d3r a(r, t) (5.7)

and therefore

δA(t) =
1
V

∫
d3r δa(r, t) =

1
V

∫
d3r a(r, t)− 〈A〉 (5.8)

where V is the system’s volume and we have introduced the local fluctuation
δa(r, t). Inserting the definition (5.8) in the correlation function (5.1) we obtain

C(t) =
〈

1
V

∫
d3r δa(r, t)

1
V

∫
d3r′ δa(r′, 0)

〉
(5.9)

Using the translational invariance Equation (5.9) can be rewritten also as

C(t) =
〈

1
V

∫
d3r δa(r, t) δa(0, 0)

〉
(5.10)

Equations (5.9) and (5.10) show how the standard correlation function C(t)
correlates only the fluctuations of the variable a belonging to two points in space
(0 and r) clarifying why we often refer to C(t) as a two-point susceptibility.

Similarly to what we have done with C(t), we can obtain an expression for
χ4(t) showing explicitly its spatial dependence. To do this let us introduce the
local correlation of fluctuations

c(r, 0, t) = δa(r, t) δa(0, 0) (5.11)

that can be used to write Equation (5.10) in a more compact way

C(t) =
〈

1
V

∫
d3r c(r, 0, t)

〉
(5.12)

By comparing Equation (5.12) with Equation (5.1) it is clear that we can
rewrite the function C(0, t) appearing also in Equation (5.3) as

C(0, t) =
1
V

∫
d3r c(r, 0, t) (5.13)

and

δC(0, t) =
1
V

∫
d3r δc(r, 0, t) =

1
V

∫
d3r c(r, 0, t)− 〈C(0, t)〉 (5.14)

where we have defined the local fluctuation δc(r, 0, t) of the (local) correlation
in complete analogy with Equation (5.8). By inserting Equation (5.14) in
Equation (5.3) we have that χ4(t) is rewritten as

50



Multi-Point Susceptibilities

χ4(t) = N

〈
1
V

∫
d3r δc(r, 0, t)

1
V

∫
d3r′ δc(r′, 0, t)

〉
(5.15)

Equation (5.15) shows clearly how χ4(t) correlates two functions δc(r, 0, t) that
by themselves involve two points in space motivating the name four-point sus-
ceptibility given to χ4(t). Equation (5.15) can be simplified by assuming trans-
lational invariance to obtain

χ4(t) = ρ

〈∫
d3r δc(r, 0, t) δc(0, 0, t)

〉
(5.16)

where ρ = N/V is the density of the system.
The typical non-monotonic behavior of χ4(t) is clearly seen in computer

simulations of supercooled model-liquids. In Figure 5.2 we show the χ4(t)
obtained in the Monte-Carlo computer simulation of the Kob-Andersen binary
Lennard-Jones mixture (see Section 4.1.1). Moreover χ4(t) is found to grow
in amplitude as the temperature decreases and its peak shifts to longer times
[34, 35, 36]. The four-point susceptibility of Figure 5.2(B) is computed by the
variance of the self-intermediate scattering function shown in Figure 5.2(A). By
comparing Figure 5.2(A) and (B) it is clear that the four point susceptibility
reaches its maximum maxt{χ4(t)} approximatively in correspondence of the
relaxation time of the correlation function, i.e. at t ' τα.

At this point it also is worthy to notice that when the correlation function
C(t) considered for obtaining χ4(t) is properly normalized (and therefore adi-
mensional) we can interpret χ4(t) as a (dynamic) number of molecules whose
dynamics is correlated. In particular the maximum maxt{χ4(t)} ' χ4(t = τα)
is taken as the characteristic number of molecules whose dynamics is correlated
[34, 37, 38, 39]

Ncorr = max
t
{χ4(t)} (5.17)

When the correct normalization is needed we can simply replace fluctuation
of the variable δA(t) appearing in the Equations above with the normalized
fluctuation δÂ(t) defined as

δÂ(t) =
δA(t)√〈(δA)2〉 (5.18)

This corresponds to divide the (non-normalized) correlation function C(0, t) by
the constant

〈C(0, 0)〉 = C(0) (5.19)

in this way the correlation function 〈Ĉ(0, t)〉 = 〈C(0, t)〉/C(0) is normalized to
the unity for t = 0. Alternatively we can divide χ4(t) by the factor

〈(δA)2〉2 = 〈C(0, 0)〉2 = C(0)2 (5.20)

The self-intermediate scattering function considered above is an example of
a well normalized (adimensional) correlation function, so that its maximum
amplitude can be readily taken as the characteristic number of molecules whose
dynamics is correlated (see Figure 5.2(B))
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Figure 5.2: (A) Self-intermediate scattering function for the KABLJ system
at ρ = 1.2 and T = 0.42 (see Section 4.1.1). The relaxation time τα can be
roughly defined as the value of t at which the correlation function function
reaches the value 1/e. (B) Four point susceptibility χ4(t) corresponding to
the same simulation of (A). Notice that χ4(t) reaches a maximum at t ' τα.
This maximum can be taken as the characteristic number of molecules whose
dynamic is correlated.

52



Multi-Point Susceptibilities

5.1.1 The three-point susceptibility

So far we have considered χ4(t) and its very informative content about the
spatial correlations of the dynamics. Nevertheless another class of slightly
simpler multi-point susceptibilities can be studied and this turns out to be
more easily accessible by experiments. These are the three-point susceptibilities
defined as

χ3(t) = N [〈C(0, t)B(0)〉 − 〈C(0, t)〉〈B〉] = N〈δC(0, t)δB(0)〉 (5.21)

that is the correlation between the fluctuation of the variable B at time t = 0
and the fluctuation of the dynamic function C(0, t). As done above we can
express the spatial dependence of the function (5.21) just by plugging into
Equation (5.21) the Equations (5.8) and (5.14) obtaining

χ3(t) = N

〈
1
V

∫
d3r δc(r, 0, t)

1
V

∫
d3r′ δb(r′, 0)

〉
(5.22)

As seen from Equation (5.22) the three-point susceptibility embodies the corre-
lation between a one-point quantity δb(r, 0) and a two-point (dynamic) quan-
tity δc(r, 0, t). Again the Equation (5.22) is simplified by using translational
invariance

χ3(t) = ρ

〈∫
d3r δc(r, 0, t) δb(0, 0)

〉
(5.23)

The physical meaning of the three-point susceptibility and the way to its ex-
perimental determination become clear if one specifies the variable B contained
in the function. To do this we must consider the fluctuation of the variable
coupled to a temperature change, i.e. the proper thermodynamic potential of
the ensemble. This is the energy in the NVT ensemble, or the enthalpy in
the NPT ensemble. In the following we restrict our considerations to the NPT
ensemble that is relevant for experiments. To this purpose we recall that that
the total enthalpy Htot is an extensive quantity being that defined as

Htot = Etot + pV (5.24)

where Etot is the total internal energy and p is the constant pressure of the
system. As we did for χ4(t) we want χ3(t) to be an intensive variable, so we
will consider the instantaneous enthalpy per particle

H(t) =
Htot(t)
N

(5.25)

The variance ofH, i.e.〈(δH)2〉, is conveniently expressed by using the fluctuation-
dissipation theorem (FDT) as [155, 34, 35, 36, 37]

N〈(δH)2〉 = kBT
2cp (5.26)

where cp is the specific heat per particle at constant pressure. Notice again
that the multiplying factor N is needed in order to have an intensive specific
heat. Indeed the enthalpy per particle is intensive and its variance decreases
as 〈(δH)2〉 ∼ N−1 in the thermodynamic limit (see Equations (5.5) and (5.6)).
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Replacing the variable B in Equation (5.21) with the enthalpy per particle H
of Equation (5.25) we get

χ3(t) = N〈δC(0, t)δH(0)〉 (5.27)

This quantity represents the correlation between an enthalpy fluctuation and
the fluctuation of the the dynamic correlation function and it tells us how a
change of the thermodynamic potential influences the dynamics. The typical
form of the function χ3(t) is very similar to the one of χ4(t) with a non-
monotonic behavior displaying a maximum in correspondence of t ' τα (see
Figure 5.2(B)). Moreover χ3(t) grows in amplitude and its peak shifts to longer
times as he temperature decreases. As we did for χ4(t) we notice that we can
associate to the maximum amplitude of χ3(t) the characteristic number NcorrT

of molecules whose dynamics is correlated to an enthalpy fluctuation. To do
this, assuming that C(0, t) is already properly normalized, we just need to
divide the fluctuations of H by the factor

√
kBcpT that is the characteristic

amplitude of the fluctuation of the enthalpy per particle (see also Equation
(5.18)). In this way we obtain a correctly normalized (adimensional) χ3(t) and
therefore

NcorrT =
maxt{|χ3(t)|}√

kBcpT
(5.28)

notice that the absolute value is taken in order to have a positive NcorrT .
To understand how the function (5.27) can be obtained in experiments we

must use again the FDT. Let us write first the standard FDT for the change
in a generic variable 〈O〉 induced by a temperature change

∂〈O〉
∂T

= N
〈δO δH〉
kBT 2

(5.29)

that consistently gives Equation (5.26) if we set O = H. In analogy we can
write a (dynamic) FDT for the induced change χT in the correlation function

χT (t) =
∂〈C(0, t)〉

∂T
= N

〈δC(0, t) δH(0)〉
kBT 2

(5.30)

If we now use Equation (5.27) into Equation (5.30) we get

χ3(t) = kBT
2 χT (t) (5.31)

For the NcorrT of Equation (5.28) we have

NcorrT =

√
kB
cp

T max
t
{|χT (t)|} (5.32)

As we can see from Equation (5.31) and Equation (5.30) the problem of measur-
ing the complicated three-point susceptibility has been reduced to measuring
the temperature-step induced change in the standard (two-point) correlation
function C(t). This is a major simplification since C(t) at different tempera-
tures is, in fact, the quantity that is practically measured in any dynamic ex-
periment. More precisely what we usually measure by dynamical experiments
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is the frequency-resolved linear response function as the dielectric susceptibil-
ity ε(ω) or the shear modulus G(ω) (see Chapter 2). All the results given
above apply also for these complex responses. In practice we can substitute
C(t) with a generic two-point response function χ(ω) that is re-writable as a
space integral (as it is C(t) in Equation (5.10)) and that is properly normalized.
Conventionally we use a normalized function of the form [34, 37, 38]

χ̃(ω) =
χ(ω)− χ(∞)
χ(0)− χ(∞)

(5.33)

and we consider its real part when replacing C(t) in the Equations above. Fol-
lowing this approach we obtain a frequency-resolved three-point susceptibility

χ3(ω, T ) = kBT
2χT (ω, T ) = kBT

2 ∂χ̃
′(ω, T )
∂T

(5.34)

where the prime stands for the real part and now we have indicated the tem-
perature dependence of the functions. In the Equation (5.34) we have also
defined

χT (ω, T ) =
∂χ̃′(ω, T )

∂T
(5.35)

The last interesting thing to consider is that there is a precise link between
χ3(t) and χ4(t). This is easily understood if we notice that, while χ4(t) =
N〈[δC(0, t)]2〉 has the form of a variance, χ3(t) = N〈δC(0, t) δH(0)〉 is the
covariance of C(0, t) and H(0). This allow us to use the Cauchy-Schwartz
inequality [156, 157] to write that

[〈δC(0, t) δH(0)〉]2 ≤ 〈[δC(0, t)]2〉〈(δH)2〉 (5.36)

Using Equations (5.30), (5.26) and (5.3) into the inequality (5.36) we obtain

χ4(t) ≥ kB
cp
T 2χ2

T (t) (5.37)

As seen from Equation (5.37) the experimentally accessible function χT (t) does
not only gives us the information about the three-point correlations (Equation
(5.31)), but it also provides a rigorous lower bound for the more complicated
four-point susceptibility χ4(t).

It also important to notice few more facts about the connection between
χ4(t) and χT (t). First the two functions show the same qualitative form with
a peak at t ' τα as mentioned above. Secondly computer simulations have
shown that the the difference between the left-hand side and the right-hand
side of the inequality (5.37) is high at high temperature, but it reduces rapidly
as the temperature decreases giving

χ4(t) ' kB
cp
T 2χ2

T (t) (5.38)

at the lowest temperatures that are usually reached in simulations [34, 35, 36].
This suggests that at those very low temperatures explored in experiments
the quantity kb

cp
T 2χ2

T (t) can be used as an even better approximation of χ4(t).
Moreover it is interesting to notice that within the mode-coupling theory it
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can be shown that the amplitude of χ4(t) and χT (t) diverge at the MCT
temperature Tc. In the MCT theoretical framework the two functions diverge
as χ4(t) ∼ χ2

T (t) ∼ (T/Tc−1)−1/2. Finally we stress that assuming the validity
of the approximation (5.38) corresponds to assume that the fluctuations in the
dynamical correlation function are mainly caused by the enthalpy fluctuations.
From Equation (5.38) we also have that

Ncorr ' N2
corrT (5.39)

5.2 Comparing Shear and Dielectric Dynamical
Fluctuations

From the very general discussion reported in the previous Section we can state
that we can associate a tree-point susceptibility to each properly normalized
dynamic (two-point) quantity measured as a function of temperature. This
also allow us to estimate the a characteristic number of molecules whose dy-
namics is correlated to the enthalpy fluctuations for each measurable dynamic
function. Moreover each three-point susceptibility may be used to approximate
the corresponding four-point susceptibility.

These observations naturally lead to ask what is the relationship between
the spatial extent of the dynamical correlations belonging to different probes
and why a specific dynamic function may embody dynamical correlations larger
or smaller than another. Furthermore one could ask if an observable-independent
(unique) dynamical correlation volume can be defined in some way. To answer
these questions from the experimental point of view it is important to have
access to different temperature-dependent dynamical measurements performed
on the same liquid. The only comparison of the three-point susceptibilities ob-
tained from different measurements reported in the literature is, to our knowl-
edge, the one found in Ref. [37] and it is restricted to a single liquid. All the
other studies of the experimentally-determined three-point susceptibility have
focused on data obtained by a single technique, i.e. dielectric spectroscopy for
molecular supercooled liquids and dynamic light scattering for concentrated
colloidal suspension [34, 38, 39].

Ref. [37] reported the comparison of the three-point susceptibility for m-
toluidine obtained from coherent quasi-elastic neutron scattering, dielectric
spectroscopy and photon-correlation spectroscopy (PCS). The amplitude of
χ3(t) corresponding to neutron scattering measurement was found to be low as
expected since these measurements are restricted to short relaxation times (ap-
proximatively below 10 ns). The amplitudes of χ3(t) were also obtained from
dielectrics and PCS over an overlapping temperature range in which the relax-
ation time of the two measured functions varied by about two decades (approx-
imatively from 10−2 to 1 sec). The χ3(t) computed from these two data-sets
were found to have different absolute values. Moreover their temperature-
dependence was found to be quite different: the amplitude of the dielectric
χ3(t) was found to grow sensibly faster than the amplitude of the PCS χ3(t)
upon cooling.

To address this fundamental issue more exhaustively we have compared
the multi-point susceptibility extracted from dielectric and shear-mechanical
measurements. Paper V reports a systematic comparison of the multi-point
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susceptibilities computed from the measurements of G(ω, T ) and ε(ω, T ) for
seven glass-formers. The supercooled systems studied are the following: triph-
enylethylene (TPE), tetramethyltetraphenyl- trisiloxane (DC704), polyphenyl
ether (PPE), perhydrosqualene (squalane), polybutadiene (PB20), decahydroiso-
quinoline (DHIQ), and tripropylene glycol (TPG). DC704, TPE, PPE, squalane
and DHIQ are molecular van der Waals bonded liquids, TPG has hydrogen
bonds, and PB20 is a polymer with molecular weight of 5000 g/mol. The orig-
inal shear-mechanical and dielectric measurements2 performed on these glass-
formers were presented and studied in detail by our group in Ref.s [71, 72, 73].
It is important to stress that the shear-mechanical measurements and the di-
electric measurements are performed in the same cryostat upon identical ex-
perimental conditions eliminating many sources of errors that could influence
the data comparison. Moreover our mechanical measurements offer a very wide
frequency range to compare the shear modulus with the dielectric susceptibil-
ity. Indeed the PSG technique allow us to measure the dynamic shear modulus
in a frequency range spanning from 10 KHz to 1 mHz.

From the study of Ref.s [71, 72] it emerged a clear picture of the features
of the shear-modulus and the dielectric response. The relaxation time of the
dynamic shear modulus is generally shorter than the relaxation time of the di-
electric susceptibility at the same temperature T . Moreover the shear response
function and the dielectric response function are found to have slightly differ-
ent shapes in general. Nevertheless, to a good approximation the shear and
dielectric characteristic alpha relaxation, τG and τε, times grow proportionally
upon cooling, i.e.

τG(T ) ∝ τε(T ) (5.40)

As discussed in detail in Ref.s [71, 72] those liquids that do not show any
clear Johari-Goldstain beta relaxation have a temperature-independent shape
to a very good approximation. This feature is referred as time-temperature
superposition (TTS), and it is found to hold to a very good degree in the
temperature-frequency range explored both for the shear and the dielectric re-
sponse functions. For those liquids that have a clear beta-relaxation the alpha
relaxations in the shear and dielectric spectrum seem to approach a tempera-
ture independent shape as the temperature is lowered. This scenario has been
studied in detail in Ref. [76] in which a vast amount of dielectric measurements
was analyzed confirming that the alpha process progressively approaches a TTS
form as the temperature is lowered and it becomes well separated in frequency
from the secondary beta process. This last observation suggests to assume that
TTS holds for the individual structural alpha relaxation in shear and dielectric
spectra (as done in Paper V) and that the failure of TTS in the full spectra
may be rationalized as a superposition of the alpha process with the secondary
process having different temperature-dependences.

In Paper V we show how these well established properties seen in experi-
ments imply some precise relationships between the shear and dielectric four-
point susceptibilities. First we show that the shear and dielectric four-point
susceptibilities have their peaks located at slightly different frequencies at the

2All the shear-mechanical and dielectric data analyzed in Paper V are available in the
“Glass and Time: Data Repository” found online at http://glass.ruc.dk/ data.
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same temperature. In particular the shear χ4(ω, T ) must have its peak lo-
cated at higher frequencies than the dielectric one. Moreover we show how the
dielectric and mechanical four-point susceptibilities have, generally, also differ-
ent shapes depending on the shape of the functions G(ω, T ) and ε(ω, T ). We
illustrate also that the absolute values of the amplitudes of the four-point sus-
ceptibilities (i.e. the Ncorrs) are different. Nevertheless the shear and dielectric
Ncorrs grow proportionally to each other as the temperature is lowered

NG
corr(T ) ∝ N ε

corr(T ) (5.41)

The similarity of the shapes of the normalized response functions G̃(ω, T ) and
ε̃(ω, T ) sets the proportionality constant between NG

corr(T ) and N ε
corr(T ). To

be precise if the two response functions have very similar stretching parameters
we have

N ε
corr(T )

NG
corr(T )

' 1 (5.42)

while if the shear G̃(ω, T ) is broader than the dielectric ε̃(ω, T ) we have

N ε
corr(T )

NG
corr(T )

> 1 (5.43)

The ratio N ε
corr(T )/NG

corr(T ) is shown in Figure 5.3. As it seen from this Figure
the ratio stays constant to a good approximation for all glass-formers as the
temperature decreases and the relaxation time grows several orders of mag-
nitudes. Moreover the multiplicative factor between the absolute values of
N ε

corr(T ) and NG
corr(T ) is of order one being 0.5 . N ε

corr(T )/NG
corr(T ) . 2. This

points out that, although a unique Ncorr can not be probably defined, the same
physical mechanism is leading the growth of the shear and dielectric dynamical
correlations upon cooling.

These findings can be rationalized mathematically by considering the form
assumed by the function χT (ω) when we specify the form of the normalized
response function χ̃(ω, T ). Let us first analyze the simple case of a Debye
frequency-dependent (normalized) response

χ̃(ω, T ) =
1

1 + iωτ(T )
(5.44)

This function is properly normalized (χ̃(0, T ) = 1 and χ̃(∞, T ) = 0) and it
depends on time only through the relaxation time τ(T ) (TTS applies). The
χT (ω, T ) corresponding to χ̃(ω, T ) is given by the temperature derivative of its
real part

χT (ω, T ) =
∂χ̃′(ω, T )

∂T
=

−2ω2τ(T )
(1 + ω2τ2(T ))2

∂τ(T )
∂T

(5.45)

This function has its maximum in ω exactly at ω = 1/τ(T ). Evaluating Equa-
tion (5.45) at the maximum we obtain from Equation (5.32)

NcorrT (T ) =
1
2

√
kB
cp

∣∣∣∣∂ ln τ(T )
∂ lnT

∣∣∣∣ (5.46)
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Figure 5.3: Ratio between the characteristic numbers of dynamically correlated
molecules in the dielectric and in the shear relaxation for seven glass-formers
(see legend). This ratio is plotted as a function of the dielectric relaxation time.
N ε

corr(T )/NG
corr(T ) stays constant to a good approximation for all glass-formers

as the temperature decreases and the relaxation time grows several orders of
magnitudes.

As seen from the previous Equation we have that if TTS applies NcorrT is di-
rectly proportional to the change of the relaxation time upon cooling given by
the term |∂ ln τ(T )/∂ lnT |. This result is very general, indeed for any normal-
ized function obeying TTS, i.e.

χ̃(ω, T ) = χ̃(ω τ(T )) (5.47)

we have, to a very good approximation, that

NcorrT (T ) =

√
kB
cp

∣∣∣∣f(1)
∂ ln τ(T )
∂ lnT

∣∣∣∣ (5.48)

In the previous Equation we have used

f(1) =
∂χ̃′(x)
∂x

∣∣∣∣
x=1

(5.49)
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where we have set x = ωτ(T ). The function f(1) does depend on the stretching
but once that is fixed (TTS applies) f(1) is just constant factor. For example
for a normalized Havriliak-Negami function

χ̃(ω, T ) =
1

[1 + (iωτ(T ))α]β
(5.50)

we have

f(1) = −αβRe
[

iα

(1 + iα)1+β

]
(5.51)

as discussed in Paper V.
When the shear and dielectric relaxation times grow proportionally upon

cooling (Equation (5.40)) we have also∣∣∣∣∂ ln τε(T )
∂ lnT

∣∣∣∣ ' ∣∣∣∣∂ ln τG(T )
∂ lnT

∣∣∣∣ (5.52)

although we may have

fε(1) 6= fG(1) (5.53)

since we have, in general, different stretching for G̃(ωτG(T )) and for ε̃(ωτε(T )).
This lead us to conclude that

N ε
corr(T )

NG
corr(T )

'
[
N ε

corrT (T )
NG

corrT (T )

]2

'
[
fε(1)
fG(1)

]2

= const (5.54)

where we have used Equation (5.39). From the Equation above it is clear
that the proportionality factor is closer to the unity for the NcorrT s than for
the Ncorrs. This is shown in Figure 5.4 where it can be seen that 0.7 .
N ε

corrT (T )/NG
corrT (T ) . 1.4.

In conclusion we want to underline that recent measurements performed by
our group seems to confirm this scenario for several other dynamic relaxation
function. In addition to the shear and dielectric measurements dynamic specific
heat [158, 159], bulk modulus [160] and thermal expansivity [161] measurements
have been done using the same cryostat. These have shown the proportional
growth of the relaxation times of each of this functions upon cooling. Moreover
TTS seems to be obeyed by all of these dynamic quantities to a good degree.
This study involving many different kind of measurements have been performed
so far only on a single liquid (DC704). Nevertheless these findings indicate a
scenario for the dynamical correlations in which their growth is determined by
a unique physical phenomenon showing the same temperature behavior among
the different dynamic susceptibilities.

5.3 A Direct Experimental Measurement of The
Four-Point Susceptibility

In the previous Sections we have illustrated and used an indirect (and approx-
imated) approach to the estimation of the four-point susceptibility. This is
allowed by two fundamental conditions: the system under study it is at the
thermodynamic equilibrium, so that we can rely on the fluctuation-dissipation
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Figure 5.4: Ratio between the characteristic numbers of dynamically correlated
molecules to the enthalpy fluctuations in the dielectric and in the shear relax-
ation for seven glass-formers (see legend). This ratio is plotted as a function of
the dielectric relaxation time. N ε

corrT (T )/NG
corrT (T ) stays constant to a good

approximation for all glass-formers as the temperature decreases and the re-
laxation time grows several orders of magnitudes. The shaded area emphasizes
that N ε

corrT (T )/NG
corrT (T ) is closer to the unity than N ε

corr(T )/NG
corr(T ).

theorem, and the source of the fluctuations in the dynamic correlation or re-
sponse function is manly the fluctuations in the enthalpy. When these two
requirements are not matched by the physical system under study we need
a direct measurement of the fluctuations of the correlation or the response
function to measure the four-point susceptibility.

Certainly if one can measure the position of the particles of the system
as a function of time the four-point susceptibility can be readily obtained as
it is done in computer simulations. This can be done via optical microscopy
techniques for colloidal systems whose particles are large enough to be resolved
(see for example Ref. [32]). In the following we illustrate a new experiment
capable of measuring directly the four-point susceptibility without resolving
the positions of the individual particles. The experiment employs two differ-
ent dynamic light scattering techniques combining heterodyne and homodyne
photon-correlation spectroscopy (PCS). Furthermore in the experiment we use
small scattering volumes to enhance the dynamical fluctuations. We perform
this experiment on an aging low concentration colloidal solution of Laponite
(see also Section 3.2) reporting the measured four-point susceptibility. This
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colloidal suspension is the ideal candidate for such an experiment for several of
its features. First the indirect approach to the determination of χ4(t) discussed
in the Sections above is not applicable. This is because this colloidal system is
out of equilibrium and we can not use on the FDT. Moreover we do not known
a priori if there is a static quantity whose fluctuations are the major source of
fluctuations in the dynamic correlation function measured (as the enthalpy in
supercooled liquids). In addition the Laponite colloidal particles suspended in
water are too small to be resolved by standard microscopy techniques. Indeed
the Laponite colloidal particle dissolved in water has the form of flat cylinder
with a thickness of about 1 nm and a radius of about 15 nm. Even if it were
possible to make visible these small colloidal discs under microscope inspection
by fluorescent labeling they would still be very small with respect to the stan-
dard resolution of an optical microscope on the position of a colloidal particle
that is typically around 30 nm. As show in the following by our experiment
the complete information on the particle positions is not needed to measure
directly the four-point susceptibility. What we need to measure is more simply
the difference between two distinct correlation functions. In the next Section
we define these function and we illustrate how they are measured.

5.3.1 Homodyne and heterodyne photon-correlation
spectroscopy

In a dynamic laser-light scattering experiment we measure the properties of the
light scattered by a sample illuminated by a laser beam [108, 109, 110, 111].
The incident laser radiation and scattered radiation have their polarization
selected by polarizer filters. Moreover the scattered electromagnetic wave is
selected to have a precise propagation direction (see also Section 3.2). The total
instantaneous amplitude of the scattered electromagnetic filed E(t) is given by
the superposition of the electric fields Ej(t) scattered by each molecule

E(t) =
N∑
j=1

Ej(t) (5.55)

where the sum is extended to all the N molecules contained in the scattering
volume. The filed scattered by each molecule is given by

Ej(t) ∝ αif (t) exp[i(k · rj(t))] (5.56)

where rj(t) is the position of the j-th molecule at time t, k is the exchanged
wave-vector, and the term αif (t) represents the component of the polarizability
tensor projected along the polarization direction of the incident laser beam and
the polarization direction selected for the scattered wave.

In a homdyne PCS experiment we measure an auto-correlation function
proportional to the correlation function of the intensity of the scattered elec-
tromagnetic field

〈|E(0)|2|E(t)|2〉 (5.57)

This is the simplest PCS experiment that can be done since we only need the
scattered light to impinge on the detector. The detector out-put current iout(t)
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generated by the scattered field is proportional to the intensity of the scattered
field

iout(t) ∝ |E(t)|2 (5.58)

The correlation function of the signal iout(t) produced by the detector can be
efficiently calculated by a correlator, i.e. a specialized electronic device designed
to compute in real time the correlation function of iout(t), i.e.

〈iout(0) iout(t)〉 ∝ 〈|E(0)|2|E(t)|2〉 (5.59)

Eliminating the unimportant constant prefactors what we considered in homo-
dyne PCS experiments is the normalized auto-correlation function of the in-
tensity of the scattered electromagnetic field. The normalization is performed
by dividing the function by its long time limit

lim
t→∞〈iout(0) iout(t)〉 = 〈iout〉2 (5.60)

obtaining

〈iout(0) iout(t)〉
〈iout〉2 =

〈|E(0)|2|E(t)|2〉
〈|E|2〉2 (5.61)

In a real experiment the amplitude fluctuating part of the correlation function
of the current out-put signal is reduced because of the presence of a shot-noise
term at very short t and because of the geometrical decorrelation effects of
the scattered light that is produced by a source with finite extension3. Due to
these phenomena what we actually measure in a PCS homodyne experiment is
a dynamic correlation function of the form

σ 〈δiout(0) δiout(t)〉+ 〈iout〉2 (5.62)

where σ = const < 1 and where we have introduced the fluctuation of the
photon-induced out-put current δiout(t) = iout(t)−〈iout〉. This results in mea-
suring a normalized correlation function of the form

σ
〈δiout(0) δiout(t)〉

〈iout〉2 + 1 = σ
〈δ|E(0)|2δ|E(t)|2〉

〈|E|2〉2 + 1 (5.63)

The heterodyne method is a different PCS technique for studying the dy-
namics of a system via laser radiation. In this kind of experiment the field
directed onto the detector is a superposition of the scattered filed E and a
portion of the laser field EL (also named local oscillator in this case). If the
fluctuations in the laser field are negligible and if the local oscillator field and
the scattered field are statistically independent one has

〈|E(0) + EL(0)|2|E(t) + EL(t)|2〉 =

〈|EL|2〉2 + 2〈|EL|2〉Re[〈E∗(0)E(t)〉] + 〈|E(0)|2|E(t)|2〉
(5.64)

where the star indicates the complex conjugate. The correlation function ob-
tained via the heterodyne method thus contains the correlation function of the

3See Chapter 4 of Ref. [108] for more details
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amplitude scattered electric field differently from the homodyne correlation
function that is proportional to the intensity-intensity correlation function. To
obtain the most precise information on the function 〈E∗(0)E(t)〉 in a hetero-
dyne experiment one should work in the limit 〈|EL|2〉 � 〈|E|2〉 increasing the
amplitude of the second term on the right-side of Equation (5.64). The effect
of having a local oscillator much more intense of the scattered filed is seen more
clearly by rewriting the previous equation in the normalized form. The long
time limit of the function (5.64) is given by

〈|EL|2〉2 + 〈|E|2〉2 (5.65)

since 〈E〉 = 0. Dividing Equation (5.64) by this term we have

〈|E(0) + EL(0)|2|E(t) + EL(t)|2〉
〈|EL|2〉2 + 〈|E|2〉2 =

1 +
2〈|EL|2〉Re[〈E∗(0)E(t)〉] + 〈δ|E(0)|2δ|E(t)|2〉

〈|EL|2〉2 + 〈|E|2〉2 (5.66)

from this Equation is clear that if 〈|EL|2〉 � 〈|E|2〉 the term 〈δ|E(0)|2δ|E(t)|2〉
is negligible giving the ideal case of heterodyne detection

〈|E(0) + EL(0)|2|E(t) + EL(t)|2〉
〈|EL|2〉2 =

1 +
2

〈|EL|2〉 Re[〈E∗(0)E(t)〉] (5.67)

The considerations made above for the homodyne function about the loss of
amplitude due to some experimentally unavoidable effects are valid also for the
heterodyne function. In this case we will have a measured function of the form

〈|E(0) + EL(0)|2|E(t) + EL(t)|2〉
〈|EL|2〉2 + 〈|E|2〉2 =

1 + σ
2〈|EL|2〉Re[〈E∗(0)E(t)〉] + 〈δ|E(0)|2δ|E(t)|2〉

〈|EL|2〉2 + 〈|E|2〉2 (5.68)

When doing dynamic light scattering PCS measurements one often assumes
that the homodyne correlation function contains exactly the same informations
of the heterodyne correlation function. This is done by assuming the validity of
the Gaussian approximation. This widely used approximation works whenever
the scattering volume contains many uncorrelated scattering elements. These
have not to be confused with the individual scattering particles. One has to
imagine the scattering volume divided in numerous sub-volumes that scatter
the light in an uncorrelated way. Let us label these sub-volumes with the index
α = 1, ...,M . The particles within an individual volume α may move and scat-
ter the radiation in a correlated way. Nevertheless a large amount of particles
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contained in the other sub-volumes that are far away from α will move and
scatter the incoming wave independently. When this is the case the total scat-
tering field E =

∑M
α=1Eα is the superposition of many independent stochastic

contributions. In this situation, as prescribed by the central limit theorem,
the total field E(t) becomes a stochastic variable with Gaussian distribution
independently on the original distributions of the variables Eα. We recall that
for a real variable x following a Gaussian distribution with width w we have

P(x) =
exp[x2/(2w2)]

w
√

2π
(5.69)

and therefore

〈x2〉 =
∫
dxP(x)x2 = w2

〈x4〉 =
∫
dxP(x)x4 = 3w4

(5.70)

so there is a relationship between the second and fourth moment of the distri-
bution

〈x4〉 = 3
[〈x2〉]2 (5.71)

For a complex Gaussian variable z = x+ iy (as it is the scattered field E) we
have in analogy with the equations above

P(z) = exp[|z|2/(2w2)]
2πw2∫

dy
∫
dxP(z)|z|2 = 2w2

∫
dy
∫
dxP(z)|z|4 = 8w4

(5.72)

so the relationship between the second and fourth moment of the distribution
becomes

〈|z|4〉 = 2
∣∣〈|z|2〉∣∣2 (5.73)

When the scattered field E is a Gaussian variable we can write a static
relation between the first and second moment identical to Equation (5.73)

〈|E|4〉 = 2|〈|E|2〉|2 (5.74)

This can be generalized to the dynamic case just by assuming that both E(0)
and E(t) are Gaussian variables obtaining

〈|E(0)|2|E(t)|2〉 = |〈|E|2〉|2 + |〈E∗(0)E(t)〉|2 (5.75)

that consistently gives back Equation (5.74) if we set t = 0. The Gaussian
approximation (5.75) tells us that if the scattering volume contains many cor-
relation volumes the heterodyne measurement giving the function 〈E∗(0)E(t)〉
gives the same informations of the homodyne measurement giving the function
〈|E(0)|2|E(t)|2〉. It is important to notice that if normalize Equation (5.75)
and we rewrite it as

〈|E(0)|2|E(t)|2〉
|〈|E|2〉|2 − |〈E

∗(0)E(t)〉|2
|〈|E|2〉|2 = 1 (5.76)
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the right end side of this Equation has exactly the form of the four-point sus-
ceptibility given by Equation (5.2). This is telling us that if we have many
uncorrelated sub-volumes in the scattering volume our four-point susceptibil-
ity will reduce to a trivial constant factor independently on the finite size of
the correlations. On the other hand if the size of the scattering volume is
not infinitely large with respect to the spatail extent of the correlation between
nearby sub-volumes a time-dependent deviation from the Gaussian approxima-
tion is expected and this gives directly the four-point susceptibility. In practice
the experimental determination of χ4(t) can be translated in the search for a
deviation from the Gaussian approximation. In this case is essential to have
a small scattering volume so that the deviation is not not infinitesimal and
undetectable.

The simplest case in which the Gaussian approximation applies is when
we perform the homodyne experiments on very diluted colloidal suspensions.
In this case the fact that the scattering volume contains many uncorrelated
scattering elements coincides with the fact that the scattering volume contains
many independent scattering colloidal particles. Nevertheless this is a particu-
lar case and one should not forget that the Gaussian approximation has more
general validity as discussed above. Moreover one can consider that in some
cases, even if we have extremely diluted suspension, we might obtain different
informations from homodyne and heterodyne experiments. To illustrate this
let us consider first the case of a very diluted colloidal solution composed of
large spherical particles diluted in a molecular solvent. In this case the hetero-
dyne field-field correlation function can be derived assuming that the diffusion
equation describes the density fluctuations

∂

∂t
ρ(r, t) = D∇2ρ(r, t) (5.77)

where the ρ(r, t) =
∑N
j=1 δ(r − rj(t)) is the density field and D is the dif-

fusion coefficient. If the scattering colloidal particle is spherical the polariz-
ability of the colloidal particle is just a unitary tensor multiplied by a con-
stant (see Equation (5.56)). In this case the electric field is directly propor-
tional to the spatial Fourier transform of the fluctuations of the density field
E(t) ∝ ∑N

j=1 exp[ik · rj(t)]. This allow us to write a Fourier-transformed dif-
fusion equation for E from Equation (5.77)

∂

∂t
E(t) = −k2DE(t) (5.78)

where k = |k|. Equation (5.78) can be rewritten as an equation for the het-
erodyne correlation function 〈E∗(0)E(t)〉 just by multiplying both sides by the
term E∗(0) and taking the average

∂

∂t
〈E∗(0)E(t)〉 = −k2D〈E∗(0)E(t)〉 (5.79)

Equation (5.79) can be easily solved with the boundary condition

〈E∗(0)E(0)〉 ∝ 〈
N∑
j=1

exp[ik · (rj(0)− rj(0))]〉 = 〈N〉 (5.80)
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where 〈N〉 is the average number of particles contained in th scattering vol-
ume. Note that to obtain Equation (5.80) we have neglected all the cross-
particle terms since the solution is infinitely diluted and different particles are
completely uncorrelated. The solution of Equations (5.79)-(5.80) is

〈E∗(0)E(t)〉 ∝ 〈N〉 exp(−k2Dt) (5.81)

In this case the Gaussian approximation (5.75) obviously applies so that we
can write

〈|E(0)|2|E(t)|2〉 ∝ 〈N〉2 + 〈N〉2 exp(−2k2Dt) (5.82)

Notice that the quantity τ = (2k2D)−1 is the relaxation time of the correlation
function. All those experiments that use homodyne PCS to measure the size
of the colloidal particles, proteins or macromolecules diluted in a solvent are
based on Equation (5.82). This is done by using the Einstein FDT relating the
diffusion constant D to the friction constant ζ

D =
kBT

ζ
(5.83)

Moreover the friction constant can be expressed via the Stokes approximation
in the case of stick-boundary conditions

ζ = 6πηR (5.84)

where η is the viscosity of the solvent and R is the radius of the colloidal
particle. In this way one first measures the relaxation time τ of the ho-
modyne correlation function and then extracts the radius of the particles as
R = τk2kBT/(3πη). Notice that in this case there would be no advantage in
measuring the heterodyne function since that would give the same information
about the particle’s radius.

A slightly different situation in which the two functions give a different
result is when a uniform motion of the particles is present in the solution. This
is the case of the electrophoretic experiments in which an external electric field
accelerates in some direction the diluted ionic colloids (macroions). In other
experiments we can accelerate the solvent for example by centrifugation driving
the colloids to their terminal velocity. These cases in which the diluted colloids
are driven by a uniform velocity field V can be described by adding a drift
term to the diffusion equation

∂

∂t
ρ(r, t) + V · ∇ρ(r, t) = D∇2ρ(r, t) (5.85)

From the driven diffusion Equation (5.85) we obtain the following expression
for the field-field correlation function

〈E(0)∗E(t)〉 ∝ 〈N〉 exp(ik ·Vt) exp(−k2Dt) (5.86)

At this point we have to recall that in the heterodyne detection we measure the
real part of 〈E(0)∗E(t)〉 (see Equations (5.66) and (5.67)) so that the resulting
function will be

Re[〈E(0)∗E(t)〉] ∝ 〈N〉 cos(k ·Vt) exp(−k2Dt) (5.87)

67



5. Experimental Studies of The Heterogeneous Dynamics

This means that we observe oscillations in the heterodyne function carrying
informations about the velocity field. The difference between the homodyne
and heterodyne detection is clear in this case, although the Gaussian approxi-
mation is still valid and it still gives Equation (5.82) just by inserting Equation
(5.86) into (5.75). In practice the homodyne measurement is insensitive to
the uniform velocity filed while the heterodyne is not. In this context it is
important to notice that also a gravity field, driving the sedimentation of the
colloids, could induce a drift term in the diffusion equation. Nevertheless, if the
exchanged wavevector lies on the horizontal plane, the product k ·V is close
to zero since the gravity-induced velocity field is vertical. In this scattering
geometry the term cos(k ·Vt) is close to the unity perturbing very little the
heterodyne function from its diffusive behavior so that Equation (5.87) reduces
to Equation (5.81).

Another interesting case, in which the homodyne and heterodyne measure-
ments give qualitatively different results, is when we have considerable fluc-
tuations in the number of particles contained in the scattering volume. This
fluctuations may affect the homodyne function also in the simple case of a very
dilute solutions whose density fluctuations are described by the diffusion Equa-
tion (5.81). When this happens the intensity-intensity correlation function may
be rewritten as

〈|E(0)|2|E(t)|2〉 ∝ 〈N〉2 + 〈N〉2 exp(−2k2Dt) + 〈δN(0)δN(t)〉 (5.88)

where δN(t) = N(t) − 〈N〉 is the fluctuation of the number of particles con-
tained in the scattering volume. The particular form of the time-dependent
function 〈δN(0)δN(t)〉 depends on the specific geometry of the scattering vol-
ume. Nevertheless it can be shown that the amplitude of the extra term
〈δN(0)δN(t)〉 is of the order of 〈N〉, i.e.

〈δN(0)δN(t)〉 = 〈N〉n(t) (5.89)

where n(t = 0) = 1 and n(t → ∞) = 0. It is important to notice that the
first two terms at the right-hand side of Equation (5.88) obey the Gaussian
approximation while the last term represent a deviation from the Gaussian
behavior. If we rewrite Equation (5.88) in the normalized form

〈|E(0)|2|E(t)|2〉
〈|E|2〉2 = 1 + exp(−2k2Dt) + 〈N〉−1n(t) (5.90)

we can see that if we have a large enough scattering volume (and a large 〈N〉)
the extra term can be neglected with respect to first two.

5.3.2 Measurement of the four-point susceptibility by
combined PCS techniques

In the previous Section we have illustrated the heterodyne and the homdyne
PCS methods and we have presented two simple cases in which the two func-
tions give different informations. If we want to use the two techniques com-
bined to measure the four-point susceptibility we have to design an experiment
in which we can perform both measurements. This is done by setting-up the
experiment depicted in Figure 5.5.
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Figure 5.5: Experimental set-up for the combined measurement of the hetero-
dyne and of homdyne correlation function with a small scattering volume. If
the shutter is open the laser field is mixed with the scattered radiation by the
built-in fiber BS and delivered to the detector. In this case the heterodyne
function is measured. If the shutter is closed the homodyne measurement is
performed. The laser beam is focused onto the sample by a microscope objec-
tive. The scattered electromagnetic wave is collected by a lens and directed to
the optical fiber system.
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In this experiment we use a probe light beam produced by an ultra-stable,
mono-mode DPSS laser with power out-put up to 300 mW. This is a green
laser (λ = 532 nm) vertically polarized with a polarization ratio better than
2× 102:1. The laser light is split by a beam-splitter cube (BS) that divides the
beam in components with equal intensity. One of the components is directed
to the sample and the other one is collected by a collimator and used as a
local oscillator for the heterodyne measurement. When the homodyne mea-
surement is performed an automatic shutter blocks the local oscillator. The
portion of the laser probe directed to the colloidal sample is first expanded by
a couple of lenses (L1 and L2) and then focused by a microscope objective.
The focal lengths of the lenses are chosen to illuminate the entire aperture of
the microscope objective that has a diameter of 20 mm. An iris diaphragm
is used to eliminate the light arriving outside the border of the microscope
objective. The objective is an infinity-corrected Olympus imaging objective
with 10× magnification. This has an effective focal length of 18 mm and a
working distance of 10.6 mm. The beam is focused at the center of the cu-
vette containing the sample. This is an optical-quality quartz cuvette with flat
surfaces. The scattered light at an angle ϑ ' 90o is selected by a polarizer
and collected by a lens (L3) that directs the radiation to the collimator. The
lens L3 is chosen to have a short focal length for 35 mm and is placed with is
focal point coinciding with the objective focal point. The collimator has focal
length of 15 mm and it focuses the beam onto an optical fiber that delivers
the scattered light to the detector. The optical fiber is a monomode optical
fiber optimized for the green radiation, this is connected directly to an built-in
BS cube. In this way, when the shutter is open, the electromagnetic field of
the local oscillator is superimposed to the scattered electromagnetic field and
this total filed to the detector. Differently when the shutter is closed only the
scattered electromagnetic wave arrives to the detector. The detector used is
an avalanche photodiode (APD) with high quantum efficiency (about 60 % at
λ ' 532 nm) and with a wide linear response range. A number of absorbitive
filters are used in the experiment in order to obtain the desired intensity of the
scattered light and of the local oscillator. The current out-put of the APD is
received by a correlator that performs fast multi-tau correlation of the signal.
The correlation function computed by this device is stored in a computer.

Knowing the size of the beam and the focal lengths of the optics we can
estimate the size of the scattering volume. This can be done assuming that the
monomode laser beam is a Gaussian beam [162, 163, 164] propagating along the
z direction. The intensity of this beam is distributed according to a Gaussian
function

I(x, y, z) =
I0

πw2(z)
exp[−2(x2 + y2)/w2(z)] (5.91)

where w(z) is the waist of the beam and I0 is the total intensity of the beam.
When a Gaussian beam of waist w arrives on a lens, with focal length φ, this
is focused into a beam with smaller waist. In this case the function w(z) can
be expressed as

w(z) = w1

√
1 +

(
λz

πw1
2

)2

(5.92)
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Figure 5.6: (A) Geometry of the focused and of the collected beam in the
experiment projected on the plane x = 0. The beams are considered to be
Gaussian with minimum waist w1 and w2 and the intersection between the two
defines a cylindrical volume that can be taken as the scattering volume. Almost
90 % of the collected scattered light is emitted by this volume. (B) Modulated
intensity profile on the x = 0 plane, as it sen the significant contribution of the
intensity comes from the volume defined by w1 and w2.
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where w1 ' 2.44×λφ/w and the origin of the z axis is now set at the focal point
of the lens (see Figure 5.6(A)). For the laser beam focused by the microscope
objective we have w ' 20 mm and w1 ' 0.58µm. As it is seen it is essential
to work with an expanded beam and with an objective with short focal length
in order to have a small beam waist and therefore a small scattering volume.
The geometry of the beam defined by the collecting optics can be evaluated in
a similar way assuming that a Gaussian beam propagates into the monomode
optical fiber. The waist of this beam is set by the diameter of the inner core of
the fiber that is about 1.6µm. The collected beam is thus defined by Equations
(5.91) and (5.92) with a waist w2 ' 1.85µm. In the scattering geometry
of our experiment the collected electromagnetic wave propagates along the y
direction, i.e. orthogonally with respect to the focused laser beam with an
intensity distribution

Ic(x, y, z) =
I0

πw2(y)
exp[−2(x2 + z2)/w2(y)] (5.93)

The scattering volume can be defined by weighting the illuminated portion of
the sample by the superposition of the focused If and the collected intensity
fields If (x, y, x) × Ic(x, y, x), where If is given by Equation (5.91). Integrat-
ing this multiplication of functions it can be shown that almost the 90 % of
the collected scattered intensity is emitted by a cylinder with radius equal to
w1 = 0.58µm and height 2× w2 ' 3.7µm centered a the intersection between
the focused laser beam and of the collecting beam (see Figure 5.6(B)). These
estimates can be used as the dimensions of the scattering volume.

The experimental set-up described above allows for the alternated measure-
ment of the heterodyne and the homodyne correlation functions during the ag-
ing process of the sample. Notice that in principle we should measure the two
functions simultaneously, but in practice they can be measured in alternated
way since the aging process of the sample is very slow and one can average
over many measurements of each function. The experiment is performed by
averaging the homodyne correlation function for 5 min, and successively aver-
aging the heterodyne function for 5 min synchronizing the measurements with
the shutter opening. This loop is repeated continuously for an aging time up
to five days for the sample studied. As detailed in the previous Section the
auto-correlation functions measured in the heterodyne mode is

g(1)(t, tw) = 1 + σ1
2〈|EL|2〉Re[〈E∗(tw)E(t)〉] + 〈δ|E(tw)|2δ|E(t)|2〉

〈|EL|2〉2 + 〈|E(tw)|2〉2 (5.94)

where now we indicate the two times t and tw since the system is aging. The
average long-time value 〈|E(tw)|2〉 is now the intensity averaged over a time
much longer than the relaxation time but much shorter than the time needed
to observe a change in the correlation function. To be as close as possible
to the ideal heterodyne detection we want to work in the condition 〈|EL|2〉 �
〈|E(tw)|2〉. This is done using several attenuating filters to obtain the intensities
〈|EL|2〉 ' 8× 105 counts/sec and 〈|E(tw)|2〉 ' 25× 103 counts/sec. Moreover
we average a number of measured heterodyne functions (each averaged for 5
min) in different aging-time intervals. This is made possible by the fact that the
aging is very slow, although at short aging times we can average over a larger
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number of measurements than at long aging times. This is because the aging
speeds up at longer aging times. In practice we have that the relaxation time
of the functions grow faster at longer the aging times. However we can define
properly these aging time sectors by setting a maximum variance allowed for
each of this averaged functions. We chose this to be below 10−4 and, as we will
see, the deviation from the Gaussian approximation observed is significantly
larger than that. In the homdyne mode the function measured is

g(2)(t, tw) = 1 + σ2
〈δ|E(tw)|2δ|E(t)|2〉
〈|E(tw)|2〉2 (5.95)

Restricting the aging time interval in which the homodyne function is averaged
to the same used for the heterodyne function we can obtain also for this function
a variance smaller than 10−4.

For correctly interpreting the experimental data some extra assumptions
are needed. For the heterodyne function we assume that no significant uniform
motion of the colloids takes place along the exchanged wavevector. As discusses
in Section 5.3.1 this would give a complex field-field correlation function whose
real part is oscillating. This assumption corresponds to say that the correlation
function 〈E∗(tw)E(t)〉 is a real function

〈E∗(tw)E(t)〉 = Re[〈E∗(tw)E(t)〉] (5.96)

However we notice that a uniform motion that could be present in the sample is
the one driven by the gravity force acting on the colloids. Is such a precipitation
process were present we should observe sedimentation at the bottom of the
cuvette. In the overall aging time in which our sample is studied we see no
evidence of sedimentation. The sample remains homogeneously clear with no
increase of scattered light from the lower part of the cuvette. Moreover as
discussed in Section 5.3.1 even if an extremely small gravity drift were present
in the dynamics of the system the correlation function would not be affected by
that since the velocity filed would be orthogonal to the exchanged wave-vector.

In addition to this we assume that the Gaussian approximation holds at (t−
tw) = 0. This is needed in order to normalize the homodyne function. Indeed
what we measure is the correlation function of the intensity fluctuations up to a
factor σ2 (see Equation (5.95)). If deviations from the Gaussian approximation
are expected one can not be sure a priori that

〈δ|E(tw)|2δ|E(tw)|2〉
〈|E(tw)|2〉2 = 1 (5.97)

The situation is different for the field-field correlation function, although also
〈E(tw)∗E(t)〉 is measured up to a multiplicative factor σ1. This is because the
field-field function has to be normalized to the unity by definition

〈E(tw)∗E(tw)〉
〈|E(tw)|2〉 = 1 (5.98)

If we rewrite the function 〈δ|E(tw)|2δ|E(t)|2〉 via the contributions of the indi-
vidual particles (via Equations (5.55) and (5.55)) we see that this assumption
corresponds to the fact that the full correlation function is dominated by the
auto-correlations of the same particles and that cross-particles correlations av-
erage to zero at (t − tw) = 0. Notice also that this assumption is consistent
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with the findings of computer simulations of equilibrium glassy systems on the
four-point susceptibility (see for example Ref. [27]).

Finally we assume that the fluctuations of the number of molecules con-
tained in the scattering volume are negligible. As we have seen in Section 5.3.1
these fluctuations are expected to affect the normalized homdyne function with
an additional decaying function of amplitude 〈N〉−1. The average number 〈N〉
of Laponite colloidal discs contained in the scattering volume can be estimated
knowing the concentration weight Cw of the sample. This is defined as the
ratio between the mass of the Laponite powder ML and the total mass of the
sample (composed by the Laponite and a mass of water MH2O)

Cw =
ML

MH2O +ML
(5.99)

From this Equation we can obtain the number of Laponite particles per unit
volume. To do this we must express the mass of the Laponite contained in the
sample as the sum of the masses of the Ntot colloidal discs each having volume
v and mass density ρmL

ML = ρmLNtotv (5.100)

The density of the dry Laponite powder is 2.3 g/cm3 and the volume of each
nano-particle is given by v = πr2h where r = 15 nm is the radius of the colloidal
disc and h = 1 nm is its thickness. Using Equation (5.100) into Equation (5.99)
after some algebra we get the number density of the Laponite particles ρL as

ρL =
Cwρ

m
H2O

v(ρmL − CwρmL + CwρmH2O)
(5.101)

where ρmH2O = 1 g/cm3 is the mass density of water. Multiplying ρL by the
scattering volume estimated above we get an estimate of the average number
of particles contained in the scattering volume for the sample used in our
experiment that has low concentration Cw ' 1.1× 10−2

〈N〉 = ρL (π w1
2 2w2) ' 2.7× 104 (5.102)

Now we can see that the term disturbing the normalized homdyne function is
of the order 〈N〉−1 ' 3.7 × 10−5 that is smaller than the maximum allowed
variance on g(1)(t, tw) and g(2)(t, tw) that is 10−4. Assuming that this term
can be neglected is consistent with the precision that we have imposed to
the measurements. Moreover as we will see the observed deviation from the
Gaussian approximation is significantly larger than 〈N〉−1.

Summarizing, following the assumptions illustrated above, we obtain the
normalized intensity-intensity correlation function from the measured homo-
dyne function g(2)(t, tw) (see Equation (5.95)) normalized to the unity. The
field-field correlation function is found from the measured heterodyne function
g(1)(t, tw) by inverting Equation (5.94) and normalizing the obtained function
to the unity. The two functions measured at three well separated aging times
for are reported in Figure 5.7(A). The evolution of the correlation functions
is evident and, as the system ages, the functions have longer relaxation time.
As it is seen these functions overlap very well at short aging times while at
large aging times the two are slightly separated. This signals the failure of
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Figure 5.7: (A) Normalized intensity-intensity (black) and field-field (red) cor-
relation function at three well separated aging times for a Laponite sample
with Cw = 1.1 × 10−2. As it seen the aging functions are well overlapped
at short aging times while at the longest aging time a small but clear sep-
aration between the functions is observed signaling a failure of the Gaus-
sian approximation. (B) Aging relaxation time defined as the integral of the
intensity-intensity correlation function (Equation (5.103)). A function of the
form τ(tw) = τ0 exp[Btw/(t∗ − tw)] fits well the growth of the relaxation time
in aging.
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the Gaussian approximation and the emergence of a non-trivial high-order cor-
relation. The relaxation time grows as the aging time increases as shown in
Figure 5.7(B). Since the correlation functions are very stretched is convenient
to define the aging relaxation time τ(tw) as the integral of the function

τ(tw) =
∫ ∞

0

d(t− tw)
〈δ|E(tw)|2δ|E(t)|2〉
〈|E(tw)|2〉2 (5.103)

This is found to grow faster than exponentially with the aging time confirming
the findings of previous works (see for example Ref. [99]). A function of the
form τ(tw) = τ0 exp[Btw/(t∗ − tw)] describes well the growth of the relaxation
time in aging.

The aging four-point susceptibility is computed as

χ4(t, tw) =
〈δ|E(tw)|2δ|E(t)|2〉
〈|E(tw)|2〉2 − 〈δ|E(tw)|2δE(tw)〉

〈|E(tw)|2〉2 (5.104)

where we have removed the unimportant constant factor one appearing in the
Gaussian limit. χ4(t, tw) is shown in Figure 5.8(A). As it is seen this grows
in amplitude and its peak shifts to longer times as the aging time increases.
We find a systematic increase of the amplitude of the four-point susceptibility
with the aging time. In Figure 5.8(B) we show the amplitude of the four-
point susceptibility χmax

4 (tw) = max(t−tw){χ4(t, tw)} as a function of the aging
time. From the findings of computer simulations and experiments on χ3(t) for
equilibrium supercooled liquids we expect a slow growth of the amplitude of
χ4 with the relaxation time of the system χ4 ∼ log(τ). For this reason we have
fitted χmax

4 (tw) with a function of the form χmax
4 (tw) = A+Btw/(t− tw) and,

as we can see in Figure 5.8(B), this captures the trend of the data. When a
well defined peak is found in χ4(t, tw) we can identify its characteristic time
τmax . This is found to grow as the aging time increases following closely the
relaxation time τ as shown in the inset of Figure 5.8(B).

In conclusion our experiment shows that is possible to observe a deviation
from the Gaussian approximation and therefore a growing four-point suscep-
tibility in aging. The experiment is performed on an out of equilibrium sus-
pension of colloidal nano-particles for which the approximation schemes valid
at the equilibrium for supercooled liquids are not applicable. Furthermore the
direct imaging of the particles is not possible because of their extremely small
dimensions. Nevertheless we are able to access χ4 by measuring two corre-
lation functions in a small scattering volume. It is important to notice that
our approach does not require to confine the liquid in a small volume induc-
ing surface effects that would irremediably change the dynamical properties
of the system studied with respect to its bulk dynamics. In our experiment
is the probe laser beam that reduces to the desired size. The dimensions of
the scattering volume that can be reached with visible light are restricted to
the micron range. This suggests that a similar approach could be followed for
measuring the four-point susceptibility in molecular supercooled liquids and
glasses by using nano-focused X-rays. In the recent years major advances have
been made in X-ray optics making possible to obtain beams with a waist down
to 10 nm (see for example Ref. [165]). This seems a promising route to follow
in the study of the complex dynamics of supercooled liquids and glasses.
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Figure 5.8: (A) Four-point susceptibility computed via Equation (5.104) at
three well separated aging times for a Laponite sample with Cw = 1.1× 10−2.
The function grows in amplitude and its peak shifts to longer times as the aging
time increases.(B) Amplitude of the function χ4(t, tw) as function of the aging
time (main panel). The function χmax

4 (tw) = A+Btw/(t−tw) is used for fitting
the data. In the inset we show the relaxation time of the system τ (circles)
compared with the characteristic peak position τmax of χ4(t, tw) (diamonds).
τmax and τ grow very similarly as the aging time increases.
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Chapter 6

Heterogeneous Modeling of The
Connection between Shear and
Dielectric Relaxation

In this chapter we present a new model for connecting directly the shear and di-
electric relaxation. This is done by introducing a modification into the Gemant-
DiMarzio-Bishop (GDB) model accounting for the heterogeneous dynamics.
We start by showing that an analogy exists between the break-down of the
Stokes-Einstein relation (SER) and the failure of the GDB model. Following
this line we introduce the new model and we compare it to the experimental
data.

6.1 The Failure of The Stokes-Einstein Relation

As shown in Section 5.3.1 we can model the density relaxation by a diffusion
equation in the case of a large macromolecule moving in a molecular solvent. It
turns out that a Fickian diffusion equation can be used to describe reasonably
well the density fluctuations for a molecular liquid system at high temperature.
However this approach fails in a supercooled liquid. In particular the SER
connecting the viscosity η and the diffusion coefficient D ceases to be valid as
we cool a molecular liquid into the supercooled regime. To fix the ideas let us
rewrite the SER as in Section 5.3.1

D(T ) =
kBT

6πη(T )R
(6.1)

where R is the radius of the diffusing molecule and now we have expressed
the diffusion coefficient and the viscosity as functions of the temperature T .
We recall that for obtaining Equation (6.1) from the diffusion equation we
have used the FDT and the Stokes law. Apart from the unimportant constant
factors of Equation (6.1) the SER establishes a proportionality relationship
between the diffusion constant and the viscosity

D(T ) ∝ T

η(T )
(6.2)
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Figure 6.1: Sketch of the break-down of the SER in the supercooled regime.
This can be seen as a failure of the proportionality between the diffusion con-
stant and the inverse relaxation time of the system. In this illustration the
relaxation time and the diffusion coefficient are normalized to their high tem-
perature limit values (τ0 and D0 respectively). In the high temperature state
the SER holds but in the supercooled regime the inverse diffusion coefficient
becomes orders of magnitudes smaller than the relaxation time. For actual
measurements see Ref. [168] where the inverse diffusion constant separates of
about two decades from the relaxation time in o-terphenyl when τ ∼ 1 s.

It was clearly established by experiments that Equation (6.2) is significantly
violated in supercooled liquids (see Ref.s [166, 167, 168, 30, 6]). As we cool the
system into the supercooled phase we find that the diffusion coefficient is orders
of magnitudes larger than the inverse viscosity, i.e. D � T/η. This means that
while the structural rearrangements needed to relax an elastic deformation
are deeply suppressed the diffusion of the molecules is still surprisingly active.
Moreover the break-down of the SER has been related to the the heterogeneous
dynamics by several authors. In particular a very clear and simple argument
supporting this link has been provided in Ref. [168] (see also Ref.s [30, 6]).

To illustrate this connection let us first rewrite Equation (6.2) as an equation
relating the diffusion coefficient to the structural relaxation time of the liquid
system. To do this we recall that at high temperature the shear relaxation is
well described by an exponential function with relaxation time τ , i.e. G(t) =
G∞ exp(−t/τ) (see Section 2.1). The viscosity is defined as the time-integral
of the shear-modulus so that we obtain the Maxwell formula
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η =
∫ ∞

0

dtG(t) = G∞τ (6.3)

If we use Equation (6.3) into (6.2) we have

D(T ) ∝ T

G∞(T ) τ(T )
(6.4)

We can neglect the weak temperature dependences of the terms T and G∞(T )
in Equation (6.4) to write the approximate proportionality relation

D(T ) ∝ 1
τ(T )

(6.5)

At some low temperature the SER breaks down and a clear deviation from
Equation (6.5) is observed [168] as sketched in Figure 6.1. To establish a link
between this phenomenon and the heterogeneous dynamics we consider the
simple case in which we have two relaxation times τ1 and τ2 in the system that
are well separated τ2 � τ1. This is an oversimplified scenario for the hetero-
geneous dynamics in which we imagine to have a group of particles moving
fast, having short relaxation time τ1, and a group of slow particles with long
relaxation time τ2. Although the SER (6.5) applies for the individual groups
1 and 2 giving D1 ∝ τ1

−1 and D2 ∝ τ2
−1, we have that the average diffusion

constant D is dominated by the fast dynamics

D ∝
(

1
τ

)
=

1
2

(τ−1
1 + τ−1

2 ) ' τ−1
1 /2 (6.6)

where we have assumed to have fast and slow particles in equal number. On the
contrary the average relaxation time is mainly determined by the relaxation
time of the slow particles since

τ =
1
2

(τ1 + τ2) ' τ2/2 (6.7)

In this trivial example the presence of separated relaxation times accounts for
the failure of the SER when this is applied to the average diffusion constant
and the average relaxation time giving

D ∝ τ−1
1 /2� 1

τ
' τ−1

2 /2 (6.8)

More generally we have that the SER fails at low temperatures since the dy-
namics becomes heterogeneous leading to a broad distribution of relaxation
times P(τ). This means that the diffusion constant will be dominated by the
contributions of the relaxation time distribution at short τ while the relaxation
time is determined by the tail of P(τ) at long relaxation times giving D � 1/τ .
As we will see in the following a similar situation is found when we apply the
GDB model connecting dielectric and shear mechanical relaxation to relaxation
functions with broad relaxation-time distributions. To explain this point more
in detail we briefly illustrate the model in the next Section.
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6.2 An Analogy between The GDB Model and The SER

The GDB model establishes a connection between the dynamic shear modulus
and the dynamic dielectric response (see Ref.s [169, 170, 71, 73] for the studies
on the model reported so far). Thanks to the high quality shear modulus
measurements obtained with the piezo-shear gauge (PSG) technique1 combined
with dielectric measurements it was possible to study in detail the GDB model.
This was done in Ref.s [71, 73] in which the model was tested on a set of
dielectric and shear mechanical measurements. In these works it was shown
that the GDB model has several predictions that are correct on a qualitative
level. For example the model predicts that the shear loss-peak frequency has to
be higher than the dielectric loss-peak frequency. Moreover the model predicts
that the beta relaxation has to be more intense in the dynamic shear-modulus
than it is in the dielectric susceptibility. On the other hand the model was
found to be very limited on a more quantitative ground. In Ref.s [71, 73]
it was shown how to compute the shear-response using the model provided
as input the measured dielectric spectrum. It was shown that this predicted
mechanical spectrum had a moderate or poor agreement with the measured
spectrum depending on the liquid considered.

The GDB model provides a link between the shear modulus and rotational
polarization coefficient αr. This is defined as the constant relating the average
molecular dipole moment of the system 〈µ〉 to the average local electric field
Ed

〈µ〉 = αrEd (6.9)

The GDB model is based on the assumption that the rotational dynamics of the
molecular dipoles is described by a generalized diffusion equation. In this model
one considers the orientational probability density f(θ). The quantity f(θ′)dθ
is probability that the permanent dipole of a molecule has an orientation angle
between θ′ and θ′ + dθ with respect to some laboratory fixed reference frame.
The equation describing the time-evolution of f(θ, t) has the form of an integro-
differential equation

∂f

∂t
=

1
sin θ

∂

∂θ

[
sin θ

(∫ t

−∞
dt′

∂f

∂θ

∣∣∣∣
t′
D(t− t′)

− f
∫ t

−∞
dt′V (t− t′)M(t′)

)]
(6.10)

where D is a generalized (time-dependent) rotational diffusion coefficient, V
is the angular mobility memory function that is coupled to the torque M =
−µEd sin θ produced by the local electric field Ed. The first term on the right
hand side of Equation (6.10) represents a generalized diffusion term while the
second term embodies the response to the external electric field. These two
terms can be related using the FDT giving

D(t) = kBTV (t) (6.11)

1See also Chapter 2.
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Using Equation (6.11) we can solve Equation (6.10), to first order, in the case
of an oscillating electric field Ed(t) = Ed exp(iωt) obtaining the following ex-
pression for the rotational polarization coefficient

αr(ω) =
µ2

3kBT [1 + iω (V (ω) 2KBT )−1]
(6.12)

Moreover we can express V via a generalized rotational Stokes law as follows

V (ω) =
1

8πη(ω)R3
(6.13)

where η(ω) is the frequency-dependent viscosity and R is the molecular radius.
If we use Equation (6.13) in (6.12) we obtain the following expression for αr(ω)

αr(ω) =
µ2

3kBT [1 + 4πR3 iω η(ω)(kBT )−1]
(6.14)

Using the general definition of viscosity (Equation (6.3)) we can relate the
frequency-dependent viscosity to the frequency-dependent shear modulus

iω η(ω) = G(ω) (6.15)

Using Equation (6.15) in (6.14) we get

αr(ω) =
µ2

3kBT [1 + 4πR3G(ω) (kBT )−1]
(6.16)

Having obtained a relation connecting the rotational polarization coefficient
to the shear modulus (Equation (6.16)) now we need to relate αr to the mea-
sured dielectric susceptibility ε. Following Ref.s [71, 73] we use the Clausius
Mossotti approximation [171, 172, 173]

ε(ω)− 1
ε(ω) + 2

=
ρd[αr(ω) + αi]

3ε0
(6.17)

where ε(ω) is the frequency-dependent dielectric susceptibility, ρd is the num-
ber of dipoles per unit volume, ε0 is the vacuum dielectric constant and αi
is the molecular induced polarization coefficient accounting for the electronic
distribution distortion of the molecule caused by the electric field. αi is related
to the refractive index n in the high frequency limit in which αr(ω →∞) = 0

n2 − 1
n2 + 2

=
ρd αi
3ε0

(6.18)

If we use Equations (6.17) and (6.18) into (6.16) and we rearrange the expres-
sion we obtain

ε(ω)− n2

ε(0)− n2
=

1
1 + (4πR3)(kBT )−1[ε(0) + 2](n2 + 2)−1G(ω)

(6.19)

where ε(0) is the low frequency limit of the dielectric susceptibility ε(0) =
ε(ω → 0). Equation (6.19) can be inverted to obtain G(ω) as a function of ε(ω)
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G(ω) =
kBT

4πR3

[
n2 + 2
ε(0) + 2

] [
ε(0)− n2

ε(ω)− n2
− 1
]

= A

[
ε(0)− n2

ε(ω)− n2
− 1
]

(6.20)

where we have defined A = (n2 + 2)/(ε(0) + 2). Except for the multiplicative
frequency-independent term A determining the amplitude of G(ω), the GDB
model given by Equation (6.20) predicts the relaxation time of the shear mod-
ulus and its shape from the measured dielectric susceptibility. This prediction
is, in principle, parameter-free if the refraction index n is known. However
accurate measurements of the refractive index are not generally available in
the literature at low temperatures. In Ref.s [71, 73] it was discussed, and con-
firmed by some measurements, that some physical bounds can be set for n(T ).
In particular we can state the at the refractive index is bounded form below
by the value of n at room temperature Troom that is more easily measured,
i.e. n(T ) ≥ n(Troom). Moreover n2, that is related to the polarizability of the
medium at optical frequencies, is smaller than the asymptotic value of the di-
electric susceptibility ε∞ seen in the frequency range spanned by our dielectric
measurements limited to ν ' 1 MHz. Using these bounds together we have
that

n2(Troom) ≤ n2(T ) ≤ ε∞(T ) (6.21)

In practice we can use the model as a one-parameter prediction for the normal-
ized G(ω), having measured ε(ω), where the single free parameter n is strictly
bounded by the inequality (6.21).

To understand better how the GDB model acts and in which sense it is
similar to the SER we start by applying the model to a dielectric Debye-like
relaxation. To this purpose let us consider a dielectric susceptibility of the form

ε(ω) = ε∞ +
∆ε

1 + iωτ
(6.22)

where ∆ε is the amplitude of the dielectric susceptibility and ε∞ is its high
frequency plateau that is ε∞ ≥ n2 according to the inequality (6.21). If we
plug Equation (6.22) into the GDB model (6.20) after some algebra we obtain

G(ω) =
(

A∆ε
ε∞ − n2

)
iωτ [∆ε/(∆ε+ ε∞ − n2)]

1 + iωτ [∆ε/(∆ε+ ε∞ − n2)]
(6.23)

If we absorb all the frequency-independent terms in the constant A′ and if we
introduce the modified relaxation time

τ̃ = τ [∆ε/(∆ε+ ε∞ − n2)] (6.24)

we can rewrite Equation (6.23) more compactly

G(ω) = A′
iωτ̃

1 + iωτ̃
(6.25)

This example shows that the GDB model maps a dielectric Debye relaxation
into a shear Debye-like relaxation, as sketched in Figure 6.2(A) and (B). In-
deed Equation (6.25) describes a Debye relaxation for G(ω). Notice that the
multiplicative term iωτ̃ gives the right behavior to the real part of G(ω) that
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Figure 6.2: Illustration of the application of the GDB model (6.20) to a Debye
dielectric relaxation ε(ω) (Equation (6.22)) predicting a Debye shear relaxation.
(A) shows the real parts of ε(ω) (blue) and G(ω) (red). (B) shows the imagi-
nary parts of ε(ω) (blue) and G(ω) (red), the inset of (B) shows the imaginary
parts in a double log-scale. As its seen the predicted dynamic shear modulus
has shorter relaxation time then the dielectric susceptibility τ̃ < τ .
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approaches G∞ at high frequency and goes to zero at low frequency. Moreover
the predicted shear modulus has a relaxation time shorter than the dielectric
susceptibility τ̃ < τ since ∆ε/(∆ε+ ε∞ − n2) < 1.

In order to show in which sense the model is analogous to the SER we must
take into account what happens if we apply the GDB model in a heterogeneous
situation. As done in Section 6.1 we consider an oversimplified heterogeneous
scenario in which we have a group of fast rotating dipoles and a group of slow
dipoles in the system. Moreover we assume that the dielectric susceptibility of
the fast dipoles is Debye-like and has relaxation time τ1. Similarly we assume
that the slow dipoles have a Debye-like susceptibility with relaxation time τ2.
As done in the previous Section we consider the case of well separated relaxation
times τ2 � τ1. The overall dielectric spectrum will be given by

ε(ω) = ε∞ +
∆ε
2

[ ε̃1(ω) + ε̃2(ω)] = ε∞ +
∆ε
2

(
1

1 + iωτ1
+

1
1 + iωτ2

)
(6.26)

where we have assumed to have fast and slow dipoles in equal number. In
Equation (6.26) we have introduced the normalized susceptibilities ε̃1(ω) =
(1 + iωτ1)−1 and ε̃2(ω) = (1 + iωτ2)−1. The dynamic shear modulus obtained
by applying the GDB model to the dielectric spectrum (6.26) is

G(ω) = A

[
∆ε+ ε∞ − n2

(∆ε/2)[ ε̃1(ω) + ε̃2(ω)] + ε∞ − n2
− 1
]

(6.27)

To understand qualitatively what happens to the predicted mechanical spec-
trum G(ω) is convenient to consider the behavior of the functions ε̃1(ω) and
ε̃2(ω) at different frequencies. At low frequencies of the order of ω ' τ−1

2 �
τ−1
1 the function ε̃1(ω) reaches its plateau value and is practically constant
ε̃1(ω ' τ−1

2 ) ' 1 giving

G2(ω) = G(ω ' τ−1
2 ) ' A

[
∆ε+ ε∞ − n2

(∆ε/2)[ 1 + ε̃2(ω)] + ε∞ − n2
− 1
]

(6.28)

Contrarily at high frequencies ω ' τ−1
1 � τ−1

2 the function ε̃2(ω) decays to
zero ε̃2(ω ' τ−1

2 ) ' 0 giving

G1(ω) = G(ω ' τ−1
1 ) ' A

[
∆ε+ ε∞ − n2

(∆ε/2) ε̃1(ω) + ε∞ − n2
− 1
]

(6.29)

Since the denominator of Equation (6.28) is larger than the one of Equation
(6.29) we have that

Re[G1(ω)] > Re[G2(ω)] (6.30)

the same inequality holds for the imaginary part. The situation is sketched
in Figure 6.3(A) and (B). Moreover the balance between the high and low-
frequency parts of G(ω) is set by the value of the amplitude ∆ε with respect
to the term (ε∞ − n2). If ∆ε is large compared to (ε∞ − n2) the computed
G(ω) is largely dominated by its high-frequency components. Contrarily if the
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Figure 6.3: Illustration of the application of the GDB model (6.20) to a dielec-
tric relaxation ε(ω) composed by two Debye relaxations with well separated
relaxation times (Equation (6.26)). (A) shows the real parts of ε(ω) (blue) and
G(ω) (red). The dashed lines represent the real parts of the Debye functions
ε̃1 and ε̃2 composing ε(ω). (B) shows the imaginary parts of ε(ω) (blue) and
G(ω) (red), the inset of (B) shows the imaginary parts in a double log-scale.
As its seen in predicted G(ω) the high-frequency part is enhanced with respect
to the low frequency part.
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dielectric susceptibility has small ∆ε the amplitude of the high frequency com-
ponent in G(ω) will be only a little larger than the amplitude of its component
at low frequencies.

What we have found in general is that the high-frequency contribution to
G(ω), coming form the fast relaxing dipoles, is enhanced with respect to the
low-frequency one determined by the slow dipoles, similarly to the case of the
diffusion that is enhanced by the fast particles. In other words, when we apply
the GDB model to an heterogeneous dielectric relaxation, the shear modulus
receives a larger contribution from the fast components of the relaxation-time
spectrum of the dielectric response, pretty much as the diffusion constant D in
the SER that is dominated by the short relaxation times. From a more general
point of view this results is not so surprising since the GDB model is built on
the same fundamental assumptions that lead to the SER. Indeed for obtaining
the GDB model and the SER we assume that a diffusion equations determines
the dynamics of the interesting relaxing quantity. Moreover we use the FDT
to relate the mobility or the friction to the diffusion. Finally we use a Stokes
law to connect the friction or the mobility to the viscosity.

This approach seems interesting especially because when we predict G(ω)
from the measured dielectric response via the GDB model we often obtain a
G(ω) that is too broad with respect to the actually measured dynamic shear-
modulus, as we will shown in the next Section (see also the discussion in Ref.s
[71, 73]). Moreover this unwanted broadening is seen mainly at high frequencies
suggesting that, somehow, we are not weighting correctly the components of
the heterogeneous dielectric spectrum. In the next Section we introduce a new
version of the GDB model that is built to account for this problem.

6.3 The Modified GDB model

The modified GDB (GDBM) model is based on the idea that the correct dy-
namic shear modulus is obtained by applying the original GDB model to the
individual components of the dielectric spectrum. For the sake of clarity we
use a more compact notation from now on indicating the GDB model (6.20)
as an operator MG[...] acting on the dielectric susceptibility ε(ω) to give the
dynamic shear modulus G(ω)

G(ω) =MG[ε(ω)] (6.31)

In the same way we indicate the GDBM model as an operatorMGM[...]. Now
we can imagine that an heterogeneous supercooled liquid system has an overall
dielectric response ε(ω) that is the sum of many components εα(ω), i.e. ε(ω) =∑
α εα(ω). This correspond to assume an heterogeneous scenario in which

we have many sub-regions in the liquid system relaxing in different ways. The
GDBM model is defined by the application of the GDB model on the individual
terms of ε(ω)

G(ω) =MGM[ε(ω)] =
∑
α

MG[εα(ω)] (6.32)

Notice that it is already clear that the two models (6.31) and (6.32) will gen-
erally give a different G(ω). This is because the operator MG is non-linear
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in its argument ε(ω) and therefore it does not commute with the sum giving∑
αMG[εα(ω)] 6=MG[

∑
α εα(ω)].

To use in practice the GDBM model one has to make some additional as-
sumptions on the components εα(ω) forming the dielectric spectrum. Indeed,
in principle, these terms may have different relaxation time, shape and ampli-
tude that are not known a priori. To overcome this issue we will assume that
the non-Debye shape of the dielectric spectrum is the result of the superpo-
sition of many Debye-like processes that correspond to the relaxations in the
sub-volumes of the system. Notice that this approach it is often referred has
the heterogeneous explanation for the stretching of the response function in
supercooled liquids and it is at the basis of the interpretation of dielectric hole-
burning experiments [174, 30, 6]. In contrast the homogeneous explanation
assumes that the relaxation function of the system is intrinsically non-Debye
with no connection to the spatially varying dynamics. The validity of these
scenarios was quite debated in the literature (see Ref.s [175, 176, 177, 30]). In
this respect we know now that supercooled liquids do have a spatial fluctua-
tions in the dynamics, and that these can be characterized by the multi-point
susceptibilities as confirmed by many numerical works and some experimental
studies (see the discussion in Chapter 5). It is therefore reasonable to expect
that these spatial heterogeneities in the dynamics contribute significantly to
the stretching of the response functions of a supercooled liquid. Moreover, for
applying practically the GDBM model, it is very convenient to use the hetero-
geneous interpretation of the non-Debye dielectric relaxation. Indeed, following
this assumption, we can rewrite the dielectric susceptibility as follows

ε(ω) =
∫ ∞

0

dτ ′P(τ ′)
(
ε∞ +

∆ε
1 + iωτ ′

)
(6.33)

where P(τ ′) is the normalized (
∫∞

0
dτ ′P(τ ′) = 1) spatial distribution of re-

laxation times. Notice also that by writing Equation (6.33) we are making a
further simplification since we assuming that the amplitude ∆ε and the base-
line ε∞ of ε(ω) do not fluctuate being these constants independent on τ ′. With
this decomposition the GDBM model (6.31) can be rewritten as

G(ω) =MGM[ε(ω)] =
∫ ∞

0

dτ ′P(τ ′)MG

[
ε∞ +

∆ε
1 + iωτ ′

]
(6.34)

Here we see again an analogy with the SER. In the GDBM model indeed
we assume that the GDB model works when applied to the individual Debye
components of ε(ω), as we assume that the SER still works for the individual
relaxation times of fast and slow particles but not for the overall relaxation
of the system (see Section 6.1). Notice also that by using the GDBM model
(6.34) we are assuming that the shear and dielectric response have the same
relaxation time spectrum a part from a scaling factor. The shear relaxation
time spectrum is scaled by the factor ∆ε/(∆ε + ε∞ − n2) < 1 introduced in
Equation (6.24) with respect to the dielectric one.

For illustrating the GDBM model at work we consider first the simple het-
erogeneous scenario introduced in the previous Section in which two Debye-like
relaxation functions compose the dielectric susceptibility. In this case we can
rewrite Equation (6.26) as
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ε(ω) =
∫ ∞

0

dτ ′[δ(τ ′ − τ1)/2 + δ(τ ′ − τ2)/2]
(
ε∞ +

∆ε
1 + iωτ ′

)
(6.35)

where δ(x) is the Dirac delta function. Using the GDBM model (6.34) on the
spectrum (6.35) we obtain

G(ω) =
∫ ∞

0

dτ ′[δ(τ ′ − τ1)/2 + δ(τ ′ − τ2)/2]A′
(

iωτ ′s
1 + iωτ ′s

)

=
A′

2

(
iωτ1s

1 + iωτ1s
+

iωτ2s

1 + iωτ2s

)
(6.36)

where we have used Equation (6.25) and we have introduced the scaling factor
for the relaxation time s = [∆ε/(∆ε + ε∞ − n2)]. As we can see now the two
Debye dielectric components are mapped into two Debye-like components in
the shear spectrum with the same amplitude (see Figure 6.4(A) and (B)). In
the GDBM model the two Debye dielectric elements in ε(ω) contribute equally
to G(ω), differently from the GDB model in which the high-frequency part of
the mechanical relaxation spectrum is enhanced (see Figure 6.3).

Now we want to apply the GDBM model to some experimentally measured
ε(ω) and check its quality in predicting G(ω) with respect to the GDB model.
For obtaining the distribution of relaxation times P(τ) of the dielectric suscep-
tibility (Equation (6.33)) we fit the measured ε(ω) with a Laplace-transformed
modified stretched exponential function (MSE) [58, 59]. Notice that the time-
resolved MSE dielectric susceptibility is (see also Section 2.2)

εMSE(t) = ε∞ −∆ε exp[−t/τ0 − k(t/τ0)1/2]

=
∫ ∞

0

dτ PMSE(τ) [ε∞ −∆ε exp(−t/τ)] (6.37)

where τ0 is the longest relaxation time and k is the shape parameter of the MSE
function. The relaxation time distribution PMSE defining the MSE function is
given by [178]

PMSE(τ) =
1
N

τ0 Θ(τ0 − τ)
2τ(τ0 − τ)

exp
[ −k τ
τ0 − τ

]√
k τ

π(τ0 − τ)
(6.38)

where Θ(x) is the Heaviside step function, and N is the normalization factor

N =
∫ τ0

0

dτ
τ0

2τ(τ0 − τ)
exp

[ −k τ
τ0 − τ

]√
k τ

π(τ0 − τ)
(6.39)

Since the Laplace transform is a linear operation we have that εMSE(ω) can be
expressed, as in Equation (6.33), as follows

εMSE(ω) =
∫ ∞

0

dτ PMSE(τ)
(
ε∞ +

∆ε
1 + iωτ

)
(6.40)
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Figure 6.4: Illustration of the application of the GDBM model (6.34) to a
dielectric relaxation ε(ω) composed by two Debye relaxations with well sep-
arated relaxation times (Equation (6.35)). (A) shows the real parts of ε(ω)
(blue) and G(ω) (red). (B) shows the imaginary parts of ε(ω) (blue) and G(ω)
(red), the inset of (B) shows the imaginary parts in a double log-scale. As
its seen the G(ω) predicted by the GDBM receive an equal contribution form
the high-frequency and from the low-frequency part of the dielectric spectrum,
differently from the prediction of the GDB model in which the high-frequency
part is enhanced (see Figure 6.3).
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Using Equation (6.40) represents also a valid numerical approach for fitting
the measured frequency-resolved dielectric susceptibility. This can be done
easily by converting the integral (6.40) into a discrete sum in order to evaluate
εMSE(ω) and by fitting the experimental ε(ω) with respect to the parameters
ε∞, ∆ε, k and τ0. Notice that a similar method could be used for fitting the
data in the frequency domain with a generic stretched exponential (KWW)
function εKWW(t) = ε∞ − ∆ε exp[−(t/τ0)β ]. However the KWW function is
much harder to integrate numerically in order to obtain εKWW(ω). This is
because its PKWW(τ) contains an extra integral of an additional parameter (see
Ref. [178]). Moreover the integral defining εMSE(ω) is bounded between zero
and τ0 by the function Θ(τ0−τ) contained in PMSE(τ) making the computation
particularly convenient. Differently when we integrate the function εKWW(ω)
we should consider a wide domain for τ since PKWW(τ) decreases slowly as τ →
∞, with no sharp cut-off, slowing down considerably the numerical integration.

We start by comparing the GDBM model and GDB model applied on the
dielectric response of two liquids: tetramethyltetraphenyltrisiloxane (DC704)
and polyphenyl ether (PPE). The dielectric and shear measurements performed
by our group on these liquids were presented in Ref.s [71, 73, 72]. Here we focus
on the ability of the two models in predicting the shape of G(ω) so we will con-
sider in the dielectric and shear relaxation functions at one single temperature
close to Tg. As discussed in Ref.s [71, 73, 72] indeed time-temperature super-
position applies for the dielectric and mechanical alpha processes of DC704
and PPE in the frequency/temperature range accessible by our dielectric and
shear measurements. Therefore we expect that the quality of the models in
giving the right shape of G(ω) does not change too much considering some
other temperature in the experimentally accessible range.

In Figure 6.5(A) and (B) we show the measured real and imaginary part of
the dielectric susceptibility of DC704 at T = 219.5 K (Tg = 211 K) fitted by the
MSE function (6.40). As it can be seen the MSE function fits excellently the
experimental dielectric data. In Figure 6.5(B) and (C) we report the measured
dynamic shear modulus (real and imaginary part) of DC704 at T = 219.5
K and we compare it with the predictions of the GDB and of the GDBM
models. The amplitude of the predicted G(ω) is scaled to match the G∞ of the
measured shear modulus. Moreover we adjust the parameter n for predicted
G(ω) compatibly with the inequality (6.21) (see Table 6.3). As it can be seen
from Figure 6.5 the original GDB works quite well for DC704 as found also
in Ref.s [71, 73], although the predicted G(ω) is a little too broad compared
to the measured one. Differently the GDBM model predicts a G(ω) with a
narrower shape that is more similar to the one of the measured G(ω). This
situation is somehow expected since the the amplitude of the dielectric response
of DC704 is not too large compared to the factor (ε∞ − n2). This implies that
the high-frequency components of G(ω) predicted by the GDB model are not
enhanced too much with respect to its low-frequency components as discussed
in the previous Section.

The situation is quite different for PPE. In Figure 6.6(A) and (B) we show
the measured real and imaginary part of the dielectric susceptibility of PPE
at T = 256.0 K (Tg = 245 K) fitted by the MSE function (6.40). Again the
MSE function fits very well the measured ε(ω). In Figure 6.6(B) and (C) we
report the measured dynamic shear modulus (real and imaginary part) of PPE
at T = 256.0 K and we compare it with the predictions of the GDB and of the
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Figure 6.5: (A) and (B) show, respectively, the real and the imaginary parts
(circles) of the measured dielectric response of DC704 at T = 219.5 K (Tg =
211 K). The red line is the fitting MSE function (6.40). (C) and (D) show,
respectively, the real and the imaginary parts of the measured dynamic shear
modulus of DC704 at T = 219.5 K (squares). The blue line is the G(ω)
predicted by the GDB model, the purple line is the G(ω) predicted by the
GDBM model.

Liquid Tg [K] n2(Troom) n2(T ) (GDB) n2(T ) (GDBM) ε∞(T )
DC704 (at T = 219.5 K) 211 2.430 2.502 2.572 2.632
PPE (at T = 256 K) 245 2.659 2.7 2.7 2.932
TPG (at T = 194.0 K) 190 2.085 2.1 2.1 2.826

Table 6.1: Value of the parameter n(T ) adjusted for the GDB model and the
GDBM model. The n(T ) is chosen compatibly with the inequality (6.21). The
values of n at room temperature are taken from Ref.s [71, 73, 72]. The value
of ε∞(T ) is determined by the fitting.
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Figure 6.6: (A) and (B) show, respectively, the real and the imaginary parts
(circles) of the measured dielectric response of PPE at T = 256.0 K (Tg =
245 K). The red line is the fitting MSE function (6.40). (C) and (D) show,
respectively, the real and the imaginary parts of the measured dynamic shear
modulus of PPE at T = 256.0 K (squares). The blue line is the G(ω) predicted
by the GDB model, the purple line is the G(ω) predicted by the GDBM model.
The vertical dashed lines indicates the shear loss peak positions of the measured
G(ω) and of the G(ω) predicted by the models.
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GDBM models. The amplitudes of the two predicted G(ω) and the values of n
are set as in the case of DC704 (see Table 6.3). For PPE ∆ε is quite large and
the GDB model predicts a completely deformed mechanical spectrum that is
dominated by its high-frequency components. The loss peak position predicted
by the GDB model is more than an one order of magnitude larger than the
measured one. Differently the GDBM model seems to weight correctly the
components of the spectrum giving a G(ω) with a shape extremely similar
to the measured one. The loss peak position of the G(ω) obtained from the
GDBM model is still not matching perfectly with the measured one. However
the shear loss peak position predicted by the GDBM model is only about a
factor two larger than the measured one.

Now we consider the application of the models to a liquid having a beta
relaxation. Notice that in this case the single MSE function is not enough to
describe the dielectric spectrum. To efficiently fit the full dielectric response of
a supercooled liquid showing a beta process we can use a linear combination
of a MSE function and a Cole-Cole (CC) function εCC(ω) [179, 180] (see also
Ref. [58]). This fitting function may be conveniently written as

ε(ω) = ε∞ + ∆ε
[(∫ ∞

0

dτ ′ PMSE(τ ′)
1− a

1 + iωτ ′

)
+ a ε̃CC(ω)

]
(6.41)

where 0 ≤ a ≤ 1 sets the relative amplitude of the alpha and the beta process
and the (normalized) CC function is given by the expression

ε̃CC(ω) =
1

1 + (iωτβ)α
(6.42)

where τβ indicates the characteristic relaxation time of the secondary process
and α is the shape parameter.

Notice that at this point we could apply the GDBMmodel in two alternative
ways depending on how we treat the non-Debye shape of the beta process.
Indeed we may assume that the heterogeneous explanation applies also for the
stretching of the beta relaxation and that its non-Debye shape is the result of
the superposition of many Debye-like processes. In this case the GDBM model
applies on the Debye components of the dielectric spectrum belonging both to
the alpha and the beta relaxation. For the sake of clarity we will refer to this
first version of the model with the acronym GDBM1. Mathematically we will
indicate the GDBM1 model as an operatorMGM1[...]. The GDBM1 model can
be written as

G(ω) =MGM1[ε(ω)] =
∫ ∞

0

dτ ′PTOT(τ ′)MG

[
ε∞ +

∆ε
1 + iωτ ′

]
(6.43)

where

PTOT(τ) = (1− a)PMSE(τ) + aPCC(τ) (6.44)

In Equation (6.44) PMSE(τ) is the relaxation time distribution of the MSE
function (Equation (6.38)) and PCC(τ) is the relaxation time distribution of
the CC function [178]

95



6. Heterogeneous Modeling of The Connection between Shear
and Dielectric Relaxation

PCC(τ) =
1

2π τ

(
sin(πα)

cosh[α ln(τ/τβ)] + cos(πα)

)
(6.45)

The parameter a in Equation (6.44) determines the relative amplitude of the
MSE function and of the CC function contributing to the overall ε(ω) (as in
Equation (6.41)), with the bound 0 ≤ a ≤ 1 ensuring the normalization.

The other way of applying the GDBMmodel, when a beta process is present,
is by assuming that the secondary relaxation is homogeneously stretched. This
corresponds to assume that the beta process is intrinsically non-Debye and it
is not the result of the superposition of many Debye-like processes. Although
this assumption might seem somehow weird it can be justified qualitatively
as follows. We should keep in mind that the relaxation time τα of the alpha
process grows rapidly upon cooling increasing (at least) in an Arrhenius way.
On the other hand the beta relaxation time τβ generally has a much weaker
temperature dependence and, in most cases, it is even difficult to see any
clear change of τβ in the entire supercooled equilibrium phase (see Ref. [181]).
In Section 5.1.1 we have seen that the typical size of the spatial fluctuations
of a dynamic response function can be approximated by the simple formula
Ncorr ' (kB/cp)f2|∂ ln τ/∂ lnT |2 where cp is the specific heat per particle at
constant pressure, τ is the relaxation time of the function and f is a constant
multiplicative factor of order one. With this expression we can roughly esti-
mate the characteristic amplitude of the dynamic fluctuations in the response
function on the timescale of the relaxation time. If we apply this idea sepa-
rately to the alpha and to the beta relaxations as two independent processes,
we immediately realize that the amplitude of the spatial fluctuations of the
beta dynamics is practically insignificant with respect to the typical amplitude
of the fluctuations of the alpha relaxation. In particular this is the case close to
Tg where the alpha relaxation time grows sharply (especially for fragile liquids)
giving |∂ ln τα/∂ lnT |2 � |∂ ln τβ/∂ lnT |2. This qualitative argument supports
the idea that the beta relaxation is intrinsically non-Debye since its spatial
fluctuations are negligible with respect to those characterizing the structural
alpha process. Following this suggestion we can rewrite the GDBM model,
differently from the GDBM1 model (6.43), with the operator MG acting on
the decomposed alpha process and on the (non decomposed) beta relaxation.
We will refer to this second version of the GDBM model with the acronym
GDBM2 and we will indicate the GDBM2 model as an operator MGM2[...].
The GDBM2 model can be formally written as

G(ω) =MGM2[ε(ω)]

=
∫ ∞

0

dτ ′PMSE(τ ′)MG

[
ε∞ + ∆ε

(
1− a

1 + iωτ ′
+

a

1 + (iωτβ)α

)]
(6.46)

Let us now see how the GBD, GDBM1 and GDBM2 models work in pre-
dicting G(ω) from a measured dielectric spectrum showing a clear beta relax-
ation. For doing this we consider the dielectric and mechanical measurement on
tripropylene glycol (TPG) presented in Ref.s [71, 73, 72]. We apply the mod-
els to a measurement of ε(ω) close to Tg = 190 K where the alpha and beta
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Figure 6.7: (A) and (B) show, respectively, the real and the imaginary parts
(circles) of the measured dielectric response of TPG at T = 194.0 K (Tg = 190
K). The red line is the fitting with an MSE function plus a CC function (Equa-
tion (6.41)). (C) and (D) show, respectively, the real and the imaginary parts
of the measured dynamic shear modulus of TPG at T = 194.0 K (squares).
The blue line is the G(ω) predicted by the GDB model, the purple line is the
G(ω) predicted by the GDBM1 model and the red line is the G(ω) predicted
by the GDBM2 model. The vertical dashed lines indicates the shear loss peak
positions of the measured G(ω) and of the G(ω) predicted by the models.
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processes are well separated. In Figure 6.7(A) and (B) we show the measured
real and imaginary part of the dielectric susceptibility of TPG at T = 194.0 K
fitted by a combination of the MSE and of the CC function (6.41). The fitting
function (6.41) describes well the measured ε(ω). In Figure 6.7(B) and (C)
we report the measured dynamic shear modulus (real and imaginary part) of
TPG at T = 194.0 K and we compare it with the predictions of the GDB, of
the GDBM1 and of the GDBM2 models. The amplitudes of the two predicted
G(ω) and the values of n are set as described above for DC704 and PPE (Ta-
ble 6.3). The GDB model in this case predicts again a deformed mechanical
spectrum that is dominated by its high-frequency components. In particular
the GDB model fails in predicting G(ω) even on a qualitative level, giving a
mechanical beta relaxation that is intense as the alpha. The loss peak position
of G(ω) predicted by the GDB model is about one order of magnitude larger
than the measured one. Differently the GDBM1 gives a mechanical loss peak
position only about a factor two larger than the measured one. Nevertheless
the shape of the shear alpha process given by the GDBM1 model is still a little
too narrow than the measured one. Moreover the magnitude of the mechani-
cal beta process is underestimated by the GDBM1 model. In this respect the
GDBM2 model gives a more satisfying description of the full G(ω) with a more
accurate estimate of the intensity of the shear beta process.

In conclusion we have presented a new version of the GDB model, the
GDBM model, that is modified to account for the heterogeneous dynamics.
The GDBM model is inspired by the qualitative analogy between the original
GDB model and the SER. In the cases examined here the GDBM model allows
for a considerable improvement in the prediction of the shear modulus with
respect to the GDB model. The shape of the dynamic shear modulus obtained
from the GDBM model is significantly better than the one given by the GDB
model especially for those liquids with a large dielectric susceptibility. More-
over the shear loss peak position predicted by the GDBM model improves in
precision by almost one order of magnitude with respect to the GDB model
for those liquids with intense dielectric response. We have also shown that
the GDBM model can be used in two alternative ways when we want to de-
scribe spectra showing a clear beta process. In this case the GDBM model
works better if we assume that the beta relaxation is intrinsically non-Debye
as suggested by some arguments inspired by the studies on the multi-point sus-
ceptibilities. This is an interesting insight since a clear understanding of the
heterogeneous properties of the beta process is still lacking. Certainly more
work can be done to clarify if the GDBM model can be further improved. For
example the Clausius Mossotti approximation connecting the rotational polar-
ization coefficient to the dielectric susceptibility could be changed by choosing
an alternative description of the local field. As discussed in Ref.s [71, 73] this
choice has practically no effect on the quality of the predictions of the GDB
model, but it could be that an alternative local field improves the prediction
of the GDBM model, this is expected in particular for those liquids having
a intense molecular dipole moment. From a more general point of view it is
interesting to notice that thinking of the dynamics of a supercooled liquid in
terms of dynamical heterogeneities is not only a purely theoretical exercise.
The modeling described in this section indicates that this is a fruitful concept
also when applied to problems of practical importance such as the indirect
measurement of the shear-mechanical properties of a supercooled liquid from
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the simpler measurement of its dielectric properties.
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Chapter 7

Outlook

In this chapter we illustrate the perspectives of the studies presented in the
thesis. We focus on the open questions that may indicate new ways to follow
in future numerical and experimental studies.

7.1 Shear-Mechanical Beta Relaxation

As discussed in Chapter 2, in Paper I and in Paper II when the beta relaxation is
seen the dielectric spectrum it is also seen in the shear modulus. Nevertheless
in most cases the mechanical beta peak lies at high frequencies, above the
highest frequency that can be probed via the PSG technique (∼ 10 kHz). This
is a limitation for studying the features shear beta process. The issue could
be solved by slightly modifying the geometry of the transducer. Indeed one
could use smaller piezo-ceramics shifting the accessible dynamic range to higher
frequencies. Another possibility is to study the evolution of the beta relaxation
in the glassy regime. In this condition the dielectric beta process generally
shows a much more pronounced temperature dependence in its relaxation time.
It is expected that, in this condition, also the mechanical beta moves to lower
frequency making possible a better experimental characterization its shape and
temperature dependence.

7.2 Experimental Studies of the Off-Equilibrium
Dynamics

In Chapter 3 and in Paper III we illustrate an experiment for studying the off-
equilibrium fluctuation-dissipation relation (FDR) in an aging colloidal suspen-
sion. This experiment could be, inprinciple, performed on a molecular glassy
system. In the literature we can find some measurement of the depolarized
light scattering correlation function of supercooled liquids (see for example Ref.
[182]). Moreover it was shown that it is possible to obtain Kerr effect response
measurement in supercooled liquids (see Ref. [183]). The FDR could be stud-
ied by combining these optical measurements with a temperature-controlling
system allowing for a fast cooling of the liquid in the glassy regime. Recently
a device optimized for a very fast temperature change of the system was de-
veloped in our group [59]. Certainly such an experiment would be challenging
but it seems a promising route to follow in the experimental study of the FDR.
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7.3 Numerical Studies of the Off-Equilibrium Dynamics

As discussed in Chapter 4 and in Paper IV the effective temperature Teff found
from the FDR has some remarkable scaling properties in strongly correlating
liquids (SCLs). Moreover we have shown that in a strongly correlating liquid
Teff individuates the equilibrium inherent states that the system visits in aging.
This scenario is found to breakdown for non-SCL systems. In this context
it would be interesting to understand more precisely why an off-equilibrium
thermalizing SCL system has to age through equilibrium states. Moreover it
should be studied more in detail if underlying liquid-to-liquid transitions play
a role in destroying this simple aging behavior. Computer simulations could
provide a usefull insight in this context.

In Chapter 4 we have also pointed out that a quite striking correlation
exist between the non-ergodicity factor and the violation factor of an SCL
glassy system. We have also mentioned that a similar situation is found in
some spin systems where the correlation expresses some interesting properrties
of the landscape of the system. To understand if the same structure of the
landscape is present in a glassy SCL system we may measure in computer
simulations the multiplicity of the trapping inherent states and the overalp of
the configurations belonging to the same state. Suitable operative methods
for finding the multiplicity of the inherent states have been proposed in the
literature [184, 185, 186]. Moreover an overlap function for the density field
can be defined as done in Ref.s [187, 188]. These investigations could give very
detailed informations on the structure of the landscape of SCL systems.

7.4 Experimental Investigation of The Multi-Point
Susceptibilities

In Chapter 5 and in Paper V we have seen how to determine indirectly the
multi-point susceptibilities in experiments. We have also shown that in general
the shear and dielectric three-point susceptibilities are different. Nevertheless
we have found that the amplitudes of these dielectric and mechanical high-order
correlations grow proportionally upon cooling for several supercooled liquids.
We mentioned that this picture seems to be confirmed also by other dynamic
response measurements. This fact has to be established more firmly by a more
accurate analysis but, if confirmed, it opens some fundamental questions. Why
do all the dynamic susceptibilities grow proportionally upon cooling? Is there a
unique underlying physical mechanism that drives the growth of these dynamic
correlations? More experimental, numerical, and theoretical work is certainly
needed to answer these questions.

In Chapter 5 we have also described a new experiment for the direct mea-
surement of the four-point susceptibility making use of photon correlation spec-
troscopy techniques. The experiment is based on the combined use of hetero-
dyne and homodyne dynamic light scattering techniques. Moreover the exper-
iment employs small scattering volumes to enhance the dynamic fluctuations.
The experiment was applied for determining of the four-point susceptibility
of an aging colloidal suspension. We have mentioned that a similar approach
could be used in the experimental determination of the four-point susceptibility
in molecular supercooled and glassy systems provided that the focused beam
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has nanometric size. With some advanced optics focused X-rays with ∼10
nm beam waist have been obtained (see for example Ref. [165]). Moreover
X-ray photon-correlation spectroscopy XPCS has been applied successfully to
the study of some supercooled polymer liquid (see Ref. [189]). The use of
XPCS in small scattering volume seems to be a promising route to follow in
the challenging experimental studies of the multi-point susceptibilities.

7.5 Modeling The Connection of Shear and Dielectric
Response

In Chapter 6 we have introduced a new model for connecting the shear and
the dielectric response of a supercooled liquid based on an heterogeneous de-
scription of the dynamics. This new model (GDBM) is a modification of the
Gemant-DiMarzio-Bishop (GDB) model. The GDBM model is found to work
significantly better than the GDB model in predicting the shape and the me-
chanical loss-peak position of the shear modulus from the measured dielectric
susceptibility. Nevertheless the agreement between the predicted shear mod-
ulus and the measured one is still far from being perfect. As mentioned in
Chapter 6 the quality of the GDBM model could be improved by using more
sophisticated expression for the local field.

103





Bibliography

[1] Angell C. A. Perspective on The Glass-Transition. Journal of Physics
Reports and Chemistry of Solids, 49(8):863–871, 1988.

[2] MD Ediger, CA Angell, and SR Nagel. Supercooled liquids and glasses.
Journal of Physical Chemistry, 100(31):13200–13212, AUG 1 1996.

[3] Angell C.A. and Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W.
Relaxation in glassforming liquids and amorphous solids. Journal of Ap-
plied Physics, 88(6):3113–3157, SEP 15 2000.

[4] Dyre J. C. Colloquium: The glass transition and elastic models of glass-
forming liquids. Reviews of Modern Physics, 78(3):953, Jul-Sep 2006.

[5] Steven A. Kivelson and Gilles Tarjus. In search of a theory of supercooled
liquids. NATURE MATERIALS, 7(11):831–833, NOV 2008.

[6] Cavagna A. Supercooled liquids for pedestrians. Physics Reports, 476(4-
6):51 – 124, 2009.

[7] S. U. Dzhalilo and K. I. Rzaev. On Phenomenon Of Selenium Vitrifica-
tion. Physica Status Solidi, 20(1):261, 1967.

[8] R Richert and CA Angell. Dynamics of glass-forming liquids. V. On the
link between molecular dynamics and configurational entropy. Journal
of Chemical Physics, 108(21):9016–9026, JUN 1 1998.

[9] A. P. Sokolov, E. Rossler, A. Kisliuk, and D. Quitmann. Dynamics of
Strong amd Fragile Glass Formers - Differences and Correlation with
Low-Temperature Properties. Physical Review Letters, 71(13):2062–2065,
SEP 27 1993.

[10] S. N. Yannopoulos and G.N. Papatheodorou. Critical experimental facts
pertaining to models and associated universalities for low-frequency Ra-
man scattering in inorganic glass formers. Physical Review B, 62(6):3728–
3734, AUG 1 2000.

[11] T. Scopigno, G. Ruocco, F. Sette, and G. Monaco. Is the fragility of a
liquid embedded in the properties of its glass? Science, 302(5646):849–
852, OCT 31 2003.

[12] Buchenau U. and Wischnewski, A. Fragility and compressibility at the
glass transition. Physical Review B, 70(9):, SEP 2004.

105



Bibliography

[13] Giordano V. M. Monaco G. Frick B. Alba-Simionesco C. Niss K., Dalle-
Ferrier C. Glassy properties and viscous slowing down: An analysis of
the correlation between nonergodicity factor and fragility. Journal of
Chemical Physics, 129:194513, 2008.

[14] Christensen T. Dyre J. C., Olsen N. B. Local elastic expansion model
for viscous-flow activation energies of glass-forming molecular liquids.
Physical Review B, 53(5):2171–2174, FEB 1 1996.

[15] Bohmer R., K. L. Ngai, C.A. Angell, and D. J. Plazek. Nonexponential
Relaxations in Strong and Fragile Glass Formers. Journal of Chemical
Physics, 99(5):4201–4209, SEP 1 1993.

[16] Alba-Simionesco C. Salient properties of glassforming liquids close to the
glass transition. Comptes Rendus de L’Academie des Sciences Serie IV
Physique Astrophysique, 2(2):203–216, MAR 2001.

[17] Feynman R. P. Statistical Mechanics: A Set of Lectures. Academic, 1972.

[18] Landau L. D. and Lifshitz E. M. Statistical Physics. Butterworth-
Heinemann, 1980.

[19] Jean-Pierre Hansen and Ian R. McDonald. Theory of Simple Liquids.
Academic Press, 1990.

[20] Crisanti A. and F Ritort. Violation of the fluctuation-dissipation theorem
in glassy systems: basic notions and the numerical evidence. Journal of
Physics A-Mathematical and General, 36(21):R181–R290, MAY 30 2003.

[21] Cugliandolo L. F. Slow Relaxations and nonequilibrium dynamics in con-
densed matter, Course 7: Dynamics of Glassy Systems. Springer Berlin
/ Heidelberg, 2004.

[22] J Kurchan. In and out of equilibrium. Nature, 433(7023):222–225, JAN
20 2005.

[23] Chamon C. and Cugliandolo L. F. Fluctuations in glassy systems. Journal
of Statistical Mechanics-Theory and Experiment, 2007.

[24] Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni,
and Angelo Vulpiani. Fluctuation-dissipation: Response theory in statis-
tical physics. Physics Reports-Review Section of Physics Letters, 461(4-
6):111–195, JUN 2008.

[25] MM Hurley and P Harrowell. Kinetic Structure of a 2-Dimensional Liq-
uid. Physical Review E, 52(2):1694–1698, AUG 1995.

[26] Bennemann C. and Donati, C and Baschnagel, J and Glotzer, SC. Grow-
ing range of correlated motion in a polymer melt on cooling towards the
glass transition. Nature, 399(6733):246–249, MAY 20 1999.

[27] C Donati, S Franz, SC Glotzer, and G Parisi. Theory of non-linear
susceptibility and correlation length in glasses and liquids. Journal of
Non-Crystalline Solids, 307:215–224, SEP 2002.

106



[28] S Whitelam, L Berthier, and JP Garrahan. Dynamic criticality in glass-
forming liquids. Physical Review Letters, 92(18), MAY 7 2004.

[29] Heuer A. Feng H. Schmidt-Rohr K. Tracht U., Wilhelm M. and Spiess H.
W. Length scale of dynamic heterogeneities at the glass transition deter-
mined by multidimensional nuclear magnetic resonance. Physical Review
Letters, 81:2727, 1997.

[30] M.D. Ediger. Spatially heterogeneous dynamics in supercooled liquids.
Annu Rev Phys Chem., 51:99–128, 2000.

[31] Vidal Russell E. and Israeloff N. E. Direct observation of molecular
cooperativity near the glass transition. Nature, 408:695, 2000.

[32] Levitt A. C.-Schofield A. Weitz D. A.. Weeks E. R., Crocker J. C. Three-
dimensional direct imaging of structural relaxation near the colloidal glass
transition. Science, 287:627, 2000.

[33] Vanden Bout D. A. Deschenes L. A. Single-molecule studies of hetero-
geneous dynamics in polymer melts near the glass transition. Science,
292:255, 2001.

[34] Berthier L. and Biroli G., Bouchaud J.-P., Cipelletti L., El Masri D.,
L’Hote D., Ladieu F., Pierno M. Direct Experimental Evidence of a
Growing Length Scale Accompanying the Glass Transition. Science,
310:1797, 2005.

[35] Berthier L. and Biroli G., Bouchaud J.-B., et al. Spontaneous and induced
dynamic fluctuations in glass formers. I. General results and dependence
on ensemble and dynamics. Journal of Chemical Physics, 126:184503,
2007.

[36] Berthier L. and Biroli G, Bouchaud JP, et al. Spontaneous and induced
dynamic correlations in glass formers. II. Model calculations and compar-
ison to numerical simulation. Journal of Chemical Physics, 126:184504,
2007.

[37] Alba-Simionesco C et al. Dalle-Ferrier C, Thibierge C. Spatial corre-
lations in the dynamics of glassforming liquids: Experimental determi-
nation of their temperature dependence. Physical Review E, 76:041510,
2007.

[38] L’Hote D Ladieu F, Thibierge C. An experimental search for dynamic
heterogeneities in molecular glass formers. Journal of Physics Condensed-
Matter, 19:205138, 2007.

[39] Capaccioli S and Ruocco G, Zamponi F. Dynamically correlated regions
and configurational entropy in supercooled liquids. Journal of Physical
Chemistry B, 112:10652, 2008.

[40] J.D. Ferry. Viscoelastic Properties of Polymers. Wiley, New York, 1980.

[41] M. Feigelman J. Kurchan J. Dalibard M. E. Cates, J. L. Barrat. Structural
Relaxation and Rheology of Soft Condensed Matter, EDP Sciences, Les
Ulis vol. 75. Springer-Verlag, Berlin, 2003.

107



Bibliography

[42] Christensen T., Olsen N. B. A rheometer for the measurement of a high
shear modulus covering more than seven decades of frequency below 50
khz. Review of Scientific Instruments, 66:5019, 1995.

[43] Larsen E. H. Olsen N. B. Pedersen I. H. Rasmussen T. Dyre J. C.
Igarashi B., Christensen T. A cryostat and temperature control sys-
tem optimized for measuring relaxations of glass-forming liquids. Review
of Scientific Instruments, 79:045105, 2008.

[44] Larsen E. H. Olsen N. B. Pedersen I. H. Rasmussen T. Dyre J. C.
Igarashi B., Christensen T. An impedance-measurement setup optimized
for measuring relaxations of glass-forming liquids. Review of Scientific
Instruments, 79:045106, 2008.

[45] T. A. Litovitz. Temperature dependence of the viscosity of associated
liquids. Journal of Chemical Physics, 7:1088, 1952.

[46] Barlow A. J. and Lamb J. The visco-elastic behaviour of lubricating oils
under cyclic shearing stress. Proocedings of The Royal Society A, 253:52,
1959.

[47] Barlow A. J. and Lamb J., Matheson A. J. Viscous behaviour of super-
cooled liquids. Proocedings of The Royal Society A, 292:322, 1966.

[48] G Harrison. The Dynamic Properties of Supercooled Liquids. Academic,
New York, 1976.

[49] Bassler, H. Viscous flow in supercooled liquids analyzed in terms of
transport theory for random media with energetic disorder. Physical
Review Letters, 58:767, 1987.

[50] Avramov I. Viscosity in disordered media. Journal of Non-Crystalline
Solids, 351:3163, 2005.

[51] H. Vogel. Das temperaturabhangigkeitsgesetz der viskositat von flus-
sigkeiten. Physikalische Zeitschrift, 22:645, 1921.

[52] G.S. Fulcher. Analysis of recent measurements of the viscosity of glasses.
Journal of The American Ceramic Society, 8:339, 1925.

[53] G. Tammann. Glasses as supercooled liquids. Journal of The Society of
Glass Technology, 9:166, 1925.

[54] Olsen N. B. Dyre J. C. Hecksher T., Nielsen A. I. Little evidence for
dynamic divergences in ultraviscous molecular liquids. Nature Physics,
4:737, 2008.

[55] Olsen N. B. Dyre J. C. Landscape equivalent of the shoving model.
Physical Review E, 69:042501, 2004.

[56] Negami S. Havriliak S. A complex plane analysis of alpha-dispersions
in some polymer systems. Journal of Polymer Science Part C-Polymer
Symposium, 14PC:99, 1966.

108



[57] Negami S. Havriliak S. A complex plane representation of dielectric and
mechanical relaxation processes in some polymers. Polymer, 8:161, 1967.

[58] Olsen N. B. Dyre J. C. Niss K. Saglanmak N., Nielsen A. I. An electrical
circuit model of the alpha-beta merging seen in dielectric relaxation of
ultraviscous liquids. The Journal of Chemical Physics, 132:024503, 2010.

[59] Niss K. Hecksher T., Olsen N. B. and Dyre J. C. Physical ageing studied
by a device allowing for rapid thermal equilibration. arXiv:0811.0994,
2010.

[60] Boue P. Morfin I., Lindner P. Temperature and shear rate dependence of
small angle neutron scattering from semidilute polymer solutions. Macro-
molecules, 32:7208, 1999.

[61] Li R. Z. Time-temperature superposition method for glass transition
temperature of plastic materials. Materials Science and Engineering A,
278:36, 2000.

[62] Perusich S. McBreaty M. Dielectric rheological measurements of molten
polymers. Polymer Engineering and Science, 40:201, 2000.

[63] Kudoh H. et al. Miyano Y., Nakada M. Prediction of tensile fatigue life
for unidirectional cfrp. Journal of Composite Materials, 34:538, 2000.

[64] Christensen T. Olsen N. B. and Dyre J. C. Time-temperature superpo-
sition in viscous liquids. Physical Review Letters, 86:1271, 2001.

[65] Goldstein M. Johari G.P. Viscous liquids and glass transition .2. sec-
ondary relaxations in glasses of rigid molecules. Journal of Chemical
Physics, 53:2372, 1970.

[66] Olsen N. B. Scaling of beta-relaxation in the equilibrium liquid state of
sorbitol. Journal of Non-Crysyalline Solids, 235:399, 1998.

[67] Ngai K.L. Correlation between the secondary beta-relaxation time at
t-g with the kohlrausch exponent of the primary alpha relaxation or the
fragility of glass-forming materials. Physical Review E, 57:7346, 1998.

[68] Roland C.M. Leon C., Ngai K.L. Relationship between the primary
and secondary dielectric relaxation processes in propylene glycol and its
oligomers. Journal of Chemical Physics, 110:11585, 1999.

[69] Richert R. Wagner H. Dielectric beta relaxations in the glassy state of
salol? Journal of Chemical Physics, 110:11660, 1999.

[70] Lunkenheimer P. et al. Schneider U., Brand R. Excess wing in the dielec-
tric loss of glass formers: A johari-goldstein beta relaxation? Physical
Review Letters, 84:5560, 2000.

[71] K. Niss and B. Jakobsen. Dielectric and shear mechanical relaxation in
glass forming liquids. Master’s thesis, Department of Mathematics and
Physics IMFUFA, Roskilde University„ 2003.

109



Bibliography

[72] Olsen N. B. Jakobsen B., Niss K. Dielectric and shear mechanical al-
pha and beta relaxations in seven glass-forming liquids. The Journal of
Chemical Physics, 123:234511, 2005.

[73] Olsen N. B. Niss K., Jakobsen B. Dielectric and shear mechanical re-
laxations in glass-forming liquids: A test of the gemant-dimarzio-bishop
model. The Journal of Chemical Physics, 123:234510., 2005.

[74] Dyre J. C. A model for the generic alpha relaxation of viscous liquids.
Europhysics Letters, 71:646, 2005.

[75] Dyre J. C. Solidity of viscous liquids. iv. density fluctuations. Physcal
Review E, 74:021502, 2006.

[76] Jakobsen B. Niss K. Olsen N. B. Richert R. Dyre J.C. Nielsen A. I.,
Christensen T. Prevalence of approximate

√
t relaxation for the dielec-

tric α process in viscous organic liquids. Journal of Chemical Physics,
130:154508, 2009.

[77] C. J. F. B́’ottcher and P. Bordewijk. Theory of Electric Polarization II:
Dielectrics in Time-Dependent Fields. Elsevier, New York, 1980.

[78] Cole R. H. Davidson D. W. Dielectric relaxation induced glycerol, propy-
lene glycol, and normal-propanol. Journal of Chemical Physics, 19:1484,
1951.

[79] Cole R. H. and Davidson D. W. High frequency dispersion in normal-
propanol. Journal of Chemical Physics, 20:1389, 1952.

[80] McDuffie G. E. Litovitz T. A. Comparison of dielectric and mechanical
relaxation in associated liquids. Journal of Chemical Physics, 39:729,
1963.

[81] McDuffie G. E. Kono R., Litovitz T. A. Comparison of dielectric and
mechanical relaxation processes in glycerol-n-propanol mixtures. Journal
of Chemical Physics, 45:1790, 1966.

[82] Parisi G. Off-equilibrium fluctuation-dissipation relation in fragile
glasses. Physical Review Letters, 79:3660, 1997.

[83] Barrat J.L. and Kob W. Fluctuation-dissipation ratio in an aging
Lennard-Jones glass. Europhysics Letters, 46:637, 1999.

[84] Parisi G. et al. Di Leonardo R., Angelani L. Off-equilibrium effective
temperature in monatomic lennard-jones glass. Physcal Review Letters,
84:6054, 2000.

[85] Diezemann G. Aging in a free-energy landscape model for glassy relax-
ation. Journal of Chemical Physics, 123:204510, 2005.

[86] Chandler D. Jack R.L., Hagan M.F. Fluctuation-dissipation ratios in the
dynamics of self-assembly. Physcal Review E, 76:21119, 2007.

[87] Takano M. Hayashi K. Violation of the fluctuation-dissipation theorem
in a protein system. Biophysical Journal, 93:895, 2007.

110



[88] Cugliandolo L.E. Loi D., Mossa S. Effective temperature of active matter.
Physcal Review E, 77:51111, 2008.

[89] Alba M. and Hammann J., Ocio M., Refregier P., Bouchiat H. Spin-glass
dynamics from magnetic noise, relaxation, and susceptibility measure-
ments. Journal Applied Physics, 61:3683, 1987.

[90] Ocio M. Refregier P. Measurement of spontaneous magnetic fluctuations.
Revue de Physique Appliquee, 22:367, 1987.

[91] Bouchiat H.,. Experimental studies of the spin glass dynamics: towards
a better understanding. Physica A, 163:284, 1990.

[92] Herisson D. and Ocio M. Fluctuation-dissipation ratio of a spin glass in
the aging regime. Physical Review Letters, 88:257202, 2002.

[93] Grigera T. S. and Israeloff N. E. Observation of fluctuation-dissipation-
theorem violations in a structural glass. Physical Review Letters, 83:5038,
1999.

[94] Buisson L. and Ciliberto S. Off equilibrium fluctuations in a polymer
glass. Physica D: Nonlinear Phenomena, 204:1, 2005.

[95] Sprik R. Kroon M., Wegdam G.H. Dynamic light scattering studies on
the sol-gel transition of a suspension of anisotropic colloidal particles.
Physcal Review E, 54:6541, 1996.

[96] Van Damme H. et al. Mourchid A., Lecolier E. On viscoelastic, bire-
fringent, and swelling properties of laponite clay suspensions: Revisited
phase diagram. Langmuir, 14:4718, 1998.

[97] Munch J P. et al. Knaebel A., Bellour M. Aging behavior of laponite clay
particle suspensions. Europhysics Letters, 52:73, 2000.

[98] Mourchid A. et al. Levitz P., Lecolier E. Liquid-solid transition of laponite
suspensions at very low ionic strength: Long-range electrostatic stabili-
sation of anisotropic colloids. Europhysics Letters, 49:672, 2000.

[99] Ruocco G. Ruzicka B., Zulian L. Routes to gelation in a clay suspension.
Physcal Review Letters, 93:258301, 2004.

[100] Bandyopadhyay R. and Liang D., Yardimci H., et al. Evolution of
particle-scale dynamics in an aging clay suspension. Physcal Review Let-
ters, 93:228302, 2004.

[101] Bonn D. Jabbari-Farouji S., Wegdam G.H. Gels and glasses in a single
system: Evidence for an intricate free-energy landscape of glassy materi-
als. Physcal Review Letters, 99:65701, 2007.

[102] Reverdya G. Moustyb C. Blankespoor R. Gautierb A. Labbe P.,
Brahimia B. and Degrandb C. Possible analytical application of laponite
clay modified electrodes. Journal of Electroanalytical Chemistry, 379:103,
1994.

111



Bibliography

[103] Galez C. et al. Teyssier J., Le Dantec R. Lithium iodate nanocrystals
in laponite matrix for nonlinear optical applications. Applied Physics
Letters, 85:710, 2004.

[104] Boucenna I. and Royon L., and Colinart P. Effect of laponite clay parti-
cles on thermal and rheological properties of pluronic triblock copolymer.
Journal of Thermal Analysis and Calorimetry, 98:119, 2009.

[105] Ghofraniha N. and Zamponi F. Conti C., Ruocco G. Time-dependent
nonlinear optical susceptibility of an out-of-equilibrium soft material.
Physcal Review Letters, 102:038303, 2009.

[106] Petrosyan A. et al. Joubaud S., Percier B. Aging and effective tempera-
tures near a critical point. Physcal Review Letters, 102:130601, 2009.

[107] Israeloff N.E. Oukris H. Nanoscale non-equilibrium dynamics and the
fluctuation-dissipation relation in an ageing polymer glass. Nature
Physics, 6:70, 2010.

[108] Berne B. J., and Pecora R. Dynamic Light Scattering with Applicatiions
to Chemistry Biology and Physics. Dover Publications Inc., 1975.

[109] van de Hulst H. C. Light Scattering by Small Particles. Dover Publica-
tions Inc., 1982.

[110] Johnson C. S. and Gabriel D. A. Laser Light Scattering. Dover Publica-
tions Inc., 1995.

[111] Xu R. Particle Characterization: Light Scattering Methods. Springer,
2001.

[112] Dejardin J.-L. Dynamic Kerr Effect: The Use and Limits of the Smolu-
chowski Equation and Nonlinear Inertial Responses. World Scientific
Publishing Company, 1995.

[113] Shen Y. R. The Principles of Nonlinear Optics. Wiley-Interscience, 2002.

[114] Boyd R. W. Nonlinear Optics, Third Edition. Academic Press, 2008.

[115] Schroder T.B. et al. Pedersen U.R., Bailey N.P. Strong pressure-energy
correlations in van der waals liquids. Physcal Review Letters, 100:15701,
2008.

[116] Schroder T.B. et al. Pedersen U.R., Christensen T. Feasibility of a single-
parameter description of equilibrium viscous liquid dynamics. Physcal
Review E, 77:11201, 2008.

[117] Bailey N.P. and Pedersen U.R., Gnan N., et al. Pressure-energy cor-
relations in liquids. I. Results from computer simulations. Journal of
Chemical Physics, 129:184507, 2008.

[118] Bailey N.P. and Pedersen U.R., Gnan N., et al. Pressure-energy corre-
lations in liquids. II. Analysis and consequences. Journal of Chemical
Physics, 129:184508, 2008.

112



[119] Pedersen U.R. et al. Schroder T.B., Bailey N.P. Pressure-energy correla-
tions in liquids. iii. statistical mechanics and thermodynamics of liquids
with hidden scale invariance. Journal of Chemical Physics, 131:234503,
2009.

[120] Pedersen U.R. et al. Gnan N., Schroder T.B. Pressure-energy correlations
in liquids. iv. "isomorphs" in liquid phase diagrams. Journal of Chemical
Physics, 131:234504, 2009.

[121] Andersen H.C. Kob W. Scaling behavior in the beta-relaxation regime of
a supercooled lennard-jones mixture. Physcal Review Letters, 73:1376–
1379, 1994.

[122] Berthier L. and Kob W. The Monte Carlo dynamics of a binary Lennard-
Jones glass-forming mixture. Journal of Physics-Condensed Matter,
19:205130, 2007.

[123] Berthier L. Efficient measurement of linear susceptibilities in molecular
simulations: Application to aging supercooled liquids. Physcal Review
Letters, 98:220601, 2007.

[124] Odagaki T. Van Hoang V. Glasses of simple liquids with double-well
interaction potential. Physica B-Condensed Matter, 403:3910, 2008.

[125] Rosenbluth M. N. Teller A. H. Metropoplis N., Rosenbluth A. W. and
Teller E. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21:1087, 1953.

[126] Allen M. P., and Tildesley D. J. Computer Simulation of Liquids. Oxford
University Press, 1989.

[127] Stillinger F. H. A topographic view of supercooled liquid and glass for-
mation. Science, 267:1935, 1995.

[128] Dyre J. C. Schroeder T. B., Sastry S. and Glotzer S. C. Crossover to
potential energy landscape dominated dynamics in a model glass-forming
liquid. Journal of Chemical Physics, 22:9834, 2000.

[129] Sciortino F. and Tartaglia P. Extension of the fluctuation-dissipation
theorem to the physical aging of a model glass-forming liquid. Physcal
Review Letters, 86:107, 2001.

[130] Sastry S. and Angell C. A. Liquid-liquid phase transition in supercooled
silicon. Nature Materials, 2:739, 2003.

[131] Kurita R. and Tanaka h. Critical-like phenomena associated with liquid-
liquid transition in a molecular liquid. Science, 306:845, 2004.

[132] Beaucage P. and Mousseau N. Liquid-liquid phase transition in Stillinger-
Weber silicon. Journal of Physics: Condensed Matter, 17:2269, 2005.

[133] Sciortino F. Liquid-liquid transitions in one-component systems. Journal
of Physics: Condensed Matter, 17:V7, 2005.

113



Bibliography

[134] Bellissent-Funel M.-C. Zanotti J.-M. and Chen S.-H. Experimental evi-
dence of a liquid-liquid transition in interfacial water. Europhysics Let-
ters, 71:91, 2005.

[135] Kurita R. et al. Microscopic structural evolution during the liquid-liquid
transition in triphenyl phosphite. Journal of Physics: Condensed Matter,
19:152101, 2007.

[136] Turnbull D. and Fisher J. C. Rate of nucleation in condensed systems.
Journal of Chemical Physics, 17:71, 1949.

[137] Turnbull D. Under what conditions can a glass be formed? Contemporary
Physics, 10:473, 1969.

[138] Granasy L. Weinberg M. C., Poisl W. H. Crystal growth and classical
nucleation theory. Comptes Rendus Chimie, 5:765, 2002.

[139] Derrida B.,. An exactly solvable model of disordered systems. Physical
Review B, 24:26132626, 1981.

[140] Gross D. J. and Mezard M. The simplest spin glass. Nuclear Physics B,
240:431, 1984.

[141] Kanter I. Gross D. J. and Sopolinsky H. Mean-field theory of the potts
glass. Physical Review Letters, 55:304307, 1985.

[142] Goldbardt P. and Sherrington D. Replica theory of the uniaxial
quadrupolar glass. Journal of Physics C, 18:1923, 1985.

[143] Gardner E. Spin glasses with p-spin interactions. Nuclear Physics B,
257:747, 1985.

[144] Latz A. Kim B. The dynamics of the spherical p-spin model: From
microscopic to asymptotic. Europhysics Letters, 53:660, 2001.

[145] Castellani T. and Cavagna A. Spin-glass theory for pedestrians. Journal
of Statistical Mechanics: Theory and Experiment, 05:05012, 2005.

[146] Thirumalai D. Kirkpatric T.R. Dynamics of the structural glass-
transition and theory p-spin-interaction spin-glass model. Physcal Review
Letters, 58:2091, 1987.

[147] Wolynes P. G. Kirkpatric T.R. Connections between some kinetic and
equilibrium theories of the glass-transition. Physcal Review A, 35:3072,
1987.

[148] and Wolynes P. G. Kirkpatric T.R., Thirumalai D. Scaling concepts for
the dynamics of viscous-liquids near an ideal glassy state. Physcal Review
A, 40:1045, 1989.

[149] Wolynes P.G. Xia X.Y. Fragilities of liquids predicted from the random
first order transition theory of glasses. Prooceedings of The National
Academy of Sciences of The United States of America, 97:2990, 2000.

114



[150] Wolynes P.G. Xia X.Y. Microscopic theory of heterogeneity and non-
exponential relaxations in supercooled liquids. Physcal Review Letters,
86:5526, 2001.

[151] Wolynes P.G. Eastwood M.P. Droplets and the configurational entropy
crisis for random first-order transitions. Europhysics Letters, 60:587,
2002.

[152] Wolynes P.G. Lubchenko V. Theory of structural glasses and supercooled
liquids. Annual Review of Physcal Chemistry, 58:235, 2007.

[153] Crisanti A. and Sommers H.-J. The spherical p-spin interaction spin glass
model: The statics. Zeitschrift fur Physik B, 87:341, 1992.

[154] Horner H. Crisanti A. and Sommers H.-J. The spherical p-spin interaction
spin glass model: The dynamics. Zeitschrift fur Physik B, 92:257, 1993.

[155] Nielsen J. K. and Dyre J. C. Fluctuation-dissipation theorem for
frequency-dependent specific heat. Physcal Review B, 54:15754, 1996.

[156] Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover,
1972.

[157] Arfken, G. Mathematical Methods for Physicists, 3rd ed. Academic Press,
1985.

[158] Christensen T. The frequency-dependence of the specific-heat at the
glass-transition. Journal de Physique, 46:635, 1985.

[159] Jakobsen B. and Christensen T. Olsen N. B. Frequency dependent spe-
cific heat from thermal effusion in spherical geometry. arXiv:0809.4617v1
[cond-mat.soft], 2008.

[160] Christensen T. and Olsen N. B. Determination of the frequency-
dependent bulk modulus of glycerol using a piezoelectric spherical shell.
Physcal Review B, 49:15396, 1994.

[161] Bauer C. and Christensen T. Richert R., Boehmer R. Dynamic thermal
expansivity near the glass transition. Journal of Non-Crystalline Solids,
262:276, 2000.

[162] Li T. Kogelnik, H. and. Laser beams and resonators. Apllied Optics,
5:1550, 1966.

[163] A. E. Siegman. Lasers. University Science Books, 1986.

[164] P. A. Belanger. Beam propagation and the abcd ray matrices. Optics
Letters, 16:196, 1991.

[165] H. C. Kang and Liu C. et al. Maser J., Stephenson G. B. Nanometer
linear focusing of hard x rays by a multilayer laue lens. Physcal Review
Letters, 96:127401, 2006.

[166] E. Roessler. Indications for a change of diffusion mechanism in super-
cooled liquids. Physcal Review Letters, 65:1595, 1990.

115



Bibliography

[167] I. Chang and et al. Fujara F., Geil B. Translational and rotational molec-
ular motion in supercooled liquids studied by nmr and forced rayleigh
scattering. Journal of Non-Crystalline Solids, 248:172, 1994.

[168] M.T. Cicerone and Ediger M.D. Enhanced translation of probe molecules
in supercooled o-terphenyl: Signature of spatially heterogeneous dynam-
ics? Journal of Chemical Physics, 104:7210, 1996.

[169] A Gemant. The conception of a complex viscosity and its application to
dielectrics. Transactions of The Faraday Society, 31:1582, 1935.

[170] and Bishop M. DiMarzio, E.A. Connection between the macroscopic
electric and mechanical susceptibilities. Journal of Chemical Physics,
60:3802, 1974.

[171] R. P. Feynman. The Feynman Lectures on Physics, Volume II. Addison
Wesley, 1965.

[172] K. Z. Markov. Elementary Micromechanics of Heterogeneous Media,
Chapter 1: Heterogeneous Media: Modelling and Simulation. Birkhauser,
1999.

[173] M. P. Hughes. Ac electrokinetics: Applications for nanotechnology. Nan-
otechnology, 11:124, 2000.

[174] B. Schiener, Loidl A. Boehmer, R., and Chamberlin R. V. Nonresonant
spectral hole burning in the slow dielectric response of supercooled liq-
uids. Science, 274:752, 1996.

[175] L. F. Cugliandolo and J. L. Iguain. Hole-burning experiments within
solvable glassy models. Physcal Review Letters, 85:3448, 2000.

[176] G. Diezemann and R. Boehmer. Comment on ”hole-burning experiments
within glassy models with infinite range interactions”. Physcal Review
Letters, 87:129602, 2001.

[177] l.F. Cugliandolo and J. L. Iguain. Reply to “comment on ‘hole-burning ex-
periments within glassy models with infinite range interactions’ ”. Physcal
Review Letters, 87:129603, 2001.

[178] A. Bello, Laredo E., and M. Grimau. Distribution of relaxation times
from dielectric spectroscopy using monte carlo simulated annealing: Ap-
plication to α-pvdf. Physcal Review B, 60:12764, 1999.

[179] K.S. Cole and R.H. Cole. Dispersion and absorption in dielectrics - i
alternating current characteristics. Journal of Chemical Physics, 9:341,
1941.

[180] K.S. Cole and R.H. Cole. Dispersion and absorption in dielectrics - ii
direct current characteristics. Journal of Chemical Physics, 10:98, 1942.

[181] J. C. Dyre and N. B. Olsen. Minimal model for beta relaxation in viscous
liquids. Physcal Review Letters, 91:155703, 2003.

116



[182] E. A. Pavlatou and Papatheodorou G. N. Yannopoulos S. N. Dynamics
of density and orientation fluctuations in supercooled zinc halides. The
Journal of Chemical Physics B, 101:8748, 1997.

[183] M. Ricci and Bartolini P. et al. Wiebel, S. Time-resolved optical kerr
effect experiments on supercooled benzene and test of mode-coupling
theory. Phylosophical Magazine, 84:1491, 2004.

[184] S. Mossa, La Nave E., and et al. Stanley, H. E. Dynamics and configu-
rational entropy in the lewis-wahnstrom model for supercooled orthoter-
phenyl. Physcal Review E, 65:041205, 2002.

[185] I. Saika-Voivod, F. Sciortino, and P. H. Poole. Free energy and configura-
tional entropy of liquid silica: Fragile-to-strong crossover and polyamor-
phism. Physcal Review E, 69:41503, 2004.

[186] L. Angelani and Tartaglia P. Foffi G., Sciortino F. Diffusivity and con-
figurational entropy maxima in short-range attractive colloids. Journal
of Physics: Condensed Matter, 17:L113, 2005.

[187] S. Franz and G. Parisi. Effective potentials in glassy systems. Philosoph-
ical Magazine B, 77:239, 1998.

[188] S. Franz and Parisi G. Donati, C. On dynamical correlations in super-
cooled liquids. Philosophical Magazine B, 79:1827, 1999.

[189] Y. Chushkin and and Madsen A. Caronna, C. Low-frequency elastic
behavior of a supercooled liquid. Europhysics Letters, 83:36001, 2008.

117





Papers

119





Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
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We report dynamical shear-modulus measurements for five glass-forming liquids (pentaphenyltrimethyltrisi-
loxane, diethyl phthalate, dibutyl phthalate, 1,2-propanediol, and m-touluidine). The shear-mechanical spectra
are obtained by the piezoelectric shear-modulus gauge (PSG) method. This technique allows one to measure
the shear modulus (105-1010 Pa) of the liquid within a frequency range from 1 mHz to 10 kHz. We analyze
the frequency-dependent response functions to investigate whether time-temperature superposition (TTS) is
obeyed. We also study the shear-modulus loss-peak position and its high-frequency part. It has been suggested
that when TTS applies, the high-frequency side of the imaginary part of the dielectric response decreases like
a power law of the frequency with an exponent -1/2. This conjecture is analyzed on the basis of the shear
mechanical data. We find that TTS is obeyed for pentaphenyltrimethyltrisiloxane and in 1,2-propanediol while
in the remaining liquids evidence of a mechanical � process is found. Although the high-frequency power
law behavior ω-R of the shear loss may approach a limiting value of R ) 0.5 when lowering the temperature,
we find that the exponent lies systematically above this value (around 0.4). For the two liquids without �
relaxation (pentaphenyltrimethyltrisiloxane and 1,2-propanediol) we also test the shoving model prediction,
according to which the relaxation time activation energy is proportional to the instantaneous shear modulus.
We find that the data are well described by this model.

I. Introduction

The nature of the relaxation processes taking place in
supercooled liquids approaching the glass transition has been a
major subject of study for a number of years. Understanding
how the different response functions are connected in such
systems is still a fundamental goal to reach. It is not clear
whether the various observables display some universal features
approaching the glass transition. Although dielectric spectros-
copy is the most common experimental tool, a more detailed
characterization of their behavior can be obtained by measuring
different quantities, like the shear modulus, that are important
from a practical as well as theoretical point of view. Although
this dynamic variable can be measured above ∼102 Hz with
conventional techniques, high-frequency data are scarce in the
literature.

Motivated by these reasons, we employed the piezoelectric
shear-modulus gauge (PSG)1 method to measure the shear
modulus of five glass-forming liquids. This technique allows
us to measure the dynamic shear modulus of the supercooled
liquids just above the glass transition where it takes values
between 0.1 MPa and 10 GPa. By means of the PSG technique
we can easily observe the R relaxation process in the shear
response. The frequency range of the technique is wide
(10-3-104 Hz), and we also observe a mechanical Johari-
Goldstein � relaxation.2 As shown before3 indeed, this technique
is sensitive to the secondary process, and we find evidence of
the presence of a shear � relaxation3-5 in some of the mechanical
spectra reported here.

In section II we describe the experiment performed and the
liquids studied reporting the frequency-resolved mechanical
spectra. In section III we report the main findings of our study;
in this section we present the analyzed data showing the

temperature dependence of the shear-mechanical R relaxation
frequency and a test of some conjectures and models about the
dynamics. Finally, we draw some general conclusions in section
IV.

II. Experiment

The piezoelectric shear-modulus gauge (PSG) method is
based on the piezoelectric properties of the material that
composes the measuring device. The piezoelectric transducer
is formed by three discs made of a special ceramic compound6* Corresponding author. E-mail: cmaggi@ruc.dk.

Figure 1. Pictorial representation of the shear transducer (PSG) during
its expansion-contraction. The liquid sandwiched between the discs
clamps their movement, inducing a measurable change in the piezo-
electric capacitance of the disc system. The shear modulus can be
deduced from this electrical capacitance. Inset: the one-disc equivalent
system of the PSG. The applied electric field causes an expansion or
a contraction depending on the polarization of the disc (represented by
the arrow). See ref 1 for more details.
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Figure 2. Real (left) and imaginary (right) part of the shear response of the liquids studied. (From top to bottom) spectra of DC705 taken at the
temperatures (from right to left): 249, 246, 243, 240, 237, 234, and 231 K; of DBP at 188, 186, 184, 182, 180, 178, and 176 K; of DEP at 199, 197,
195, 193, 191, 189, 187, 185, 183, and 181 K; of 1,2-propanediol at 195, 192, 189, 186, 183, 180, 177, 173, and 171 K; and of m-toluidine at 198,
196, 194, 192, 190, 188, and 186 K.

Supercooled Liquid Dynamics J. Phys. Chem. B, Vol. 112, No. 51, 2008 16321
122 Papers



that has a pronounced piezoelectric effect (see Figure 1). The
working principle of the PSG is illustrated in the inset of Figure
1 where the one disc equivalent of the three-disc system is
shown. The ceramic disc is covered with a silver layer on both
faces constituting the electrodes. When a voltage is applied,
each disc expands or contracts depending on its intrinsic
polarization and on the direction of the acting electric field. The
electric capacitance of the disc depends on its strain state so
that if a material is partially clamping its motion, the measured
capacitance will be lower than that of the free moving disc.
Measuring accurately this electrical capacitance,7 we can obtain
the stiffness of the medium adhering to the disc. In other words,
we can convert the electric impedance into the shear modulus
knowing the exact relationship between the two.1 The three-
disc geometry, used in the experiment (main panel of Figure
1), is employed to reduce unwanted effect like the bending
motion that would be present in a one-disc device. The interested
reader can find details about the technique in ref 1.

The measurements are performed cooling the liquids via a
home-built closed-cycle cryostat.8 This has an absolute uncer-
tainty on the temperature that is less than 0.2 K and a
temperature stability better than 2 mK.

The liquids studied are the following: pentaphenyltrimeth-
yltrisiloxane (DC705), dibutyl phthalate (DBP), diethyl phthalate
(DEP), 1,2-propanediol, and m-touluidine. The DC705 is a
diffusion-pump oil from Dow Corning; all the other liquids were
acquired from Sigma-Aldrich. No filtration or purification of
the samples was performed before the measurement.

All mechanical spectra are reported in Figure 2. Here the real
part G′ and the imaginary part G″ of the complex shear modulus
G(ν,T) are presented.9 The reactive and the absorbitive part of
the shear response of the liquids studied are measured at several
temperatures.

For the shear loss peak of the DC705 there is a clearly defined
shear R process that shifts to lower frequencies as the temper-
ature decreases. We have found no sign of a shear � relaxation
in this liquid. This is also confirmed by the fact that the curve
maintains the same shape, lowering the temperature as discussed
below. We will see also that the high-frequency side of the
shear-mechanical spectrum shows a pretty constant slope.

The shear response of DBP clearly shows a � relaxation. The
shape of the imaginary part of the response function is strongly
deformed at high temperatures where the R process is merged
with the �. When the temperature is low enough, the high-
frequency tail of the response functions shows a pronounced
increase, signaling an emerging � relaxation. Unfortunately, the
� loss peak lies at much higher frequencies than the upper limit

of our device. The dielectric � process of this liquid has been
observed10 to be around 106 Hz in a temperature window similar
to the one of our mechanical experiment. This is consistent with
the fact that the � relaxation is outside the PSG dynamical range
since the shear-loss peak frequency is generally higher than the
dielectric one3 (usually the two peaks are within the same
decade). For future studies on this liquid the upper frequency
limit of the PSG could possibly be increased by slightly
modifying the transducer geometry.

Evidence of a secondary loss peak is also found in the
mechanical response of the DEP. The dielectric � relaxation
process in DEP has been the subject of an accurate investigation
in connection with the behavior of the entropy in the supercooled
and in the glass state,11 raising fundamental questions about the
nature of fast molecular motions in ultraviscous liquids. Very
recently, this dielectric � process has been shown to be
intimately related to the results of positron annihilation lifetime
spectroscopy.12 We note that in those dielectric measurements
the � loss peak is found at about 2 × 104 Hz at T ) 179 K,
consistent with the fact that mechanically this process is above
the upper limit of the PSG. We shall see in section III that when
the shear loss is plotted on a logarithmic scale, the low-frequency
tail of the � relaxation is more clearly visible.

The spectra taken for 1,2-propanediol are characterized by
an high shear modulus, and no signature of � relaxation is found.
This hydrogen-bonded liquid has recently been studied in
dielectric experiments and compared to polymers differing in
chain length and in the number of OH groups.13 These dielectric
experiments did not reveal a visible � process, and a temper-
ature-independent Cole-Davidson stretching parameter was
found. These findings are fully in agreement with our shear
spectra since the shape of the response function is very weakly
temperature dependent as it will be stressed in the following.

Rather interesting mechanical spectra are found for m-
toluidine. A weak, but nonzero, high-frequency tail of the loss
response can be noted in Figure 2. This may hint to the existence
of a shear � relaxation at frequencies around 1 MHz, consistent
with recent broadband dielectric experiments performed on this
liquid14 where a � relaxation process could be resolved, but only
in the glassy regime where the relaxation frequency reaches a
value around 1 kHz at about 130 K. This could be a range in
which this � process could start to be detected mechanically.15

Finally, we mention that we attempted to measure the
frequency-resolved shear modulus also for 1,3-propanediol and
for propylene carbonate. An anomalous shear response was
found for these two liquids, however, signaling a probable
crystallization.

III. Discussion

The first information that can be extracted from our measure-
ment is the R process loss peak frequency νmax. This has been
deduced from the imaginary part through a simple unbiased
method. We fitted the closest six points to the maximum of
log(G″/GPa) as a function of log(ν/Hz) with a second-order
polynomial to identify the maximum G″max and the corresponding
frequency νmax. These loss-peak frequencies are reported in
Figure 3 as a function of the scaled temperature (T - Tg). Here
we define Tg as the temperature where the νmax ) 1 mHz. Tg is
identified by a linear extrapolation of the last three points of
log(ν/Hz) as a function of T.

Time-temperature superposition (TTS) is a property of the
R process appearing in the susceptibilities of some supercooled
liquids expressing the fact that the shape of the response function
remains the same when the system is cooled. When TTS applies,

Figure 3. Frequency of the mechanical R peak as a function of the
temperature for DC705 (O, Tg ) 224.0 K), DBP (0, Tg ) 172.3 K),
DEP (/, Tg ) 179.5 K), 1,2-propanediol (], Tg ) 157.8 K), and
m-toluidine (4, Tg ) 181 K).
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the response is only shifting its characteristic time and its
amplitude if we cool the liquid. Mathematically speaking, the
generic response � can be rewritten as �(ν,T) ) A(T)Φ(ν/
νmax(T)), where νmax(T) is a characteristic frequency depending

on T. Having found the two parameters Gmax
″ and νmax at every

given temperature, it is rather easy to check wether TTS applies
for a given liquid.

In Figure 4 we report the imaginary part of the shear modulus
divided by G″max as a function of ν/νmax. This plot underlines
that for some of the liquids (DC705 and 1,2-propanediol) the
shape of the R process remains constant, lowering T. This is
not the case for DBP and DEP where the curves are detaching
at high frequencies. The lack of TTS is clearly related to the
presence of a � peak; indeed, the logarithmic scale used in this

Figure 4. Shear loss G″ of liquids studied scaled by the maximum loss G″max as a function of the frequency ν divided by the frequency of the peak
νmax (see also Figure 2): DC705, DBP, DEP, 1,2-propanediol, and m-toluidine. In the right-bottom panel we show a comparison between the scaled
spectra of DC705 (full line, full symbols) and m-toluidine (dashed line, open symbols) on a smaller scale.

Figure 5. Representation of the procedure used to find the minimum
logarithmic slope Rmin. In this figure we report the analysis of the
mechanical spectrum of m-toluidine at T ) 186 K. The derivative of
log(G″/GPa) with respect to log(ν/Hz) is plotted as a function the
frequency (stars). Some points are selected (red circles), and their
average is taken to calculate Rmin (red line). Note that a Debye-like
mechanical process with the same relaxation time would have a sharper
drop of the R parameter reaching -1 at high frequencies.

Figure 6. Minimum value of the logarithmic slope (R ) d ln G″/d ln
ν) for the liquids studied: DC705 (O), DBP (0), DEP (/), 1,2-
propanediol (]), m-toluidine (4).
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plot makes the low-frequency tail of the secondary process more
visible. For m-toluidine the situation is ambiguous. Indeed for
this liquid TTS seems to apply, but if we look at the high-
frequency end on a smaller scale (Figure 4, right-bottom) there
is a sensitive difference between the curves. In this figure we
report also the scaled spectra of DC705 that satisfy TTS on the
small scale for an easier comparison. We also note that
the dielectric strength of the secondary relaxation reported for
m-toluidine14 is rather low while in the shear-mechanical spectra
it seems to be more intense in comparison with the R process.
This is another important feature of our mechanical measure-
ment: a weak dielectric secondary process is magnified in the
shear response.4,5

An interesting feature of the spectra of 1,2-propanediol is
underlined by the TTS plot in Figure 4. The portion of the
spectrum at frequencies lower than νmax (i.e., at ν/νmax e 1) is
slightly deformed. The shape of this response function is
reproducible, and it seems to be almost temperature-independent
in the temperature range explored in our experiment. This
“shoulder” could be considered a peculiar feature of the
mechanical relaxation of 1,2-propanediol since it is not found
in dielectric spectra (see for example ref 13). Note that an
additional process (with similar shape) close to the R relaxation
is found in the case of tripropylene glycol in high-pressure
conditions (see ref 16). Further studies of the dielectric relaxation
of 1,2-propanediol at high pressure would be needed to better
understand the origin of the shape of its mechanical response.

We want to stress again that, from our study, the lack of TTS
seems to be intrinsically related to the presence of a secondary
mechanical process. All the liquids studied here that show the
� relaxation (as also confirmed by the dielectric measurements
cited in section II) display a clear temperature dependence in
the shape of the mechanical response function. Anyway, it is
not generally clear how the presence of the � relaxation is related
to the nature of a specific liquid. The understanding of the
validity of TTS in some supercooled liquids requires the
understanding of one of the most puzzling phenomena of
ultraviscous liquids and glasses that is the secondary relaxation
process.

It has been suggested from empirical observations17,18 that
when TTS applies, the high-frequency decay of the dielectric
loss is characterized by a power-law behavior νR with exponent
R ) -1/2. A theoretical explanation for this power-law
dependence of the dielectric response has been proposed,

assuming the dominance of long-wavelength fluctuations.19-21

We have tested this conjecture for the mechanical response,
finding the minimum value of the logarithmic derivative of G″,
i.e. Rmin ) [d ln G″/d ln ν]min. It has to be noted that the
extraction of this information is much more complicated for
the shear loss than the dielectric response. This is due to the
fact that the shear response is generally affected by a higher
noise level than dielectric. An example of the procedure
followed to extract Rmin is reported in Figure 5 for the
mechanical response of m-toluidine at T ) 186 K. When R is
plotted as a function of the frequency, a minimum can be
identified within some data points. The average of these points
is taken as the Rmin. Note that a Debye process would have a
characteristic behavior of the logarithmic slope showing a
sudden drop of R at the relaxation frequency νmax.

In Figure 6 we report the value of Rmin as a function of the
loss peak frequency for the temperatures where the minimum
of the derivative of the logarithm was well-defined. We note
that even if the behavior of this quantity for the liquids studied
is compatible with a limiting R ) -1/2 at low temperatures,
the data seem to lie systematically above the -0.5 line. We
stress also that is easy to expect that an ν-1/2 behavior in the
shear loss is disturbed more when a � relaxation is present since
its intensity is enhanced in the mechanical spectrum compared
to the dielectric.

Finally, we remark that the parameter Rmin is not expected to
monotonically decrease in a wider temperature range. Indeed,
at higher temperatures the shape of the shear response should
recover a simpler Debye-like shape where the stretching
parameters (the KKW � parameter for example) come close to
unity.22 The relaxation frequencies belonging to this high-
temperature regime are currently outside the dynamical window
of the PSG technique.23

To conclude the analysis of our data, we want to present a
comparison between the mechanical spectral features and a
simple phenomenological model for the dynamics of super-
cooled liquids. The shoving model24 is based on the assumption
that the relaxation in the supercooled liquid takes place with a
local volume increase and that the activation energy is mainly
elastic energy spent to shove aside the surrounding of the
rearranging molecules. As has been reported, this model can
be derived estimating the barrier height in a classical energy
landscape approach.25

The shoving model predicts that the relaxation time is related
to the infinite-frequency shear modulus G∞ by the equation

where Vc is a characteristic volume in a relaxation process (Vc

is assumed temperature independent) and τ0
-1 is the phonon-

frequency (τ0 = 10-14 s). The determination of G∞ is not
necessary to test the model if TTS applies; indeed, if this
property holds, we can write

since the constant factor A determining the amplitude of the
complex response in �(ν,T) ) A(T)Φ(ν/νmax(T)) is the same for
the real and the imaginary part Φ′ and Φ″. Note that this
proportionality does not apply when TTS does not hold. For
example, in a case where the � relaxation is present the value
of G∞ is modified by the secondary process, and a more
complicated fitting procedure would be needed to estimate the

Figure 7. Characteristic time τ ) 1/νmax of the shear loss as a function
of the scaled temperature T/Tg (full symbols) and as a function of x )
(Tg/G″max,g)(T/G″max) (open symbols) for the liquids in which TTS applies:
DC705 (O, Tg ) 224.0 K) and 1,2-propanediol (], Tg ) 157.8 K).
The dashed line is an exponential function with prefactor τ0 ) 10-14 s
and taking the value τ ) (2π103)-1 = 150 s for x ) 1 (no free
parameters are adjusted in this function).

ln(τ) ) ln τ0 + VcG∞(T)/T (1)

G∞(T) ∝ Gmax
′′ (T) (2)
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value of the infinite-frequency shear modulus. On the other hand,
when TTS is satisfied, we can write the simple equation (using
eq 2 in eq 1)

where B is a constant factor. Equation 3 represents the prediction
of the shoving model when TTS also applies: the logarithm of
the relaxation time is a linear function of the quantity G″max(T)/
T. This is tested in Figure 7 for the liquids in which
time-temperature superposition is found to hold (DC705 and
1,2-propanediol). In this figure the relaxation time (defined as
τ ) (2πνmax)-1) is reported as a function of 1/T and as a function
of G″max/T. To report all the data in the same plot, the abscissa
has been normalized to the unity as Tg/T and as x ) (Tg/
G″max,g)(G″max/T). Note that here we find G″max,g through a linear
extrapolation of the last values G″max to Tg previously identified
to give νmax(Tg) ) 10-3 Hz (corresponding to τ(Tg) ) (2π103)-1

= 150 s).
The dashed line in Figure 7 represents the shoving model

prediction (no adjustable paremeters are used in this function)
ending, at high temperature, at the physically reasonable
prefactor 10-14 s.

IV. Conclusion

We have reported shear-mechanical spectra of five glass-
forming liquids close to Tg. Via the PSG1 technique, we have
investigated the behavior of the mechanical R process and found
evidence of the presence of a mechanical � relaxation in dibutyl
phthalate, diethyl phthalate, and m-toluidine. Time-temperature
superposition for the mechanical susceptibility is found to hold
for the liquids without signature of � process (pentaphenyltri-
methyltrisiloxane and 1,2-propanediol). The conjecture originally
developed for the dielectric response that, when TTS applies, a
ν-1/2 decay is found for the high-frequency part of the loss is
checked for the shear response. We find that the data are
consistent with a limiting ν-1/2 low-temperature behavior
although the minimum slopes are systematically higher than
-0.5. The shoving model has been tested for the two liquids
without � relaxation, finding that it well describes the experi-
mental data.
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Investigation of the shear-mechanical and dielectric relaxation processes
in two monoalcohols close to the glass transition
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Shear-mechanical and dielectric measurements on the two monohydroxy �monoalcohol� molecular
glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass-transition temperature are
presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge
method covering frequencies from 1 mHz to 10 kHz. The shear-mechanical relaxation spectra show
two processes, which follow the typical scenario of a structural �alpha� relaxation and an additional
�Johari–Goldstein� beta relaxation. The dielectric relaxation spectra are dominated by a Debye-type
peak with an additional non-Debye peak visible. This Debye-type relaxation is a common feature
peculiar to monoalcohols. The time scale of the non-Debye dielectric relaxation process is shown to
correspond to the mechanical structural �alpha� relaxation. Glass-transition temperatures and
fragilities are reported based on the mechanical alpha relaxation and the dielectric Debye-type
process, showing that the two glass-transition temperatures differ by approximately 10 K and that
the fragility based on the Debye-type process is a factor of 2 smaller than the structural fragility. If
a mechanical signature of the Debye-type relaxation exists in these liquids, its relaxation strength is
at most 1% and 3% of the full relaxation strength of 2-butanol and 2-ethyl-1-hexanol, respectively.
These findings support the notion that it is the non-Debye dielectric relaxation process that
corresponds to the structural alpha relaxation in the liquid. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3007988�

I. INTRODUCTION

A class of often investigated glass-forming liquids is the
hydrogen-bonding liquids, among which the alcohols are a
much studied subclass �for a compilation of references to
classical results prior to 1980 see Ref. 1, Sec. IX-c.1�. Alco-
hols are normally classified into those containing one hy-
droxyl group �the monoalcohols� and those with two or more
hydroxyl groups.

During the 1950s it was observed that the main relax-
ation in most monoalcohols, contrary to the main relaxation
in other liquids, can be represented by a single relaxation
time—they follow the Debye prediction.2 It was further re-
alized that additional relaxation processes exist at frequen-
cies above the main Debye-type relaxation. One additional
process is normally observed, but in some cases two pro-
cesses can be resolved �see, e.g., Ref. 3�. Comparisons be-
tween mechanical and dielectric measurements4,5 further
showed that when the main dielectric relaxation is of Debye-
type its time scale is separated from the mechanical time
scale, but no explanation was given for this. It was further
discussed to what extent the Debye-type process corresponds
to the mechanical relaxation, as, e.g., stated by Johari and
Goldstein6 discussing the importance of mechanical mea-
surements near the glass-transition temperature; “such a
study can answer an important question: whether or not the
same molecular motions are involved in the volume, shear,
and dielectric relaxation of H-bonded liquids.”

During the past decade a number of studies7–19 �see be-
low for details� have indicated that the low-frequency
Debye-type peak is decoupled from the mechanical relax-
ation and that the non-Debye dielectric peak at higher fre-
quencies reflects the structural alpha relaxation. In this paper
we shall term the two lowest frequency dielectric relaxations
the Debye-type relaxation and the alpha relaxation, respec-
tively. This scenario offers an explanation for the earlier ob-
servations and it gives the possibility that the behavior of
monoalcohols follows that of other glass formers, except for
the existence of the Debye-type dielectric peak.

Two classes of arguments are generally given for this
idea: comparisons of time scales/glass-transition tempera-
tures and the lack of a Debye-type peak in other measure-
ment types. A large number of experiments and comparisons
exists including the following: comparison with calorimetric
measurements,7,8 comparison with photon correlation spec-
troscopy probing the density-density correlations,9 compari-
son with the time scale found from viscosity data,9,13 analy-
sis of the alpha-beta relaxation,10 solvation dynamics probing
mechanical relaxation of the liquid,11 dielectric and calori-
metric investigation of mixtures of monoalcohols with other
substances,12,14–16 frequency-dependent specific heat
measurements,17 systematic comparison to differential scan-
ning calorimetry measurements18 and dielectric studies of
mixtures.19 Except for the early ultrasonic-based
measurements4,20 no direct comparison, to the best of our
knowledge, of the macroscopic mechanical relaxation spec-
tra and dielectric relaxation spectra of monoalcohols exists.a�Electronic mail: boj@ruc.dk.
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Such measurements directly reveal if the non-Debye re-
laxation mode seen in dielectrics is in accordance with the
shear-mechanical structural alpha relaxation. Shear-
mechanical relaxation data are, furthermore, generally a
good complement to dielectric data,21 and such investiga-
tions can also explore to what extent a shear-mechanical
Debye-type relaxation exists.

In this study we present shear-mechanical investigations
in the temperature range down to the glass-transition tem-
perature together with complementary dielectric spectros-
copy investigation to allow for direct comparison.

The two liquids studied are 2-butanol and 2-ethyl-1-
hexanol. The reason for not studying simple normal alcohols
like ethanol is that such systems easily crystallize. The cho-
sen systems represent two ways of introducing steric hin-
drances in the system, hence improving the glass-forming
ability. Both liquids have been investigated earlier. For early
results on 2-butanol see, e.g., Refs. 22 and 23 and for
2-ethyl-1-hexanol see, e.g., Refs. 8, 12, 17, 18, 24, and 25.

II. EXPERIMENTAL

The measurements were performed using a custom-built
setup.26–28 The temperature is controlled by a custom-built
cryostat with temperature fluctuations smaller than 2 mK
�see Ref. 27 for details on the cryostat�. The same cryostat
was used for all measurements, thus ensuring equal tempera-
tures and directly comparable results. The electrical signals
were measured using a HP 3458A multimeter in connection
with a custom-built frequency generator in the frequency
range of 10−3–102 Hz and an Agilent 4284A LCR meter in
the frequency range of 102–106 Hz �see Ref. 28 for details
on the electrical setup�.

The shear-mechanical relaxation data were obtained us-
ing the piezoelectric shear modulus gauge method.26 This
method has a wide frequency range �up to 10−3–104 Hz� and
is optimized for measuring moduli in the range of MPa–GPa,
corresponding to typical moduli of liquids close to the glass-
transition temperature. The dielectric data were obtained us-
ing a multilayered gold-plated capacitor with a empty ca-
pacitance of 95 pF.

2-ethyl-1-hexanol ��99.6%, CAS number 104–76–7�
and 2-butanol �99.5%, CAS number 78–92–2, racemic mix-
ture� were acquired from Aldrich and used as received. To
ensure that the samples did not change characteristics �e.g.,
due to absorption of water�, dielectric measurements were
performed on the newly opened bottles and repeated at the
end of the studies. For both liquids the only observable
changes were in the unimportant low-frequency contribu-
tions from conduction.

The raw data29 obtained consist of frequency �, scans of
the complex dielectric constant ����, and the complex shear
modulus G���. Each scan was taken at constant temperature
in thermal equilibrium, stepping down in temperature.

Equilibrium was ensured by repeating some of the fre-
quency scans on reheating the sample from the lowest tem-
perature. Repetition of parts of the shear-mechanical mea-
surements showed that the uncertainty on the overall
absolute level of the shear modulus is rather large in the case

of 2-ethyl-1-hexanol ��20%�; it is much better for
2-butanol. The influence of this experimental uncertainty on
the position of the loss peaks is, however, minor �at most
�0.1 decade�.

III. RESULTS AND DISCUSSIONS

A selection of the obtained dielectric spectra is shown in
Fig. 1, represented as the dielectric loss as a function of
frequency �minus the imaginary part of the complex dielec-
tric constant −������. The dielectric data are further illus-
trated in Fig. 2 as a Nyquist plot at a representative tempera-
ture. The dielectric spectrum follows the general pattern for
monoalcohols with a dominant Debye-type relaxation and a
minor second relaxation—the alpha relaxation.

A common way �e.g., Refs. 3, 9, 13, 19, 22, and 23� to
separate the minor alpha process and possible Johari–
Goldstein beta processes from the Debye-type relaxation
process is to assume additivity of the processes in the dielec-
tric susceptibility �corresponding to statistical independent
dipole-moment fluctuations of the two processes�. This is
done either by fitting a sum of a Debye function and a
Havriliak–Negami function �and possibly a Cole–Cole func-
tion for the beta process� or by subtracting the fit of a Debye
function from the raw data �most common in elder studies,
e.g., Ref. 3�.

In this paper we assume additivity of the processes30 and
subtract the Debye function in order to analyze the residual,
this procedure is illustrated in Fig. 3. The fit to the Debye
function is also shown in the Nyquist plot in Fig. 2, illustrat-
ing the quality of the fit with respect to both real and imagi-
nary parts of the dominant dielectric relaxation process.

A selection of the shear-mechanical data is shown in Fig.
1 as mechanical loss G����, as function of frequency. Figure
2, furthermore, shows the shear-mechanical relaxation spec-
tra illustrated as a Nyquist plot at a typical temperature. The
general pattern for liquids close to the glass-transition tem-
perature is observed, with a pronounced non-Debye alpha
relaxation and a smaller Johari–Goldstein beta relaxation.
The beta relaxation is much stronger in the shear-mechanical
relaxation spectrum than in the dielectric spectrum for these
liquids �the existence of a dielectric beta relaxation for these
systems has been reported in the literature8,23�, consistent
with previous observation on molecular liquids21 and the
Gemant–DiMarzio–Bishop model.31

A. Temperature dependence of the dynamics

To analyze the time scales associated with the observed
processes and their temperature dependences, the loss-peak
frequencies ��lp� were determined. These are shown in Fig.
4. For the alpha process in the shear-mechanical data and the
Debye-type process in the dielectric data, they were deter-
mined directly from the raw data. For the alpha relaxation in
the dielectric data the loss peak was found after subtracting
the Debye function. To ensure consistency in the analysis,
the dielectric alpha loss peak was only calculated at tempera-
tures where the loss peak of the Debye-type relaxation was
observed.
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The dielectric alpha-peak frequency closely follows the
peak frequency of the shear-mechanical alpha process. This
is further illustrated in the lower part of Fig. 4, where the
“decoupling” index �defined as log10��lp,G /�lp,��� is shown
for the dielectric processes �Debye-type and alpha process�
relative to the mechanical alpha process. The mechanical and
dielectric alpha-time scales are separated by approximately 1
decade in frequency, whereas the mechanical alpha and the
dielectric Debye-type processes are separated by four orders
of magnitude in frequency. The separation between the loss-
peak positions can also directly be seen in Fig. 1 for the
temperatures where both shear-mechanical and dielectric
data exist �indicated by full lines�. The separation between
the shear-mechanical and dielectric alpha processes is in
agreement with previous comparisons of the shear-
mechanical and dielectric alpha time scale.4,5,21,32–36 From
Fig. 1 it can be seen that the mechanical beta relaxation may
influence the loss-peak position of the shear-mechanical al-
pha relaxation at high temperatures. From, e.g., Ref. 21 we
know that such influences only change the decoupling index
between the shear mechanic and dielectric alpha relaxations
slightly; such an effect can, therefore, not disturb the general

observations. It is further noticeable that no changes can be
observed in the temperature dependence of the shear-
mechanical relaxation time around the temperature where the
Debye-type process falls out of equilibrium on the time scale
of the experiment.

The glass-transition temperature�s� was determined from
the loss-peak frequencies37 as the temperature where �lp

=10−2 Hz. The numbers for the dielectric Debye-type relax-
ation and the shear-mechanical alpha relaxation are given in
Table I. The huge separation in time scale between the two
processes results in a separation of Tg of 10 K for 2-butanol
and 14 K for 2-ethyl-1-hexanol.

Based on the loss-peak frequencies an Angell plot was
constructed, as shown in Fig. 5. The two substances show a
remarkable similarity in the temperature dependence of the
characteristic time when plotted this way. The dielectric al-
pha process, furthermore, closely follows the tendencies of
the mechanical alpha process.

The fragility index m= ��d log10 1 /�lp� / �dTg /T�� �T=Tg

�Refs. 38–40� is reported in Table I. A clear difference is
seen between the fragility index if defined from the dielectric
Debye-type process or from the mechanical alpha process.
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measurements, this is only the case in a limited temperature interval, where an overlap exists between the high temperature shear data and low temperature
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The Debye-type process leads to a classification of the liquid
as much stronger than the mechanical alpha relaxation.

The difference in temperature dependence of the Debye-
type process and the structural relaxation will lead to a merg-
ing of the two processes at low temperatures, if the trend
continue. This is of course close to impossible to test experi-
mentally as the relaxation times at such low temperatures
become very long. The possibility of a low temperature
merge of the Debye-type process and the structural alpha

process has been discussed earlier in Refs. 19 and 41. The
idea is further supported by the compilation of data presented
in Ref. 13; the data generally show a decrease in the differ-
ence between the loss-peak frequency of the dielectric
Debye-type relaxation and dielectric alpha relaxation with
decreasing temperature.

B. Spectral shape

The spectral shape of the shear-mechanical alpha peak
was characterized by calculation of the minimum slope in a
log-log plot, as shown on Fig. 6. Similar data have been
reported for shear-mechanical relaxation studies on other
systems by our group21,42 based on the ideas presented in
Ref. 43. In comparing to these previous results, it is observed
that the two liquids follow the general trend of liquids with a
mechanical beta relaxation. The minimum slope is in the
range from −0.3 to −0.4 close to Tg, still decreasing upon
cooling �most prominent for 2-butanol�, possibly toward
−0.5 as conjectured in Refs. 44–46. This shows that the me-
chanical alpha-relaxation spectra, hence the mechanical re-
laxation processes, are similar to what is generally observed
for glass-forming liquids.

C. Limits on a mechanical Debye-type process

A small low-frequency peak was observed in the raw
data obtained by the shear-mechanical transducer. Closer in-
vestigations, however, showed that this was not a mechanical
signal of the Debye-type process, but a “spillover effect” of
the large dielectric signal. This effect is caused by wetting of
the edges of the piezoceramic disks in the transducer and the
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large dielectric strength of the investigated systems; it is
equivalent to sometimes observed conduction contributions
in the raw data.

We can, of course, not entirely exclude that a mechanical

signal is hiding below this dielectric spillover signal, but we
are able to put limits on the maximal relaxation strength. In
the case of 2-butanol the signal was partly eliminated by a
correction procedure using data from a mechanically empty
but still wetted transducer. From the resulting shear-
mechanical spectra one can conclude that a shear-mechanical
relaxation process corresponding to the Debye-type process
in the dielectrics must have a relaxation strength below 5
MPa �corresponding to at most 1% of the full relaxation
strength� if it exists. In the case of 2-ethyl-1-hexanol the raw
data show that a mechanical Debye-type relaxation process
must have a strength below 30 MPa �corresponding to at
most 3% of the full relaxation strength�.

IV. SUMMARY AND CONCLUSIONS

Two monoalcohols �2-butanol and 2-ethyl-1-hexanol�
were investigated by conventional dielectric spectroscopy
and broadband shear-mechanical spectroscopy in the tem-
perature range down to the glass-transition temperature. In
the dielectric spectrum a low-frequency Debye-type process
is dominant, as is generally observed for monoalcohols. The
second relaxation process observed was mathematically
separated from the Debye-type relaxation by assuming addi-
tivity of the processes in the dielectric susceptibility. Loss-
peak positions were found for the two processes.

Viewed from the shear-mechanical perspective, the liq-
uids behave as generic glass formers. Besides a clear non-
Debye alpha relaxation, a minor Johari–Goldstein beta relax-
ation is observed. The loss-peak positions of the alpha
process were determined.

The time scale of the mechanical alpha relaxation is
clearly non-Arrhenius with a fragility index of �60 for both
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FIG. 4. �Color online� Top: loss-peak positions for the different processes
evaluated for the two investigated systems �repeated measurements exist at
some temperatures�. Bottom: the decoupling index �log10��lp,G /�lp,��� for the
dielectric alpha and Debye-type process relative to the mechanical alpha
process. ��� Shear-mechanical alpha relaxation. ��� Dielectric Debye-type
relaxation. ��� Dielectric alpha relaxation. Open symbols: 2-butanol.
Closed symbols: 2-ethyl-1-hexanol.

TABLE I. Glass-transition temperature �Tg� and fragility �m� for the dielec-
tric Debye-type process ��Debye-type� and mechanical alpha process �Galpha�.
The glass-transition temperature is defined from the loss-peak frequencies as
�lp�Tg�=10−2 Hz.

Tg m

Galpha �Debye-type Galpha �Debye-type

2-butanol 120 Ka 130 K 63 29
2-ethyl-1-hexanol 144 Kb 158 Kc 60d 30e

aIn accordance with calorimetric Tg of 120.3 K from Ref. 23.
bIn accordance with calorimetric Tg of 145.9 K from Ref. 18 and of 148.9 K
from Ref. 8, and dielectric alpha-relaxation Tg of 144.0 K from Ref. 18.
cIn accordance with the value of 155.0 K reported in Ref. 18, and 154.0 K
reported in Ref. 8 �using �lp�Tg�=10−3 Hz as definition of Tg�.
dComparable to the value of 70 reported in Ref. 18 on the basis of dielectric
data.
eIn accordance with the value of 27.0 reported in Ref. 8.
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FIG. 5. �Color online� Angell fragility plot based on loss-peak positions.
�Symbols as in Fig. 4.� The vertical and horizontal lines define the glass
transition, the diagonal line corresponds to Arrhenius behavior. Tg for the
mechanical alpha relaxation and dielectric Debye-type relaxation is as given
in Table I. For the dielectric alpha relaxation, Tg from the mechanical alpha
relaxation was used. The reason for this is that the data do not allow for
direct determination of the Tg for the dielectric alpha relaxation without
extensive extrapolation, and that the two temperatures normally are not too
different due to the small decoupling between the processes.
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liquids. The Debye-type dielectric relaxation has a much dif-
ferent temperature dependence, with a fragility index of �30
for both liquids.

The time scale of the dielectric alpha relaxation follows
closely that of the mechanical alpha relaxation. The two pro-
cesses are separated by roughly 1 decade of frequency, con-
sistent with what is usually observed for the separation of
mechanical and dielectric alpha relaxations. The Debye-type
process is separated from the mechanical alpha relaxation by
roughly 4 decades �depending on temperature�. The tempera-
ture dependence of the mechanical relaxation time seems to
be unaffected by the falling out of equilibrium of the dielec-
tric Debye-type process.

The possibility that the Debye-type relaxation process
has a mechanical signature can still not be ruled out, but the
present results show that if it exists one has to use measure-
ment methods specialized for rather soft systems to look for
it. If the Debye-type process has a mechanical signature, it
must have a relaxation strength below 1% and 3% of the full
relaxation strength for 2-butanol and 2-ethyl-1-hexanol,
respectively.

These observations support the existing idea7–19 that the
“minor” non-Debye peak observed by dielectric spectros-
copy is the structural alpha relaxation, and that the major
Debye-type relaxation is something else. Any explanation on
the dielectric Debye-type relaxation should be able to ex-
plain why no significant signature is observed in either me-
chanical or calorimetric studies.17
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Generalized fluctuation-dissipation relation and effective temperature in off-equilibrium colloids
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The fluctuation-dissipation theorem �FDT�, a fundamental result of equilibrium statistical physics, can be
violated when a system is taken out of equilibrium. A generalization of FDT has been theoretically proposed
for out-of-equilibrium systems; the kinetic temperature entering the fluctuation-dissipation relation �FDR� is
substituted by a time-scale-dependent effective temperature. We combine the measurements of the correlation
function of the rotational dynamics of colloidal particles obtained via dynamic light scattering with those of the
birefringence response to study the generalized FDR in an off-equilibrium Laponite suspension undergoing
aging. �i� We find that the FDT is strongly violated in the early stage of the aging process and is gradually
recovered as the aging time increases and �ii� we determine the aging-time evolution of the effective tempera-
ture, comparing our results with those of previous experiments.
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I. INTRODUCTION

The study of the dynamics in nonequilibrium systems is
an intriguing and fascinating area of modern physics. There
is an obvious interest in the off-equilibrium regime as con-
densed matter is often found far from ideal equilibrium con-
dition where “things keep happening on all time scales.”1 A
particular class of systems where the out-of-equilibrium sta-
tus occurs naturally are the so-called glass-forming systems.
These systems include, for example, disordered spin systems
close to the spin-glass transition, supercooled molecular liq-
uids, and jamming colloidal solutions. In general, the dynam-
ics of these systems is extremely sensitive to change in ex-
ternal parameters so that, when they are a little cooled or
densified, the time required to reestablish equilibrium can
grow enormously or become infinite �the system never
reaches the final equilibrium state�. In these situations, an
off-equilibrium regime is entered. In this, the average quan-
tities becomes time dependent and the correlation and re-
sponse functions depend on two times; in this regime the
system is aging.

Correlation functions and response functions are the basic
quantities through which one probes the dynamics of a sys-
tem in many-body statistical physics. These functions are
closely related in equilibrium by the fluctuation-dissipation
theorem �FDT�. The FDT �Ref. 2� establishes a relationship
between the correlation function CAB�t�= �A�0�B�t�� of the
spontaneous equilibrium fluctuations of the dynamic vari-
ables A and B and the response function �AB�t�= �A�t�� /h,
describing the change in the average value of A due to an
infinitesimal external field h that is coupled to the variable B
in the perturbation Hamiltonian,

�AB�t� = ��CAB�0� − CAB�t�� . �1�

Here �=1 /kBT, where T is the kinetic temperature of the
system and A and B are variables that have zero mean in the
unperturbed case. In this formulation of the FDT, the field h
introduces a contribution �H=−hB to the system Hamil-
tonian, which is switched on instantaneously at t=0 and kept

constant for t�0 as a Heaviside step function. In the follow-
ing, we will refer to autocorrelation function �B=A� and drop
the label AA in CAA�t� and �AA�t�.

Out of equilibrium, the system is nonstationary and time-
translational invariance is lost. The correlation and the re-
sponse become two-times quantities depending also on the
aging time tw: C=C�tw , tw+ t�, �=��tw , tw+ t�, and the FDT
�Eq. �1�� is not expected to hold. The importance of extend-
ing the theorem to the nonequilibrium regime has led to the
generalized fluctuation-dissipation relation �GFDR�.3–5

The generalization of the FDT proposed by Kurchan and
Cugliandolo6,7 in the early 1990s can be expressed as
follows:

��tw,tw + t� = ��
tw+t

tw

dsX�tw,s��sC�tw,s� , �2�

where for short times t �i.e., t / tw�1�, this equation reduces
to the FDT �Eq. �1�� and the system is said to be in a quasi-
equilibrium state; for intermediate t �t / tw�1�, the violation
function X�tw , t� quantifies the deviation of the GFDR from
the FDT; finally, when t / tw�1, the function X depends on tw
and s only through the function C. The violation function can
also be interpreted8,9 in terms of an effective temperature
Tef f =T /X. The latter has complicated behavior for interme-
diate t values, but in the long-t regime it assumes a value that
depends only on the waiting time tw and one can think of it
as “waiting-time-dependent effective temperature.”

The GFDR in out-of-equilibrium systems has been stud-
ied theoretically and through computer simulations in spin
glasses10,11 and in models for glassy dynamics.12 Later, off-
equilibrium molecular-dynamics simulations have given the
possibility to perform the same analysis on structural
glasses.13–15 Recently, the generalized relation has also been
investigated in more exotic systems, such as in the simula-
tions for a glassy protein,16 in self-assembling processes of
viral capsids formation and of sticky disks crystallization,17

and in active systems composed of self-propelled particles.18
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On the other hand, few experiments have studied the
GFDR.19–24 Experiments in structural glasses are difficult be-
cause it is necessary to simultaneously measure a correlation
function of a given variable and the associated response
function, and all this in a systems that is instantaneously
brought out of equilibrium. These difficulties are relaxed in
the case of colloidal glasses �or gels or jams� because the
associated time scales are much longer and fall easily in the
experimentally accessible window.

In this paper, we report an experimental investigation of
the generalized FDR in a colloidal systems composed of a
water suspension of clay platelets �Laponite�, which is
off-equilibrium when it ages toward the final arrested state
�gel or glass, depending on the clay concentration25�.

We emphasize that the FDT violation and the effective
temperature in these colloidal solution are object of intense
debate since the results published so far are controversial
�see, for example, Refs. 21–24 and 26�. Indeed, previous
works on off-equilibrium Laponite suspensions have re-
ported contradicting results in studying the GFDR. Dielectric
spectroscopy combined with spontaneous polarization-noise
measurements have revealed very high effective tempera-
tures characterizing the low-frequency part of the spectra.
This effective temperature was found to decrease with the
aging time.

Later a new series of experiments employed microrheol-
ogy to measure the effective temperature of these colloidal
systems. These experiments studied the Brownian motion of
probe particles added to the Laponite solution. The results of
these experiments are rather contradicting. Abou et al.26 ob-
served an effective temperature evolving nonmonotonically
as a function of the aging time. Tef f was found to increase
from the bath temperature T, reach a maximum and return to
T for long times. In contrast, the results of Ref. 22 by
Jabbari-Farouji et al. indicated that no significant deviation
from the FDT takes place over a wide frequency range.
These conclusions were later confirmed by Jop et al.24 Fi-
nally, the experiments of Greinert et al.23 measured an effec-
tive temperature increasing with aging time.

We want to stress that none of these works studied di-
rectly the degrees of freedom of the colloidal Laponite disks.
Indeed, the dielectric techniques are mostly sensitive to the
strong polarization signal from the solvent molecules and to
the effect of ionic conduction at low frequencies. In the mi-
crorheological measurements, some large trapped probe par-
ticles �typically 	1 �m diameter� are used to study the off-
equilibrium dynamics of the system. In contrast, our
experiment is selective in measuring the dynamics of specific
degrees of freedom of the Laponite disks �as will be clear in
the following�. Our correlation and response optical mea-
surements �Secs. III and IV� are sensitive only to the �rota-
tional� motion of the colloids that we are interested in. More-
over, we emphasize that, in principle, is also possible that
different observables give different values of the FDT viola-
tion and therefore of the effective temperature. Our experi-
ment is a fully time-resolved experiment.

II. OFF-EQUILIBRIUM SAMPLE

A solution, prepared by stirring the Laponite powder with
water, evolves toward an arrested state on a time scale that

spans the ranges hours to months when kept at room tem-
perature and pressure. Even low-concentration aqueous solu-
tions of this colloid, as the one used in our experiment �	1%
Laponite weight fraction�, show strong aging of their light-
scattering correlation function.27 Due to the long �with re-
spect to the experimental time scale and to the decorrelation
time� aging process of the systems, one can approximate the
different measure of fluctuations and response as obtained in
a sequence of steady out of equilibrium states.

The anisotropic shape of the clay disk makes it possible to
study its reorientation dynamics via the response and the
correlation function. Laponite particles dissolved in water
have the form of flat cylinders with a diameter of 25 nm and
thickness of about 1 nm. Laponite colloidal particles are
good scatterers of visible light and this allow us to rapidly
measure the autocorrelation function of the scattered field.

In this work we study the reorientational dynamics of the
asymmetric clay platelets, looking at the orientational corre-
lation functions via depolarized dynamic light scattering and
at the corresponding response function via the electric field
induced birefringence. Measuring both C=C�tw , tw+ t� and
�=��tw , tw+ t� at different waiting time during the �days
long� aging process, we find that FDT is strongly violated in
the early stage of the aging process and is gradually recov-
ered as the aging time increases. Moreover, from the para-
metric C-� plot �the so-called “FDT plot”�, we determine the
effective temperature and follow its evolution from the high
values �Tef f /T
5� pertaining to young systems toward the
equilibrium �Tef f /T=1� attained at long waiting time. Our
findings confirm the generalization of the FDT to off-
equilibrium systems proposed by Cugliandolo and Kurchan
15 years ago.

III. CORRELATION FUNCTION

In a dynamic light-scattering experiment one measures
the correlation function of the optical field scattered by the
sample. The scattered field can be directly related to the
translational and rotational motion of the anisotropic colloids
suspended in the solvent.28 The colloids’ rotations are related
to the second-rank tensor of the optical susceptibility. Spe-
cifically, in the VH �depolarized� scattering geometry one
measures the autocorrelation function of a variable that de-
pends on the platelet’s orientation,

A�t� = �
i

P2�cos�	i�t��
 , �3�

where P2�x�= �3x2−1� /2 is the second-order Legendre poly-
nomial, 	i is the angle formed by the symmetry axes of the
ith particle with the polarization vector of the incident field,
and the sum is extended over the particles contained in the
scattering volume.28 This results holds exactly only if the
time scale of the rotational dynamics is much faster than the
translational one. This assumption was confirmed by com-
paring the VV �polarized� and VH �depolarized� photon-
correlation spectroscopy �PCS� at different waiting times and
clay concentration.29 The autocorrelation function of A was
measured using the VH geometry via PCS. Several autocor-
relation functions have been measured during the aging pro-
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cess of the sample with a time resolution �1 �s� dictated by
the detector �photomultiplier� response. Note that the time is
set to zero at the instant at which we stop stirring the colloi-
dal suspension.

IV. RESPONSE FUNCTION

If one applies an external field that tends to align the
particles, the system due to the anisotropic platelet’s polariz-
ability becomes birefringent.30,31 If the aligning field is a dc
�or low frequency� electric field �Kerr effect�, the degree of
rotation of a linearly polarized laser beam is proportional to
the square of the electric field via a coefficient that is pro-
portional to A �Eq. �3��. Therefore, the �time-dependent� Kerr
response to the switch on of an electric field is proportional
to the desired response function �i.e., the response conju-
gated to the correlation function measured in depolarized
PCS�. For selected values of the waiting times, the time-
resolved response functions and the corresponding correla-
tion functions were measured during the aging process of the
Laponite solution. The length of the electric pulses produced
sets the dynamic window of our experiment to about 1 ms.

Note that the relaxation time 
 of these functions is al-
ways much smaller than the typical waiting time �
� tw�.
This means that the time-resolved correlation and response
are well-defined quantities although the system is aging. In
addition, if any FDT violation can be detected, we expect to
find it on a time scale comparable to the relaxation time
�t /
�1� �Fig. 1�.

V. RESULTS AND DISCUSSION

Examples of the measured quantities are shown in the left
panel of Fig. 2. The correlation function and the response
function are reported as functions of t for different aging
times tw.32 For short t, the FDT holds while we can see a
clear deviation from the FDT for long t where � /� does not
overlap with 1−C �C�t� is normalized to C�0�=1�. When
��tw , tw+ t� /� is parametrically plotted against C�tw , tw+ t�
using t as a parameter �FDT plot�, the departure from the
1−C line becomes evident �see the right panel of Fig. 2�. The
deviation from the behavior expected from the FDT reduces
its importance as tw grows, and the time where T� and C
detaches from each other moves to longer t �see also Fig.
3�a� where the interested region of the FDT plot has been
expanded�. In order to quantify this deviation, we introduced
a linear fit to the longer-time points in the FDT plot. The
slopes �m� of these lines are a measure of the effective tem-
perature, 1 /m=Tef f /T.

The tw dependence of Tef f is reported in Fig. 3�b�. Tef f
decreases as tw increases. The linear fit to the long-t region of
the FDT plot also defines a characteristic value of the corre-
lation C where the FDT breaks down, the so-called Edwards-
Anderson value q; this quantity is reported as a function of tw
in Fig. 3�c�. Finally, the quantity q, defined via C�t0�=q,
identifies a characteristic time t0 that mark the “starting time”
of the violation. to is found to move to higher values as the
aging time increases �Fig. 3�d��. It is interesting to compare
t0 to the relaxation times 
 of the response and the

correlation. We find 
 fitting the correlation and the response
with stretched exponentials of the form exp�−�t /
��� and
�1−a exp�−�t /
����, respectively. The response ages faster
than the correlation, almost reaching the same relaxation
time for the longest tw.

It is important to emphasize that in all models investi-
gated so far for studying the GFDR, the relaxation time
grows roughly as the waiting time, 
	 tw. The aging process
that we study experimentally here does not obey this simple
scaling. Indeed, the off-equilibrium �aging time-dependent�
relaxation time measured is several orders of magnitude
shorter than the typical values of tw. Nevertheless, our results
show that the different time scales �the one where the dy-
namics is at the equilibrium and the one where that is out of
the equilibrium� are set by the aging time tw. Indeed, the

�tw� that grows as the sample ages marks the transition from
the regime where the FDT holds to another where the FDT is
violated.

Finally, we mention that these results show a qualitative
behavior that is similar to the one found in dielectric mea-
surements �performed in the frequency domain�. Tef f is equal
to the bath temperature for short times �at high frequency�
while it is higher than T for long times �at low frequency�. In
addition, the time scale for the deviation of Tef f from T in-
creases as tw increases �the frequency at which the FDT is
violated shifts to lower frequencies�.

Although these similarities are intriguing, we stress that
some profound differences are also found. First, the relevant

FIG. 1. �Color online� Sketch of the experimental setup �see
Ref. 29 for more details�. The laser’s radiation ��=532 nm� is po-
larized by the polarizer P1 and focused by the lens L1 at the center
of the cell containing the sample. The scattered light is collected by
the lens L3 and selected by the polarizer P3 �orthogonal to P1�. A
photomultiplier tube �PMT� detects the scattered photons. When no
electric pulse is applied to the cell, the output of the PMT is ac-
quired by a computer equipped with a custom digital correlator, this
measures and stores the correlation function. The Kerr cell contain-
ing the sample is provided by two electrodes connected to a source
of amplified electric pulses. The forward-scattered light �rotated by
the electrically stimulated sample� is collected by the lens L2 and
passes through a quarter-wave plate and the polarizer P2 �orthogo-
nal to P1�. The transmitted light is detected by a photodiode con-
nected to a digital oscilloscope. This is triggered to the source of
electric pulse measuring and storing the Kerr-response function.
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time scales detected are very different. In our experiment, the
deviation from the FDT is found at times between 0.1 and 1
ms �i.e., at frequencies between 10 and 1 kHz�. In the studies
based on the dielectric response, the violation of the FDT
was detected at much lower frequencies �between 10 and 1
Hz�. Second, the effective temperature found from dielectric
measurements was extremely high �orders of magnitude
higher than the bath temperature� while we measure a Tef f at
most a factor 5 higher than T. Note that our measurements

�as the dielectric measurement� give a different result with
respect to the various findings obtained via the microrheo-
logical measurement mentioned in Sec. I.

In conclusion, by measuring the autocorrelation function
of a given variable and the response function of the same
quantity in an off-equilibrium �aging� colloidal suspension in
the route to the arrested state, we have investigated the gen-
eralized fluctuation-dissipation relation. The GFDR applies
to the present experiment in the following sense: for short-
time scales the FDT is fulfilled, while for long times a clear
violation is observed. The characteristic time at which the
violation is seen, is always slightly above the aging-time-
dependent relaxation time of the measured response and cor-
relation function. Moreover, we observe that the deviation
from the standard FDT reduces gradually as the aging time
increases and the arrested phase is approached.

*cmaggi@ruc.dk
1 R. P. Feynman, Statistical Mechanics: A Set of Lectures, edited

by Jacob Shaham �Academic, New York, 1972�.
2 See, for example, the textbooks: J.-P. Hansen and I. R. Mc-

Donald, Theory of Simple Liquids, 3rd ed. �Academic, New
York, 2006�, Chap. 7; L. D. Landau and E. M. Lifshitz, Statis-
tical Physics �Butterworth-Heinemann, Oxford, 1980�, Vol. 5;

D. Chandler, Introduction to Modern Statistical Mechanics �Ox-
ford University Press, New York, 1987�.

3 A. Crisanti and R. Ritort, J. Phys. A 36, R181 �2003�.
4 U. M. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Phys.

Rep. 461, 111 �2008�.
5 L. F. Cugliandolo, Slow Relaxations and Nonequilibrium Dy-

namics in Condensed Matter �Springer, Berlin/Heidelberg,

10
−5

10
−4

10
−3

0

0.5

1

10
−5

10
−4

10
−3

0

0.5

1

10
−5

10
−4

10
−3

0

0.5

1

χ(
t,t

w
)/

β
an

d
C

(t
,t w

)

10
−5

10
−4

10
−3

0

0.5

1

t [s]

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

χ(
t,t

w
)/

β

0 0.5 1
0

0.5

1

C(t,t
w

)

t
w

=90 min

t
w

=125 min

t
w

=225 min

t
w

=1200 min

FIG. 2. �Color online� �Left� Normalized time-correlation func-
tion ��� and response function ��� measured at different aging
times �from top to bottom: tw=90, 125, 225, and 1200 min�, the
solid line represents 1−C. Note that 1−C deviates from � /� when
the FDT is violated. The importance of this deviation reduces as tw

increases. �Right� Response function vs correlation function mea-
sured at different aging times ���. The black line represents the
expectation of the FDT while the color lines represent the linear fits
to the points in the off-equilibrium section of the FDT plot. It can
be appreciated how these points corresponding to long-time gradu-
ally approach the FDT as the aging time increases, for the longest
waiting time the fitting line overlaps almost perfectly with the pre-
diction of the FDT �see Fig. 3 for a comparison of the FDT plots at
different aging times�.

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1

χ(
t,t

w
)/

β

C(t,t
w

)

(a)

10
2

10
3

0

2

4

6

8

t
w

[min]

T
ef

f
/T

(b)

10
2

10
3

0

0.1

0.2

0.3

0.4

t
w

[min]

q

(c)

10
2

10
3

10
−5

10
−4

10
−3

t
w

[min]

τ
an

d
t 0

[s
]

(d)

AGING TIME INCREASING

FIG. 3. �Color online� �a� The interesting region of the FDT
plots for different aging times: tw=90, 125, and 1200 min �cf. Fig.
2, right panel�. �b� The inverse slope of the long-time points of the
FDT plot �see Fig. 2� as a function of the aging time �the full line is
a guide for the eye�. This parameter can be interpreted as an effec-
tive temperature and it is found to reduce to the bath temperature as
the aging time increases. �c� Waiting-time dependence of the
Edwards-Anderson parameter, the characteristic value of the corre-
lation function at which the FDT breaks down. �d� Evolution with
tw of the characteristic time at which the FDT is violated ���,
together with the relaxation time of the correlation function ��� and
of the response ���. The characteristic time for the FDT violation
to increases as tw grows followed by the two relaxation times.

MAGGI et al. PHYSICAL REVIEW B 81, 104201 �2010�

104201-4

138 Papers



2004�.
6 L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173

�1993�.
7 L. F. Cugliandolo and J. Kurchan, J. Phys. A 27, 5749 �1994�.
8 L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55,

3898 �1997�.
9 A. Garriga and F. Ritort, Eur. Phys. J. B 20, 105 �2001�; 21, 115

�2001�.
10 M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond �World Scientific, Singapore, 1987�.
11 Spin Glasses and Random Fields, edited by A. P. Young�World

Scientific, Singapore, 2000�.
12 G. Diezemann, J. Chem. Phys. 123, 204510 �2005�.
13 G. Parisi, Phys. Rev. Lett. 79, 3660 �1997�.
14 J. L. Barrat and W. Kob, Europhys. Lett. 46, 637 �1999�.
15 R. Di Leonardo, L. Angelani, G. Parisi, and G. Ruocco, Phys.

Rev. Lett. 84, 6054 �2000�.
16 K. Hayashi and M. Takano, Biophys. J. 93, 895 �2007�.
17 R. L. Jack, M. F. Hagan, and D. Chandler, Phys. Rev. E 76,

021119 �2007�.
18 D. Loi, S. Mossa, and L. F. Cugliandolo, Phys. Rev. E 77,

051111 �2008�.
19 D. Herisson and M. Ocio, Phys. Rev. Lett. 88, 257202 �2002�.
20 T. S. Grigera and N. E. Israeloff, Phys. Rev. Lett. 83, 5038

�1999�.
21 L. Bellon, S. Ciliberto, and C. Laroche, Europhys. Lett. 53, 511

�2001�.

22 S. Jabbari-Farouji, D. Mizuno, M. Atakhorrami, F. C. MacKin-
tosh, C. F. Schmidt, E. Eiser, G. H. Wegdam, and D. Bonn,
Phys. Rev. Lett. 98, 108302 �2007�.

23 N. Greinert, T. Wood, and P. Bartlett, Phys. Rev. Lett. 97,
265702 �2006�.

24 P. Jop, A. Petrosyan, and S. Ciliberto, Philos. Mag. 88, 4205
�2008�.

25 B. Ruzicka, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid,
and G. Ruocco, Phys. Rev. E 77, 020402�R� �2008�.

26 B. Abou and F. Gallet, Phys. Rev. Lett. 93, 160603 �2004�.
27 B. Ruzicka, L. Zulian, and G. Ruocco, Langmuir 22, 1106

�2006�.
28 B. Berne and R. Pecora, Dynamic Light Scattering �Plenum,

New York, 1985�.
29 See supplementary material at http://link.aps.org/supplemental/

10.1103/PhysRevB.81.104201 for preliminary tests verifying the
assumption that the rotational dynamics is much faster than the
translational one, and tests the linearity of the response function.

30 R. W. Boyd, Nonlinear Optics �Academic, San Diego, 2003�.
31 E. Hecht, Optics, 4th ed. �Addison-Wesley, Reading, 2001�.
32 Here tw=0 is set as the time in which we stop stirring the pre-

pared Laponite supension. Note that the first measurement of
Tef f is taken at tw=90 min but we expect Tef f at tw=0 to be
quite similar to Tef f�tw=90 min� since the correlation and re-
sponse change extremely slowly at the beginning of the aging
process.

GENERALIZED FLUCTUATION-DISSIPATION RELATION… PHYSICAL REVIEW B 81, 104201 �2010�

104201-5

Paper III 139





Predicting the Effective Temperature of a Glass
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We explain the findings by Di Leonardo et al. [Phys. Rev. Lett. 84, 6054 (2000)] that the effective

temperature of a Lennard-Jones glass depends only on the final density in the volume and/or temperature

jump that produces the glass. This is not only a property of the Lennard-Jones liquid, but a feature of all

strongly correlating liquids. For such liquids data from a single quench simulation provide enough

information to predict the effective temperature of any glass produced by jumping from an equilibrium

state. This prediction is validated by simulations of the Kob-Andersen binary Lennard-Jones liquid and

shown not to apply for the nonstrongly correlating monatomic Lennard-Jones Gaussian liquid.

DOI: 10.1103/PhysRevLett.104.125902 PACS numbers: 65.20.�w

Condensed matter is frequently found in out-of-
equilibrium states. For example, for systems like super-
cooled liquids, dense colloids, spin systems, etc., the (off-
equilibrium) glass state occurs naturally after cooling or
compression from a state of thermal equilibrium. An ef-
fective temperature describes the nonequilibrium proper-
ties of a glass, and the possibility of connecting the
effective temperature with the observed violation of the
fluctuation-dissipation theorem (FDT) [1] has opened new
ways of inquiry [2–6]. In 2000, Di Leonardo et al. [5]
studied the off-equilibrium dynamics of the single-
component Lennard-Jones (LJ) liquid (with a small
many-body term added to the potential to prevent crystal-
lization). This system was subjected to sudden temperature
decreases at constant density (quenches) as well as to
sudden density increases at constant temperature
(crunches). From the violation of the FDT, the effective
temperature was determined. Surprisingly, it was observed
that the effective temperature Teff is independent of the
particular path in the temperature-density plane crossing
the glass transition line: Teff depends only on the final
density. In this Letter we demonstrate that the findings of
Di Leonardo et al. hold generally for strongly correlating
liquids (defined below). We further argue and demonstrate
that—for this class of liquids—from a single quench simu-
lation one can predict the effective temperature for any off-
equilibrium jump.

Reference [7] documented the existence of a large class
of liquids characterized by strong correlations between
virial (W � pV � NkBT) and potential energy (U) ther-
mal equilibrium fluctuations at fixed volume, �WðtÞ ffi
��UðtÞ. Strongly correlating liquids have a hidden (ap-
proximate) scale invariance, which implies that they inherit
many—but not all—of the scaling properties of liquids
interacting via inverse power-law potentials. Strongly cor-
relating liquids include van der Waals–type liquids but not,
e.g., hydrogen-bonding liquids. Strongly correlating
liquids have curves in their phase diagrams—‘‘iso-
morphs’’—along which several static and dynamic prop-

erties are invariant [8]. These invariants derive from the
fact that two microscopic configurations of two isomorphic
state points, which scale into one another, to a good ap-
proximation have identical canonical probabilities. If the
density is denoted by �, an isomorph is given by ��=T ¼
const. The exponent �—which may be slightly state-point
dependent—can be calculated from equilibrium fluctua-
tions at one state point or from a single quench simulation
utilizing the relation between the relaxing averages,
hWðtÞi ffi �hUðtÞi þW0.
Because the canonical probabilities of scaled configura-

tions belonging to the same isomorph are identical, a jump
between two isomorphic state points takes the system
instantaneously to equilibrium [property (i)][8]. More-
over, jumps from isomorphic state points to the same final
state point show identical aging behavior [property (ii)]
[8]. In view of these properties the results of Di Leonardo
et al. [5] may be understood as follows. A crunch from
density �1 to density �2 can be ideally decomposed into
two parts (Fig. 1): First, the system jumps instantaneously
from its initial state to the corresponding isomorphic state
at the final density (i.e., the state which has the same ��=T
as the initial state); see Fig. 1. This is an equilibrium state
[8]. Thereafter the system at constant density begins to
approach the equilibrium state defined by the temperature.
If the crunch is made to a state with very high density, the
thermalization takes an extremely long time and the effec-
tive temperature may be determined from the FDT viola-
tion as detailed below. In this way any crunch corresponds
to a quench to the final density with the same relaxation
pattern. In particular, these two transformations should
have identical FDT violation factors and identical effective
temperatures.
These arguments should apply to any strongly correlat-

ing liquid, not just the single-component LJ system. To
confirm this we simulated the Kob-Andersen binary
Lennard-Jones (KABLJ) liquid [9,10]. Following
Di Leonardo et al. [5] we subjected the KABLJ liquid to
a number of instantaneous quenches and crunches and
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calculated the effective temperatures from the fluctuation-
dissipation relation (FDR). Recall that for off-equilibrium
systems the FDR in kB ¼ 1 units is [11–15]

T@t0�ðt; t0Þ ¼ �Xðt; t0Þ@t0Cðt; t0Þ: (1)

Here C ¼ hAðtÞBðt0Þi is the correlation function of the
variables A and B in the unperturbed situation, the perturb-
ing contribution to the Hamiltonian is �H ¼ ��B,
�ðt; t0Þ ¼ hAðtÞi=�j"!0 is the response of A to the pertur-
bation applied at time t0 < t, and X is the FDT violation
factor. This is unity at short times ðt� t0Þ=t0 � 1, while
X < 1 in the long-time limit ðt� t0Þ=t0 � 1. We chose as
dynamic variables AkðtÞ ¼ N�1

P
j�j cos½k � rjðtÞ� and

BkðtÞ ¼ 2NAkðtÞ, where the sum is extended to all N
particles of the system and �j ¼ �1 is a random variable

with zero mean. With this choice the correlation function
Cðt; t0Þ is the self-intermediate scattering function.

For quenches to low enough temperatures, at long times
an effective temperature of the slow degrees of freedom is
associated with the FDT violation factor: Teff ¼ T=X [12–
16]. The effective temperature reflects the slow structural
rearrangements in the sense that the aging system behaves
as if it were thermalized at Teff [16]. We obtained X by
calculating the correlation function and the response func-
tion in the nonequilibrium regime by means of X ¼ XðtÞ ¼
�T@�ðt; t0Þ=@Cðt; t0Þjt, which applies at long times (note

that the correct X is found by taking this derivative at fixed
t, not at fixed t0 [17]).
Recently Berthier introduced a new method for calcu-

lating the response without applying an external field for an
off-equilibrium Monte Carlo simulation of the KABLJ
[17]. Using his procedure Fig. 2 shows the FD plots for
the KABLJ liquid during a number of temperature-density
jumps. In Fig. 2 we test the construction of equivalent
crunches and quenches argued above: a crunch and a
quench from initially isomorphic states (i.e., with the
same ��=T) to the same final T and � (red circles and
red squares). Clearly the crunch overlaps well with the
quench; in fact, they follow the same aging pattern. The
exponent � was estimated by a linear fit of the parameter
plot hWðtÞi vs hUðtÞi when the system is relaxing after a
temperature jump from T ¼ 2:55 to T ¼ 0:3192 at fixed
� ¼ 1:264. The resulting value is � ¼ 5:01 (for details,
refer to Ref. [10]). Figure 3 shows the linear relation that
connects hWðtÞi and hUðtÞi during two ‘‘isomorphic’’
quenches.
Identical responses and correlations do not only appear

when a strongly correlating liquid is taken from two iso-
morphic states to the same state point. Supplementing
properties (i) and (ii), strongly correlating liquids have a

FIG. 2 (color online). Response versus correlation function for
several density or temperature jumps for the KABLJ liquid. All
FD plots have fixed t ¼ 104 (Monte Carlo steps) and t0 varying
from 103 to 104. All functions plotted here have the same
reduced k-vector (referring to the final density) and the same
reduced microscopic time. In the crunch (	) we set jkj ¼ 7:81
corresponding to the reduced k-vector j~kj ¼ 6:78 (see Ref. [10]
for details). The crunch (	) overlaps very well with the
quench (h) that takes the system from an initial state isomorphic
to the one of the crunch to the same final state. Note also the
good superposition of the additional quench (5) that takes the
system from a state isomorphic to the initial state of (	) to a
state isomorphic to the final one of (	). The full lines have
the slopes predicted from the density-scaling relation
Eq. (2) for Teff .

FIG. 1 (color online). Patterns followed by the KABLJ liquid
in different off-equilibrium density and/or temperature jumps.
Consider, for example, the case of a crunch (horizontal dotted
line), where the system is densified at constant temperature. This
transformation is equivalent to a quench (right-most vertical
line) from an isomorphic state point having the final density of
the crunch. Thus the Teff (large filled circle) is identical for these
transformations. In all processes represented here the liquid
undergoes a glass transition characterized by an effective tem-
perature that can be measured from the fluctuation-dissipation
relation (FDR) Eq. (1). Teff versus (final) density constitutes an
isomorph, as discussed later in the text.
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third interesting aging property (iii): For two jumps
ðT1; �1Þ ! ðT2; �2Þ and ðT3; �3Þ ! ðT4; �4Þ between mu-
tually isomorphic initial and final states (i.e., ��

1=T1 ¼
��
3=T3 and ��

2=T2 ¼ ��
4=T4), the systems follow the

same path in configuration space in reduced units [10]
because the dynamical equations governing the evolution
of the particle trajectories are identical in reduced units.
Accordingly, the responses and correlations of two such
jumps must be identical in reduced units. In Fig. 2 we show
the reduced unit C and � of a quench between initial and
final states that are isomorphic, respectively, to the initial
and final states of the crunch described above (red tri-
angles). The overlap between the functions is good.
Figure 3 shows the variables hWðtÞi vs hUðtÞi in two such
isomorphic jumps; they are connected by an isomorph at
each time during the relaxation.

A further consequence of property (iii) is the following.
Because the reduced-unit evolution is the same for the
system in the two jumps, their FDR violation factors
must also be identical, X2 ¼ X4. Combining this equation
with ��

2=T2 ¼ ��
4=T4 and expressing X via the effective

temperature, we find ��
2=Teff;2 ¼ ��

4=Teff;4, i.e.,

��=Teff ¼ const: (2)

This equation identifies the glass transition curve in the
(T; �) plane defined in terms of the FDR effective tem-
perature with an isomorph. This is consistent with the
findings of Ref. [5] and the standard way of defining the
glass transition, because the standard glass line in the
(T; �) plane is located where the equilibrium relaxation

time reaches a certain (high) value of order the inverse
cooling rate. For strongly correlating liquids an isomorph
is also an ‘‘isochronal’’ curve along which the (reduced)
relaxation time is constant [8]. Figure 2 shows the slopes
predicted by Eq. (2) (lines); clearly the prediction is
fulfilled.
It is well known (see, for example, Refs. [4,17]) that the

effective temperature is independent of the initial and final
temperature if the initial temperature is high (the system is
in a warm liquid state) and if the quenching temperature is
low enough (i.e., in the regime where X ¼ T=Teff with
constant Teff). Consequently, Eq. (2) predicts the effective
temperatures for all possible jumps ending at density �.
The exponent � and the constant may both be calculated
from the results of one single aging simulation. In Fig. 4 we
compare Teff identified from several crunches and
quenches (not only involving isomorphic initial and final
state points) with the prediction of Eq. (2). The agreement
is very good.
The above discussed simple aging properties are only

expected to apply for liquids with isomorphs, i.e., strongly
correlating liquids. To validate this we simulated the non-
equilibrium dynamics of the monatomic Lennard-Jones
Gaussian (MLJG) model [18]. The pair potential of the
MLJG has an additional Gaussian attractive well compared
to the LJ liquid (see the inset of Fig. 5); details about the
model’s potential and its glassy behavior can be found in
Ref. [18]. The MLJG liquid has WU fluctuations which
correlate less than 2% at the state points studied here. As is
clear from Fig. 5, two jumps to the same final density
lead to quite different effective temperatures. Thus, this
system provides a counterexample to the observation by

FIG. 3 (color online). Average virial versus potential energy
per particle during aging in two quenches for the KABLJ liquid.
These quenches were performed between states with same initial
and final ��=T. At each time the off-equilibrium states are
connected by an isomorph (e.g., the dashed line). In these two
jumps the FDT violation factor X should be identical. The slope
of the hWðtÞi vs hUðtÞi plot is �. The analytical equation used for
drawing the isomorphs in the W-U plot here is reported in
Ref. [20].

FIG. 4 (color online). Effective temperature as a function of
density in several crunch and/or quenches (in double log scale)
for the KABLJ liquid. The effective temperature is computed
from the violation factor: T=Teff ¼ X ¼ �T@�ðt; t0Þ=@Cðt; t0Þjt.
The scaling exponent � is computed from potential energy-virial
relaxation (see Fig. 3) as described in the text. The full line is the
prediction of the density scaling equation (2) for Teff .
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Di Leonardo et al. [5] that the effective temperature de-
pends only on the final density.

We also investigated the relation between the inherent
state energies in aging and at equilibrium for the KABLJ
and the MLJG liquids (see Ref. [10] for more details). Only
for the strongly correlating liquid KABLJ can one interpret
Teff as an indicator of which part of the energy landscape is
visited during aging, confirming a suggestion by Sciortino
and Tartaglia in [19].

In conclusion, the existence of isomorphs for strongly
correlating liquids explains the previously reported result
[5] for the LJ liquid that the effective temperature depends
only on the final density of any jump (when temperature
and density are the externally controlled variables). We
presented simulations of the aging dynamics of another
strongly correlating liquid, the KABLJ liquid, as well as
simulations of aging of a liquid without strong virial or
potential energy correlations (the MLJG liquid). For
strongly correlating liquids it is always possible to produce
equivalent density or temperature transformations con-
nected by the density-scaling relation. Moreover, for this
class of liquids the effective temperature satisfies the
density-scaling equation (2). Since the exponent � and
the constant of Eq. (2) may both be identified from a single
quench simulation, the implication is that for a strongly

correlating liquid the effective temperature of an arbitrary
glass may be calculated from the results of a single jump
simulation.
The center for viscous liquid dynamics Glass and Time

is sponsored by the Danish National Research Foundation
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Unique Dynamic Correlation Length in Supercooled Liquids
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We present a direct comparison of the number of dynamically correlated molecules in the shear-
mechanical and dielectric relaxations of the following seven supercooled organic liquids: triph-
enylethylene, tetramethyl-tetraphenyl-trisiloxane, polyphenyl ether, perhydrosqualene, polybutadi-
ene, decahydroisoquinoline, and tripropylene glycol. For each liquid we observe that the numbers
of dynamically correlated molecules in the shear and in the dielectric relaxation are proportional.
We show that this proportionality can be explained by the constancy of the decoupling index of the
shear and dielectric relaxation times in conjunction with time-temperature superposition. Moreover
the value of this proportionality constant is related to the difference in stretching of the shear and
dielectric response functions. The most significant deviations from unity of this constant are found
in a liquid with strong hydrogen bonds and in a polymer.

INTRODUCTION

The dynamical processes taking place in a supercooled
liquid are complex. This is due to the fact that the mo-
tion of the molecules of a liquid close to the glass tran-
sition is intrinsically collective. When the liquid enters
this ultra-viscous regime [1], the rearrangement of a par-
ticle involves the motion of many of its neighbors. The
idea that the dynamics becomes more and more cooper-
ative has led to searches for a growing length scale as the
dynamics slow-down upon cooling. So far no standard
static correlation has revealed a detectable growing cor-
relation length arising in the supercooled phase. On the
other hand, dynamic correlations [2] may account for the
evolution of the correlation length scales involved in the
glass transition. Recently Berthier, Biroli and co-workers
invented a simple and powerful method to estimate the
four-point susceptibility, χ4 [3–5]. The central idea is
to estimate the four-point function via a more accessible
three-point function. The function χ4, which cannot be
easily measured directly, can be approximated from the
temperature evolution of any measured dynamic variable.

We can measure the frequency-dependent dielectric
susceptibility, ε(ω), and shear modulus, G(ω) using the
same cryostat and covering overlapping temperature-
frequency ranges [6–8]. The piezo-shear-gauge (PSG)
technique [8] allows us to measure the dynamic shear
modulus of a supercooled liquid close to its glass transi-
tion (where G typically assumes values between 0.1 MPa
and 10 GPa) in a wide frequency range (10−3− 104 Hz).
In this work we extract and compare the number of dy-
namically correlated molecules in the structural (alpha)
relaxation from two different dynamic variables: the di-
electric susceptibility and the shear modulus.

aElectronic address: cmaggi@ruc.dk
bElectronic address: boj@ruc.dk
cElectronic address: dyre@ruc.dk

Tg [K] m I(T ) (clear) β-relaxation

TPE 249 73 3.4 – 3.5 no

DC704 211 83 3.7 – 3.9 no

PPE 245 80 3.9-3.9 no

Squalane 167 64 0.4 – 2.9 yes

PB20 176 79 3.7 yes

DHIQ 179 154 3.8 – 8.3 yes

TPG 190 65 1.4 – 3.0 yes

TABLE I: Properties of the seven liquids studied (from Refs.
[9–12, 18]). Tg is the glass transition temperature, m is the
Angell fragility, I is the temperature index (the values of I
are reported for the highest and lowest temperature stud-
ied). The last column indicates if the liquid has or not a clear
secondary β-relaxation. All the data here refer to dielectric
measurements.

We analyze below dielectric and shear-dynamic
data collected and published by our group [9,
11], available on-line [12]. This study focuses on
seven liquids: triphenylethylene (“TPE”), tetramethyl-
tetraphenyl-trisiloxane (“DC704”), polyphenyl ether
(“PPE”), perhydrosqualene (“squalane”), polybutadi-
ene (“PB20”), decahydroisoquinoline (“DHIQ”), and
tripropylene glycol (“TPG”). DC704, TPE, PPE,
squalane and DHIQ are molecular van der Waals bonded
liquids, TPG has hydrogen bonds, and PB20 is a poly-
mer with molecular weight of 5000 g/mol. All liquids
were used as acquired. The PPE used is the Santovac R©5
vacuum pump fluid, and DC704 is the Dow Corning R©704
diffusion pump fluid. All the other liquids were acquired
from Sigma-Aldrich. All the experimental details about
these measurements can be found in Refs. [6–9].

Some properties of the liquids [9–12, 18] are reported
in Table I. Here the relaxation time τ is defined by the
inverse loss peak frequency and the glass transition tem-
perature Tg is defined as the temperature where the loss-
peak is located at 2π10−3 rad/s. The temperature de-
pendence of the relaxation time around Tg is expressed
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2

in terms of the Angell fragility index [13–16]

m =
d log10 τ

d(Tg/T )

∣∣∣∣
T=Tg

(1)

The temperature dependence of activation energy is
quantified via the temperature index [17, 18]

I(T ) =
d ln ∆E(T )
d lnT

(2)

where ∆E(T ) is the activation energy defined by τ =
τ0 exp(∆E(T )/kBT ). Table I reports the variation of
I(T ) in the temperature interval studied [18]. Table I also
reports presence of a clear Johari-Goldstain β-relaxation
[19] in the dielectric spectrum of the liquid.

COMPARISON OF SHEAR-MECHANICAL AND
DIELECTRIC RESPONSES

The studies carried out by our group [9, 11, 20, 21]
focused on the temperature-dependence of the the shear-
mechanical and dielectric α relaxation times (indicated
with τG and τε, respectively). Furthermore, comparison
of the shape of these two relaxation functions was pre-
sented. The main conclusions of these studies may be
summarized as follows:

(i) The relaxation time of the shear modulus is gen-
erally different from that of the dielectric susceptibility
at the same temperature T . The shear-mechanical relax-
ation is always slightly faster than the dielectric, τε(T ) ≥
τG(T ). Nevertheless, the shear and dielectric charac-
teristic alpha relaxation times evolve in a rather simi-
lar way in the liquids studied when T is changed. This
was discussed in detail in [9] where the decoupling index
τε(T )/τG(T ) was reported and its insignificant tempera-
ture dependence was established (τε(T )/τG(T ) ' const).
This picture is also confirmed by other studies found in
the literature [22–26].

(ii) The shear response function and the dielectric re-
sponse function generally have different shapes. In liq-
uids that do not show any detectable Johari-Goldstain
β-relaxation [19] the shape of each frequency-dependent
response is found to be almost temperature independent.
This feature is referred as time-temperature superposition
(TTS), and it is found to hold to a very good degree in
the temperature-frequency range explored [9, 20] both for
the shear and the dielectric relaxation [31].

(iii) For those liquids that have a clear beta-relaxation
the alpha relaxations in the shear and dielectric spectrum
seem to approach a temperature independent shape as

the temperature is lowered. This has been presented in
detail in Refs. [9, 20, 21, 31] suggesting that for the alpha
process alone TTS applies, while in the full spectrum
TTS is lost because of the presence of the beta process.

In the following we show that (i) and (ii) imply that
the shear and the dielectric numbers of dynamically cor-
related molecules (for the liquids without clear beta re-
laxation) are proportional in the temperature range stud-
ied. Moreover, the same conclusion applies if we assume
TTS (as suggested by (iii) and also done in [29]) to hold
for the alpha process in those liquids that have a sec-
ondary relaxation. To understand this link it we first
briefly recall how to approximate the four-point suscep-
tibility.

ESTIMATION OF THE NUMBER OF
DYNAMICALLY CORRELATED MOLECULES

The four-point correlator can be interpreted as the
variance of the dynamics around its average value. One
can estimate this function from the following equation
(Refs. [3–5, 27–29])

χ4(ω, T ) ' kB
cP

(
∂χ̃′(ω, T )
∂ lnT

)2

. (3)

In this equation χ̃′ is the normalized real part of the
response function and cP is the configurational heat ca-
pacity per molecule at constant pressure. The right-hand
side of Eq. (3) is an approximation of χ4, it actually rep-
resents a lower bound for this function. Nevertheless,
this method is found to give values of the four-point sus-
ceptibility in good agreement with the actual values of
χ4 when these can be evaluated directly (for example in
computer simulations) [4, 5]. The characteristic value of
the four-point function (i.e., the typical number of cor-
related molecules in the relaxation, Ncorr) is associated
with the maximum of χ4,

Ncorr(T ) = max
ω

[χ4(ω, T )]. (4)

The maximum of this function is consistently found to
close to a frequency close to the loss-peak frequency of
the alpha dynamics.

The normalized response function χ̃′ appearing in Eq.
(3) is computed by subtracting a baseline parameter to
the measured response (for example the dielectric suscep-
tibility), subsequently dividing by the amplitude of the
function [27]

χ̃(ω, T ) =
χ(ω, T )− χ∞

∆χ
. (5)
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In this work we fit all response functions with the
Havriliak-Negami (HN) function [30]

χ(ω, T ) = χ∞ +
∆χ

[1 + (iτω)α]β
. (6)

The Appendix details how we introduce the assumption
of TTS in the analysis of the spectra of the liquids pre-
senting a beta process (this is done by fixing the α and
β parameters of the function (6)). An example of the
fitting is reported in Fig. 1 for the dielectric responses of
DC704. The normalized functions are shown in the upper
parts of Fig. 2.A (dielectric) and in Fig. 2.B (shear).
The function χ4 obtained from Eq. 3 is shown in Fig.
2 for the dielectric responses and the shear-mechanical
response of DC704. Note that the maximum of these
functions at the same temperature is located at different
frequencies in the shear and the dielectric case (as is also
the case for the loss peaks of the responses). Moreover,
the shape of χ4 is slightly different in the shear and in
the dielectric case as discussed in detail below.

Once we have determined the maximum of χ4, the
quantity Ncorr can be obtained via Eq. (4). In this way
two independent estimates of the number of dynamically

correlated molecules can be obtained: the number of cor-
related molecules in the shear relaxation NG and in the
dielectric relaxation Nε. Note that for comparing these
two numbers knowledge of cP is unnecessary, being only
a constant multiplicative factor in Eq. (4).

From Fig. 3 we can appreciate the growth of the shear
and diellectric Ncorr upon cooling. The minimum in-
crease of Nε is of a factor ∼1.6 in TPE and its maximum
increase is of a factor ∼5.7 found in TPG. The relaxation
times of the responses studied grow at least four orders
of magnitude in all liquids.

Let us now see the form assumed by the equations (3)
and (4) if TTS applies. To do this let us consider the very
general expression for a (normalized) response function
obeying TTS:

χ̃(ω, T ) = φ(ωτ(T )). (7)

This is the case of Eq. 6 if the parameters α and β are
kept constant. Differentiating the real part of Eq. (7)
with respect to lnT (as in Eq. (3)) we obtain

∂φ′(ωτ(T ))
∂ lnT

= ω
dφ′(x)
dx

∂τ(T )
∂ lnT

. (8)

where the prime indicates the real part and we have in-
troduced x ≡ ωτ(T ). The maximum of the function (8)
can be estimated setting ω = τ−1 (a minor correction
term is present in the case of very large stretching [29]):

Ncorr ∝
[
max
ω

(
∂φ′(ωτ(T ))

lnT

)]2
= f2(1)

(
∂ ln τ(T )
∂ lnT

)2

(9)
where f(x) = (dφ′(x)/dx). From Eq. (9) it is clear that
the growth of N is determined uniquely by the growth
of the relaxation time upon cooling if TTS strictly holds.
If (as stated in (i)) the decoupling index has a negligible
temperature-dependence (τε(T )/τG(T ) ' const) then

(
∂ ln τε(T )
∂ lnT

)2

'
(
∂ ln τG(T )
∂ lnT

)2

. (10)

This means that the decoupling index of the character-
istic number of correlated molecules in the shear and di-
electric relaxation is also constant as T is lowered:

Nε(T )
NG(T )

' const (11)

where the constant is determined by the stretching of
the shear and dielectric relaxations. In other words, the
growth of NG and Nε is identical upon cooling, while
their difference in absolute values is set by the differ-
ent (temperature independent) shape of the two response
functions.
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for the dielectric (left) and shear (right) relaxation at T= 228.6, 226.6, 224.5, 222.5, 220.5, 218.5, 216.4
and 214.4 K. The full line are the corresponding (cP /kB)χ4 computed form the fitting HN functions. (B) Same as A for the
shear-mechanical response

COMPARISON OF THE SHEAR AND
DIELECTRIC NUMBERS OF DYNAMICALLY

CORRELATED MOLECULES

The results expected from the constant decoupling in-
dex and TTS can be readly checked. Plotting Nε(T )
versus NG(T ) as in Fig. 4 we check that these quantities
approximatively differ only by a multiplicative factor in
the temperature range studied for all liquids considered
in this work. As seen in the inset of Fig. 4 all the data
collapse onto the line Nε ∝ NG if we multiply Nε by
the value 〈NG/Nε〉 where the average is taken over the
temperature range studied.

We test Eq. (11) directly in Fig. 5. As seen from this
figure the decoupling index Nε(T )/NG(T ) of the number
of correlated molecules in the dielectric and shear relax-
ation is very weakly temperature dependent and it does
not show any clear trend of a systematic increase or de-
crease. Note that, while Nε(T )/NG(T ) stays constant,
Nε and NG both grow significantly upon cooling for all
liquids (see Fig. 3).

In Fig. 6 we test further the constancy of the de-
coupling index. Fig. 6 demonstrate the validity of Eq.
(10). The equality (∂ ln τε/∂ lnT )2 = (∂ ln τG/∂ lnT )2

seems to hold to a good approximation as expected from
τε(T )/τG(T ) ' const.

We stress once again that the multiplicative factor be-
tween the shear and dielctric Ncorr (i.e., the constant ap-
pearing in Eq. (11)) is determined by the shape of the
shear and dielectric response. Indeed, the function f(1)
defined in Eq. (9) depends on the form of the relaxation
functions that set Nε/NG ' [fε(1)/fG(1)]2. When the
response is modelled by the HN function (6), the value
of f(1) depends only on the parameters α and β:

f(1) = −αβRe[iα/(1 + iα)1+β ]. (12)

From Eq. (12) it is easy to understand that if the dielctric
response function has approximatively the same shape
as the shear-mechanical one, the constant of Eq. (11) is
close to unity. This is the case of DC704 as can be seen
from Figs. 5 and 7.A for which Eq. (12) gives consistently
Nε/NG ' [fε(1)/fG(1)]2 ' 1.35 using the values α and β
obtained from the fitting.

If the dynamic shear modulus is instead much broader
than the dielectric response (as shown in Fig. 7.B for
TPG), Nε/NG is significantly larger than unity (as seen
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FIG. 3: The quantity (cP /kB)Ncorr for shear (filled symbols)
and dielectric (open symbols) as a function of (T − Tg) for
the liquids studied (see legend). Tg is the glass transition
temperature for the dielectric relaxation from Ref. [9] (see
legend and Table I).

in Fig. 5). Also for this liquid we can check that the
value of this ratio is consistent with the equations given
above obtaining Nε/NG ' 1.97.

Finally we want to stress that the stretching of the re-
laxation function does not only significantly affect Ncorr,
but also the full shape of the function χ4(ω) as calcu-
lated from Eq. (3). This is illustrated in Fig. 8. If the
stretching of the shear and dielectric response functions
is similar as in DC704 (see Fig. 7.A), Nε/NG is close to
one, but also the shapes of χG4 (ω) and χε4(ω) are quite
similar as seen in Fig. 8.A.

If the two response functions have significantly differ-
ent stretching, the corrresponding four-point susceptibil-
ities will have quite different shapes. This is the case of
TPG whose dielctric response function is more “Debye-
like” than the shear-mechanical one (Fig. 7.B). In this
case the functions χG4 is clearly broader than χε4 as seen
in Fig. 8.B.

CONCLUSIONS

We have compared the shear-mechanical and dielec-
tric characteristic number of dynamically correlated
molecules for seven supercooled liquids close to the
glass transition. The number of dynamically correlated
molecules in the shear-mechanical relaxation is generally
different from that of the dielectric relaxation. Neverthe-
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FIG. 4: Characteristic number of correlated molecules in the
dielectric relaxation plotted versus the characteristic number
of correlated molecules in the shear mechanical relaxation at
the same temperatures for the seven glass-forming liquids (see
legend). The full line indicates Nε = NG while the dashed
lines represents Nε = λNG (with λ =1.9 and 0.5 respectively
for the upper and the lower line). In the inset we show the
data collapse on the line Nε ∝ NG obtained when we multiply
Nε by the value 〈NG/Nε〉 where the average is taken over the
temperature range studied.

less, these quantities are approximatively proportional in
the explored temperature range. For five of the seven
liquids studied the ratio between the shear and dielectric
characteristic number of correlated moleculues is close
to the unity. The most significant deviations from this
unitary ratio are found in a liquid with strong hydrogen
bonds and in a polymer. Finally, we showed that the dif-
ference in these absolut numbers arises from the different
stretching of the dielectric and shear response functions.
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[14] R. Böhmer and C. A. Angell, Phys. Rev. B 45, 10091
(1992).
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APPENDIX: Analysis details

Note that, although we consider the real part of χ̃ when
computing the four-point susceptibility, we fit simultane-
ously the real and imaginary part with Eq. (6). This is
done minimizing the (generalized) residual χ2 for a com-
plex variable x, i.e.: χ2 =

∑
j(x

j
exp − xjth)∗ · (xjexp − xjth)

where the star indicates the complex conjugate.
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A further remark on the computation of χ4 is that Eq.
(3) involves the derivative with respect to the tempera-
ture that is, in practice, performed as finite difference.
After obtaining the normalized curves we consider two
successive functions measured at different temperatures
T1 and T2(< T1). Each frequency scan of a response
function is carried in a way that each curve has points

in the same frequencies. The derivative appearing in Eq.
(3) is then computed, at the single frequency, as follows:

[
∂χ̃′(ω, T )
∂ lnT

]
T=(T1+T2)/2

' χ̃′(ω, T1)− χ̃′(ω, T2)
lnT1 − lnT2

Here we illustrate how we introduce the assumption
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of TTS in the analysis of the spectra of the liquids pre-
senting a secondary relaxation process (as TPG, DHIQ,
Squalane and PB20). This is done by fixing the stretch-
ing parameters in (6) for the fitting in the following way.

First we fit the spectrum at the lowest temperatures
(with free stretching parameters) where the secondary
process is well separated from the α relaxation. We ex-
clude from this fit some of the high frequency data (af-
fected by the secondary relaxation). To select which data
to remove from the minimization we plot the logarithmic
derivative of the imaginary part of the response (that is
α = ∂ lnχ′′/∂ lnω) that shows a minimum αmin at the
frequency ωmin where the α process meets the secondary
relaxation. The frequencies larger than this ωmin are not
considered in the fitting.

Once the parameters are found from this low-
temperature spectrum they are fixed to fit all the other
spectra up to high temperature. In those fits we also ex-
clude the high frequency points from the computation in
the same way illustrated above.

When this procedure is completed χ4 is estimated form
the obtained fitting functions. All the liquids with a sec-
ondary process have been treated in this way. Note that
analyzing the data in this manner we are implicitly as-
suming TTS. A final remark is that if we compute χ4

from the original (normalized) relaxation function, in-
stead that from the fitting functions, we find a relative
difference beteween the heights of the maxima only of a
few percents.
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