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Abstract

In this thesis, we use measurements of the pavement deflection slope, obtained with the
Traffic speed deflectometer (TSD) technology, to analyze two road sections. We show, that
the structural rolling resistance (SRR) is given by the deflection slope directly under the
moving load. Furthermore, a simple pavement response model is developed and fitted to
data. Based on the model fitting results, structural characteristics about the pavement are
obtained. Overall, the thesis is split into four main parts:

I The aim was to develop a new method for measuring rolling resistance. The idea is
that the longitudinal deformation of the non-driven, rear-end tire axle is directly related to
the rolling resistance. This deformation can in principle be measured using strain gauges.
In practice, due to temperature effects in the axle, these measurements were not producing
consistent results and the method needs further development to be brought to a routinely
functioning state.

II SRR for two road sections is found by estimating the deflection slope directly under
the load through a linear interpolation between the two closest data points. The method
gives highly reproducible results (standard deviations from three repeated measurements
between 4 and 10%) with a high spatial resolution. The influence of temperature is tested
on a∼ 10km road segment, where the measured SRR coefficient values varies from 0.01%-
0.03% of the load for 18◦C and 0.01%-0.05% for 35◦C. These values are small compared to
typical tire rolling resistance values. The validity of the linear interpolation method was
investigated by comparing to results from simulated curves using a continuum pavement
model, and it was found to provide a valid estimate of SRR.

III A simple one-dimensional pavement response model consisting of a viscoelastic
Euler-Bernoulli beam resting on a Pasternak foundation is developed. A theoretical study
of the model is performed, including a sensitivity analysis. It is found that only the be-
havior of the asphalt complex modulus within some range of wave numbers influence
the modelled pavement response. Consequently, a simple viscoelastic model is used to
describe top layer behavior and furthermore, the influence of velocity and temperature
on the beam response is described.

IV The simple pavement response model is fitted to TSD data and is found to fit data
very well. By analyzing the resulting best estimated parameter values, a connection be-
tween observed changes in the deflection slope data and changing structural characteris-
tics of the pavement is derived. Surprisingly, the dominating source of damping is found
to be the foundation damping. In fact, the top layer acts almost elastic in a majority of data.
The ratio of maximum and minimum deflection slope amplitudes is shown to identify the
dominating source of damping in a pavement within the model framework. Lastly, a pi-
lot study for determining asphalt complex modulus master curves based on TSD data at
different temperatures and driving velocities is presented. The study illustrates that it is
possible to create master curves describing the viscoelastic behaviour of the asphalt layer
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by applying the Time-Temperature Superposition principle to TSD data in conjunction
with a sufficiently advanced road model. The presented method has the advantage that it
uses a non-destructive measuring method and is easy to apply on large road sections. For
future work, we recommend a study involving numerous different temperatures in order
to cover a larger range of frequencies.
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Resumé

I denne afhandling analyseres to vejstrækninger ved målinger for vejafbøjningshældning
indsamlet med Traffic Speed Deflectometer (TSD) -teknologien. Vi viser at den strukturelle
rullemodstand (SRR) er givet ved afbøjningshældningen direkte under det kørende hjul.
Derudover udvikles en simpel vejrespons model og denne fittes til data. Baseret på resul-
taterne fra model-fittet er strukturelle egenskaber omkring vejen udtrukket. Afhandlin-
gen er inddelt i fire hoveddele:

I Vi havde til mål at udvikle en ny målemetode til måling af rullemodstand. Ideen
bag metoden er, at den tværgående deformation af en ikke-dreven hjulaksel er direkte
relateret til rullemodstanden. Denne deformation kan, i princippet, måles ved hjælp af
strain gauges. Grundet temperatureffekter i akslen var disse målinger dog ikke konsis-
tente i praksis og målemetoden bør derfor videreudvikles før den kan bruges rutinemæs-
sigt.

II SRR er fundet for to vejstrækninger ved at estimere afbøjningshældningen direkte
under belastningen gennem en lineær interpolation imellem de to nærmeste datapunk-
ter. Metoden giver meget reproducerbare resultater (standard afvigelser fra tre gentaget
kørsler på 4-10%) med en god rumlig opløsning. Indflydelsen af temperatur er undersøgt
på en omtrent 10km vejsektion, hvor de målte SRR koefficient værdier variere imellem
0,01% og 0,03% af belastningen ved 18◦C og mellem 0,01% og 0,05% for 35◦C. De fundne
værdier er lave sammenlignet med typiske værdier for dæk rullemodstand. Gyldigheden
af den lineær interpolationsmetode blev undersøgt ved at sammenligne med resultater
hvor simulerede kurver fra en kontinuummodel er brugt. Vi vurdere at metoden giver
valide estimater for SRR.

III Der udvikles en simpel en-dimensionel vejrespons model bestående af en viskoe-
lastisk Euler-Bernoulli bjælke på toppen af et Pasternak fundament. En teoretisk un-
dersøgelse af modellen udføres, herunder en sensitivitetsanalyse. Det viser sig at kun
opførelsen af asfaltens kompleks modul inde for et område af bølgetal har en påvirkning
på det modellerede vejrespons. Dermed kan vi bruge en simple viskoelastisk model til at
karakteriserer bjælken, samt beskrive dets påvirkning af hastighed og temperatur.

IV Den simple vejrespons model er fittes til TSD data. Vi vurderer at denne giver
et godt fit. Ved at analysere de resulterende bedst estimerede parameterværdier findes
en forbindelse imellem observerede ændringer i afbøjningshældnings data og ændringer
i vejens strukturelle egenskaber. Overraskende viser det sig, at den dominerende kilde
til dæmpning er undergrunden. Det viser sig at top-laget opfører sig næsten elastisk
for størstedelen af data. Vi viser at ratioen imellem amplituden på maksimummet og
minimummet i afbøjningshældningen kan identificere hvor den mest dominerende kilde
til dæmpning findes, inde for rammerne af modellen. Endeligt præsenteres en pilotun-
dersøgelse til bestemmelse af masterkurver for asfalt kompleks modullet baseret på TSD
data målt ved forskellige kørehastigheder og temperaturer. Undersøgelsen viser at det
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er muligt at udvikle masterkurver der beskriver den viskoelastiske opførsel af asfalten
ved at bruge princippet for tid-temperatur superposition TSD data, samt en tilstrækkelig
avanceret vejmodel. Til fremtidigt arbejde anbefaler vi en undersøgelse, der involverer
mange forskellige vejtemperaturer for at dække et større frekvensområde.



vii

Preface

This doctoral thesis describes the work done by the author from November 2017 to
December 2020. In this period, I have had the pleasure of being part of the Glass and Time
group at IMFUFA, Roskilde University. The project is a cooperation between Roskilde
University and Greenwood Engineering, and as a result, I have had my everyday life both
places. Working in this intersection between the academic and the cooperate world has
been a learning, and sometimes frustrating, experience and I’m sure that it has contributed
positively to the project and my personal development. During the project, I have had the
pleasure to visit Professor Karim Chatti at the department of Civil Engineering, Michigan
State University for five months in the spring 2019. I much appreciated my stay there as
it was very educational to experience the work environment outside of Denmark.

The subject dealt with in this thesis is rolling resistance of heavy traffic. This subject
is traditionally a pavement engineering problem, and thus it is often approached using
engineering solutions. However, the work in this thesis has been made in the interdisci-
plinary field of physics, mathematics and engineering, with input and guidance from all
three fields. Working in this cross section of subjects, all with different ways to view prob-
lems and to come up with solutions, has been a challenge at times but also a rewarding
and educational experience. As I have a background in mathematics and is not a trained
pavement engineer, some of the approaches to problems in this thesis might be differ-
ent than what traditionally would have been done. It is my hope and believe that the
variety of backgrounds of the people contributing to the project, as well as my atypical
background, have resulted in some new and interesting insight into the subject of rolling
resistance.

Throughout the thesis, I will use the first person point of view pronoun "we" to re-
fer to both work and reflections which are my own and made in collaboration with my
supervisors.
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Part I

Introduction
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Chapter 1

Rolling resistance for heavy vehicles

The world face a global climate crisis, which affects our way of living. One of the main rea-
sons is our extensive emission of greenhouse gases such as carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O) (USDOT, 2010). The traffic sector is a significant contrib-
utor to the world’s emission of CO2. It is estimated that 13.5% of the total CO2 emission
in the European Union (in 2016) was due to fuel consumption within the transport sector
(Eurostat, 2016). For the United states this number is estimated to be 29% (in 2010) and
growing steadily (USDOT, 2010). Within the European transport sector, 72% of the emis-
sion comes from road traffic, with 59% associated with light vehicles (such as passenger
cars) and 19 % associated with heavy vehicles (fig. 1.1) (European Environment Agency,
2018). Consequently, there are both economic and environmental incentives to reduce fuel
consumption of motor vehicles.

Vehicles consume fuel and emit CO2 as a consequence, in order to overcome an overall
driving resistance. The driving resistance consists of several different components that all
resist vehicle movement, with the majority being the energy consumption in the engine,
which is estimated to account for 60% of the energy used (estimated for a truck driving
105 km/h) (Sharpe et al., 2014). The remaining 40% is distributed over; air drag (21%),
rolling resistance (13%), drivetrain (2%) and the auxiliary loads (4%), which includes com-
ponents driven by the engine such as cooling fans, AC etc (see fig. 1.1). All components
of the driving resistance can be optimized to minimize the total vehicle energy use. In this
thesis, we focus on the rolling resistance.

Rolling resistance is the force resisting motion of an object (such as a tire) rolling on a
surface. It is created by the interaction between object and surface, and the predominant
source of rolling resistance for vehicles are viscoelastic effects in both tires and pavement.
The viscoelastic effects means that when e.g. the tire is deformed, the deformation is not
purely elastic and thus it does not fully recover, but some of the energy is dissipated as
heat (Sandberg et al., 2011b). This mechanism is taking place in both the tire and the
pavement.

Overall, the components that contribute to the total rolling resistance are; deformation
of the tire, structural response of the pavement and losses in the bearings and aerody-
namic resistances (Sandberg et al., 2011b). Note that the loss in the suspension system in
some studies is included in the total rolling resistance (as in fig. 1.1) and in some it is an
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Transportation

Light vehicles: 59%

Aircrafts: 12%

other: 10%

Heavy vehicles 19%

Driving resistance 

in heavy vehicles

Engine: 60%

auxiliary loads: 4%

drivtrain: 2%

air drag: 21%

rolling resistance 13%

FIGURE 1.1: Left pie chart showing the distribution of CO2 emission within
the transportation sector. 19% of this is due to heavy traffic. Within this
category, the driving resistance forces are distributed as shown in the right

panel. Source: (Sharpe et al., 2014) and (USDOT, 2010)

independent part of the driving resistance. In this study, we do not include losses in the
suspension system in the definition of rolling resistance.

Deformation of the tires is the component that contributes the most to the rolling re-
sistance (Pouget et al., 2012). It is caused by features associated with the tire itself and
the road surface. When the tire is traveling on top of a surface, different kinds of defor-
mations and vibrations within the tire occur. The main source is the load, which flattens
the tire and creates a contact area between the tire and surface, where the tire is flat. Fur-
thermore, deformations and vibrations also occur in the tire tread elements. This includes
effects such as tangent motions in the tread elements known as stick-slip and breaking of
the molecular bonds when they leave the surface, known as stick-snap.
The road surface influences the tire deformation by creating local tire deformations and
by introducing vibrations into the tire/wheel/suspension system. This results in an en-
ergy loss in both the tire and the suspension. In practice, it can be difficult to separate the
two energy losses which is the reason why some studies include losses in the suspension
system into the total rolling resistance loss.
The road surface texture is divided based on the characteristic length scale, and a system-
atic review of this can be found in Sandberg et al. (2011b). Overall the surface texture can
be divided into the following four groups:

• Unevenness of the road (λ = 0.5-50 m)
Unevenness covers texture on the biggest length scale which affects the entirety
of the vehicle. The vibration due to unevenness is mainly captured in the shock
absorber and in the large tire deformation. It is described through international
roughness index (IRI). This is thought to be the biggest contribution to the vehicle
fuel consumption (Harvey et al., 2016; Pouget et al., 2012)
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• Mega texture (λ = 50− 500 mm)
Mega texture includes sand, pebbles etc. on the road which creates local deforma-
tions of the tire. Like unevenness, it is known to have a huge influence on the rolling
resistance (Pouget et al., 2012).

• Macro texture (λ = 0.5− 50 mm)
Macro texture is described by use of mean texture depth (MTD) or mean profile
depth (MPD). It is found to have a much smaller influence on the fuel consumption
then unevenness and mega texture (Harvey et al., 2016).

• Micro texture (λ < 0.5 mm)
So far no studies has shown that microtexture has a significantly effect on the rolling
resistance and not much literature exist about this (Sandberg et al., 2011a).

Another component of the rolling resistance loss is losses related to the pavement de-
formation underneath the load. When the vehicle drives on a pavement, it will deform
underneath the tire. If the pavement is viscoelastic, the deformation will result in energy
dissipating into the pavement structure. In order to maintain a constant driving velocity,
the lost energy has to be compensated. The amount of additional energy the vehicle en-
gine has to produce to overcome this energy loss is called the structural rolling resistance
loss (SRR). How big an influence structural rolling resistance has on the overall rolling
resistance loss is still unclear. It is widely accepted that the effects from the pavement de-
formation are smaller than the ones arising from tire deformations, but whether they are
insignificant or big enough to be considered important in the total rolling resistance are
still debated (Pouget et al., 2012; Bazi et al., 2018; Shakiba et al., 2016; Haider et al., 2011;
Sandberg et al., 2012).

We hypothesise that there are two main reasons why there is no clear consensus about
the importance of pavement deflection. Firstly, the structural response is found to be
highly dependent on external variables like temperature (even daily fluctuations), vehicle
speed, the pavement structure, age of the asphalt materials, etc. This makes it difficult to
compare result across studies (Harvey et al., 2016). Secondly, it has proven very difficult
to devise accurate and robust ways of measuring it (Akbarian et al., 2012). Despite the
uncertainties, there seems to be a consensus in the literature that for light and fast vehi-
cles and/or cold road conditions, the structural effects can be neglected. On the other
hand, for heavy vehicles driving at low speed and/or under high road-temperatures, the
contribution to the rolling resistance from the structural response should not be neglected
(Zaabar and Chatti, 2014; Sandberg et al., 2011a). Harvey et al. (2016) stated that the influ-
ence has not been comprehensively validated with experimental methods, and research
into this field is necessary.

1.1 Thesis aim and reading guide

The starting point of this PhD project was to develop a method for measuring the total
and structural rolling resistance simultaneously. Based on this, we aimed to evaluate, not
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only the total rolling resistance of a given pavement section, but also how big a contribu-
tion the structural rolling resistance was to the overall rolling resistance loss. However,
do to experimental difficulties, no reproducible values of the total rolling resistance were
obtained. Instead, the focus was shifted to the method for measuring structural rolling
resistance based on deflection slope measurements obtained using a Traffic Speed De-
flectometer. The method provided highly reproducible results and using this, we have
investigated the effects of temperature and driving velocity on SRR. Furthermore, spatial
variations in SRR and general trends were studied on a ∼ 10km road segment. For esti-
mating SRR accurately, a simple pavement response model was developed. This was use
to fit to TSD data and obtain the pavement deflection underneath the load. Furthermore,
as this model was founded in physical elements structural characteristics about the pave-
ment measured on were deduced based on the model fitting results.

The thesis is structured into six parts. First, the method for measuring total rolling
resistance is presented in part II. Here the work with making the measurements repro-
ducible is presented and discussed, and a way to move forward with the method is pro-
posed. As no useful measurements of the total rolling resistance were obtained, this sub-
ject is not discussed further in the rest of the thesis.

In parallel with developing the method for measuring total rolling resistance, a method
for measuring the structural rolling resistance (SRR) was developed. This is presented in
part III. A discussion about the validity of the simple approach to measuring SRR is made,
and a comparison study with an extended method is made using a sophisticated pave-
ment response model. Furthermore, the simple approach for calculating SRR is used on
three sets of measurements, studying the influence of temperature and velocity on SRR.

In part IV, a simple pavement deflection model is presented, consisting of a viscoelas-
tic beam on top of a viscoelastic foundation. Before deriving the model, the basic theory
about bending of a beam and viscoelastic materials is introduced. Subsequently to deriv-
ing the model, a numerical study is presented which includes a discussion of model limits
and sensitivity analysis. Furthermore, the influence of the beam complex modulus on the
pavement response and considerations about this is presented.

The results from fitting the simple pavement response model to data is presented in
part V. In addition to calculating the SRR, these results are used to derive how empirical
observations in data can be related to structural changes of the pavement. Furthermore,
a pilot study showing how to develop complex modulus master curves for the asphalt is
presented here.

The thesis ends with a summarizing discussion in part VI. Here the most important
results from the thesis work is summarized and discussed, and ideas for future work is
proposed.
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Measuring the total rolling resistance
of a truck
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Chapter 2

Background

The interest in rolling resistance began in the 1970s where, among other things, the high
oil prices motivated investigations into the phenomenon and how to lower it (Sandberg
et al., 2012). Initially, the focus of these investigations was mainly on the tires and the ma-
terials of which they are made. Big improvements in this area have been made, and from
1980 to 2000 the rolling resistance index of Michelin tires was reduced by approximately
50% (Hall and Moreland, 2001). Later, the focus widened as the significance of pavement
and surface texture became clear. Since then, there has been extensive research into the
influence of surface texture on rolling resistance (Haider et al., 2011; Lédée, 2016). Cur-
rently, inclusion of rolling resistance into the road construction planning process is highly
desired, as this could lead to advantages both from an environmental and economic point
of view (Zoller, 2014). In order to include rolling resistance as a parameter in asset man-
agement systems, it is necessary to have methods that reliably measure rolling resistance
properties, allowing for a comparison of different types of pavements. These methods
should also be practical for large road networks.

Measuring rolling resistance is not an easy task as the magnitude of rolling resistance
force is only about 1% of the tire load and in-situ measurements are often influenced by a
series of external factors (Sandberg et al., 2012; Zoller, 2014). There are currently multiple
approaches to determine rolling resistance, some of which focus on measuring pure tire
rolling resistance in a laboratory setting, while other focuses on measuring rolling resis-
tance on real roads.

In the following, a brief overview of the different existing techniques is given. This will
not be an in-depth review but it will provide some context to the following chapters. For
a systematic in-depth review of the different techniques for measuring rolling resistance
see; Sandberg et al. (2012), Zoller (2014) or Andersen et al. (2014).

2.1 Existing techniques for measuring rolling resistance

The existing techniques for measuring rolling resistance can be divided into laboratory
tests and in-situ test, as they are either conducted on test tracks or regular public roads.
Each method has advantages and disadvantages. The choice of method should be based
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on the underlying motivation for making the measurements as well as which effects that
are studied.

As a in-situ test is performed in "the real world", one can get a much better picture of
the real rolling resistance. However, the number of external parameters that can influence
the experiment is high and unpredictable. Conversely for laboratory measurements, these
uncertainties are removed or controlled when conducting the test.

2.1.1 Drum test

The drum test is the most simplified method of the ones presented here and is used for
measuring the rolling resistance of tires (Andersen et al., 2014). The basic idea is to have a
test tire running on either a smooth steel drum, or on a drum with a custom-made surface.
The tire is pressed down with a known applied load, and the energy it takes to maintain a
constant velocity is measured. This is then related to the rolling resistance of the tire. The
specifics of how the energy is measured depends on the individual setup used.
As the method takes place in a controlled environment, it can also be used to test the
influence of surface textures, curvature or air temperature on the tire rolling resistance
(Andersen et al., 2014).

The advantage of the technique is that it eliminates many external factors that influences
the tire rolling resistance and can thus be used to compare tire rolling resistance across
tires. To do so several ISO standards (International Organization for Standardization)
are published (Andersen et al., 2014). For an overview of these standards the reader is
referred to Sandberg et al. (2011b).

The disadvantage of this method is that it does not take the influence of road prop-
erties and potential pavement deflection into account. This limits the applicability of the
method when it comes to measuring overall rolling resistance, especially for heavy traffic
where pavement deflection is suspected to have a significant effect.

2.1.2 Trailer method

A trailer test is a measurement performed with a custom-made trailer hauled by a vehicle.
The trailer is equipped with a test tire where the resistance to rolling is measured (Ander-
sen et al., 2014; Sandberg et al., 2011b). The measurements are often performed on test
tracks or public roads, and thus gives a more realistic picture of the rolling resistance than
the drum measurements.

There exists a variety of trailer methods, each with an individual measurement con-
cept. One of the first systematic reviews of existing measurement techniques was con-
ducted in the MIRIAM project in 2014 (Sandberg et al., 2012; Zoller, 2014). In a follow-up
study from 2016, the repeatability of a series of different methods was investigated (Lédée,
2016). One of the main conclusions was that the methods showed an acceptable ability
to repeat results obtained within the same day, but a poor ability to repeat results across
different days (7-25 % deviation). Severe inconsistencies were found when comparing
across methods (up to 40 % difference) (Sandberg et al., 2012; Lédée, 2016). The results of
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the study emphasizes the difficulty of in-situ measurement of rolling resistance.

All trailers included in the study measure rolling resistance for passenger cars. Only
a few methods for in-situ measurements of heavy vehicle rolling resistance exist and are
presented in Zoller (2014). This includes the IPW rolling resistance trailer developed by
IPW Automotive GmbH. Here an external trailer is loaded with weights to have approx-
imately 9 t on the front and rear axle respectively and is towed behind the truck. The
overall longitudinal force between the truck and the trailer is measured and from this, the
rolling resistance is calculated. Another approach is to install a test wheel in the center of
a semitrailer. This is done in the IPW rolling resistance semitrailer and the IKA (Institute
for Automotive Engineering, RWTH Aachen University) semitrailer "FaReP". The desired
test tire can be placed in the specialised holder and the horizontal and vertical forces are
measured using a non-rotation force transducer.
Common for all trailer methods is that the influence of air drag and possible longitudinal
gradient of the road have to be eliminated. The air drag is often dealt with by making the
measurements at low speed (< 25− 30 km/h).

2.1.3 Coast down

In a coast down measurement, a vehicle is accelerated to some speed and then put into
neutral gear after which it will decelerate. During the deceleration different parameters
such as speed, time and surface texture are monitored. By fitting these to a mathematical
model, the rolling resistance can be calculated (Sandberg et al., 2011b; Andersen et al.,
2014). The advantage of this method is that it does not require a lot of specialized equip-
ment, like the trailer methods described above. However, there is a lot of uncertainties
involved and what is measured is not just the rolling resistance, but rather the overall
driving resistance.

2.1.4 Fuel consumption test

In a fuel consumption test, the overall fuel consumption of the vehicle is measured while
driving. This is then used to compare rigid and flexible pavements, under the assumption
that for the flexible pavement there will be an energy loss due to the viscoelastic behaviour
of the asphalt layer. Whereas for the rigid pavement, which consists of concrete slabs, it
is assumed elastic and thus there is no energy loss due to deformation of the pavement
(Balzarini et al., 2018). This means that, assuming all external parameters are the same,
the difference between the two surfaces is the contribution from the structural rolling
resistance loss. Similar to the coast down method, this method has the advantage that
it is easy to perform, as it does not demand a lot of specialized equipment (Sandberg
et al., 2011b). However, they are both very general measurements that does not directly
say anything about rolling resistance, but provide information about all forces resisting
motion of the vehicle. In order to calculate the rolling resistance, either a mathematical
model or some physical assumptions have to be used. And these could involve a lot
of unknown parameters, resulting in uncertainties. On the other hand, the interest is in
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some situations not in the specific rolling resistance, but in the overall energy cost of the
vehicles. In these cases, the methods might be sufficient.

2.2 Physical measures representing rolling resistance

Rolling resistance can be expressed as the rolling resistance force FRR or the dissipated
energy due to rolling resistance PRR depending on the situation. The two are connected
through the relation:

PRR = vFRR, (2.1)

where v is the driving velocity in [m/s]. In the following, we will use the term rolling
resistance loss about PRR and rolling resistance force about FRR.

Studies suggest that an approximately linear relationship exists between rolling re-
sistance force and the wheel load FL (Sandberg et al., 2011b). This has given rise to the
dimensionless rolling resistance coefficient, given as

CRR =
FRR

FL
. (2.2)
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Chapter 3

New method for measuring the total
rolling resistance - in theory

We aim to develop a method for measuring the overall rolling resistance of a truck while
driving. The method is based on measuring the longitudinal deformation of the tire axle
and subsequently correlate this to the overall rolling resistance. In this chapter, the theo-
retical considerations about how longitudinal axle deformation is correlated with rolling
resistance is given. In chapter 4, the experimental design for measuring the longitudinal
axle deformation is described as well as the calibration procedure developed for the setup.
Through a set of systematic measurements presented in chapter 5, a temperature depen-
dence in the setup was found and an improved setup was developed. The improved
setup revealed the need for further understanding of the temperature dynamic in the axle
during driving before reproducible measurements of the rolling resistance can be made.

3.1 Force and momentum balance in the axle system

In the the ideal case of pure rolling, a stiff tire is driving on a stiff pavement in the x di-
rection (fig. 3.1a). The wheel has two movements; translational velocity (v) and rotational
velocity (ω). In this case, the rolling condition states that

v = rω (3.1)

where r is radius of the tire.
For the tire to move in the x direction, there has to be a force in the opposite direction

at the point where the tire and surface are in contact. This is called the skid resistance and
if this is not present, the tire will slide on the surface instead of move forward.

If a tire and a pavement are subject to an external load (FL), both elements will be
deformed and the interaction between tire and pavement is not happening in a point but
over a surface. As a result, the normal force acting opposite the load is not a point force,
but distributed over the contact area. For a stationary tire (fig. 3.1b), the normal force
profile is symmetric around the center of mass of the tire, since there is no movement in
the vertical direction, |FL| = |Fn|.
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(A) (B) (C)

FIGURE 3.1: A) Ideal rolling of a stiff tire on a stiff pavement. B) Deformed
stationary tire on a deformed pavement. When there is no motion, the nor-
mal force profile Fn is symmetric around center of mass. C) When the tire
is moving, the normal force profile becomes asymmetric and a moment is

created around the y axis, τRR.

For a tire in motion however, the normal force profile is shifted and act asymmetric
around the center of mass (fig. 3.1c). This results in a situation where FL and the z com-
ponent of the normal force Fn is not located at the same x position, and consequently a
moment around the y-axis, τrr, are created. τrr acts in the opposite direction of ω and is
called the rolling resistance, as it resists rotation of the tire.

We now consider the forces in the tire-axle-suspension system for which we aim to
measure the rolling resistance. In the experimental setup, the longitudinal deformation of
the rear-end tire axle is measured. The rear-end tires is freely rotating, which simplifies the
situation as input from the engine does not affect the rotation but only pulls in the tire axle.
The tires are attached to the rear-end axle, which is then attached to the trailer through
the suspension system (fig. 3.2a). The tire axle bends when the vehicle is in motion as the
trailer is pulling it forwards through the suspension system, while the rolling resistance
makes the tires oppose movement.

The force at which the trailer is pulling the axle (in the x-direction) is denoted Fpull .
If we assume that the vehicle is driving at constant velocity v, no acceleration is present
and as a result, Fpull is counterbalanced by an opposite directed longitudinal force, Flong
(fig. 3.2b). This opposing force is often used to illustrate the rolling resistance force as
it counteracts movement of the vehicle. However, when observing the system from the
side (fig. 3.2c), it is not trivial at which point the force should be originating, as it is a
sum of various contributions. Rather than considering the rolling resistance through this
longitudinal force, we consider the moments created in the tire.

As sketched on figure 3.2c, Fpull is acting in the z location equal to the axle. In addition,
the horizontal component of the skid resistance is acting in the z location corresponding
to the place where the tire touches the pavement, located a distance h from the axle. As a
result, a moment around the y axis τpull is created, making it move forward. The moment
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(A) (B) (C)

FIGURE 3.2: Sketch of the tire-axle-suspension system of a vehicle seen
from different angles. In the vehicle used for the measurements, the trailer
is connected to the axle through a suspension system, here illustrated as a
spring-damper system. The vehicle is driving in the positive x direction. A)
The system seen from behind the trailer. B) The system seen from above. C)

The system seen from the side.

can be expressed as a function of the pulling force and distance h,

τpull = Fpullh. (3.2)

Assuming constant speed, and thus constant angular velocity, the sum of moments
around the y-axis must equal zero. In the clockwise direction, only the moment τpull
acts. In the counterclockwise direction, all moments resisting rotation of the tire acts. We
divide the counterclockwise moments into the rolling resistance τRR and all other possible
moments acting counterclockwise denoted by τb.

τpull = τrr + τb. (3.3)

In an experimental setup, such moments could originate from the bearings inside the
wheel.

The dissipated energy in a rotating system is given by the moment and angular veloc-
ity, and thus we can find the rolling resistance loss as

PRR = τRRω = (τpull − τb)ω. (3.4)

Using equation (3.2) and (3.1) gives

PRR = Fpullh
v
r
− τbω. (3.5)
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If we assume that the deformation of the tire is small, then h = r and we get

PRR = Fpullv− τbω. (3.6)

Neglecting the energy loss in the bearings, the rolling resistance loss can be found as

PRR = Fpullv.

3.1.1 Measuring Fpull through strain gauges

Above we derived how the rolling resistance loss PRR can be found from the pulling force
acting on the axle, Fpull . When the vehicle pulls in the tire axle, it results in a bending of
the axle which can be measured by use of strain gauges.

A strain gauge is a measuring device that explores the strain-resistance relationship
of electrical conductors (Hoffmann, 2017). The gauge is a small electric conductor which
is glued to an object. When the object is deformed, so is the gauge. When the object,
and thus the gauge, is stretched the resistance in the gauge will increase and when it is
compressed, the resistance will decrease. The technical details about the strain gauges
used in the experimental setup is described in detail in section 4.1.

The strain gauges are mounted such that they measure the longitudinal strain of the
axle close to the tires. This means that losses in the suspension are not included in the
measurements. Through a calibration process (explained in section 4.3), the measured
deformation of the axle is correlated with the applied force Fpull and from this PRR is
calculated.

3.1.2 Moment in the axle - how we measure τb

In order to get the best estimate of the rolling resistance loss, any contribution from un-
related counterclockwise moments should be removed. We speculate that the biggest
contribution to the term τb is energy losses in the bearings. The contribution from the
bearings is accounted for by measuring the twisting of the tire axle.

As we measure on a freely rotating tire, any twisting of the axle will be due to resis-
tance in the bearing. This creates a moment around the y-axis (thus the axle direction)
and the axle is twisted. This effect is measured using a set of strain gauges mounted
perpendicular to the axle direction.



19

Chapter 4

New method for measuring the total
rolling resistance - in practice

In the previous chapter, we described how the rolling resistance loss of a non-driven
wheel on a truck can be correlated with the longitudinal pulling force on the axle. The lon-
gitudinal pulling force is measured by use of strain gauges. In this chapter, background
information about strain gauges and the technical information about the measurement
setup are presented, followed by the calibration routine of the equipment.

4.1 Strain gauges

The following section is based on information from Hoffmann (2017).
The strain gauges used to measure the deformation of the tire axle are electrical resis-

tance strain gauges. These types of strain gauges are used to measure the applied stress on
an object based on its deformation. They exploit the relation between electrical resistance
and strain in an electrical conductor, which means that the deformation of the conductor
can be found by measuring the change in electrical resistance. If the gauge is mounted
on top of an object, and we assume that any deformation of the object is transferred to
the gauge, then the measured change in resistance in the strain gauge can be converted to
strain of the object. Assuming small deformations and an elastic material, the measured
strain ε of the object is related to the applied stress σ on the object by use of Hooke’s law,

σ = Eε. (4.1)

Where E is the Young’s modulus of the object material.
This type of strain gauge was invented in the late 1930’s by Arthur Claude Ruge and

quickly became popular as they are light and thin, allowing them to be glued on to the
measured object. This ensures that the strain is transferred without loss.

On figure 4.1 a sketch of a strain gauge is shown. It consist of a carrier metal with a
measuring grid of conducting material on top. The measuring grid ends in two connec-
tions where wires can be connected. When exposed to mechanical stress, such as tensile
or compression forces, the resistance of the electrical conductor used for the measuring
grid will change.
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a) carrier metal

b) measuring grid

c) connections

a b c

FIGURE 4.1: Strain gauge. It consists of a carrier metal with a measuring
grid of conducting material on top. The measuring grid starts and ends in

connections where wires can be connected.

Temperature effects

When choosing a material for the strain gauges, a metal that exhibits a low or no tempera-
ture dependence in the electrical resistance is typically chosen in order to reduce temper-
ature effects. However, there will still be some. Temperature effects on the strain gauges
can be divided into three categories;

1) effects due to high temperature level,

2) effects due to variations in temperature during the measurement,

3) thermal drift.

High temperature levels can affect the materials used for mounting of the strain gauges
to the object, and thus how well it binds to the object measured on. This might influence
how well strain of the object is transferred to strain of the gauge and result in a measure-
ment error.
Fluctuating temperatures during the measurement mainly affect the offset of the strain
gauge, which is the signal that the strain gauge gives when there is no deformation. The
offset is determined through a calibration process, however if it changes as a function of
temperature during the measurement it can give rise to an systematic measurement error.
Thermal drift is a non-reversible process primarily caused by micro-structural changes or
oxidation of the measuring grid. This affects the offset measurements.
There are different actions one can use to counteract the temperature effects. One is to
make frequent calibrations of the system. This will compensate for potential thermal drift.
Another way the temperature effects can be compensated is through the structure of the
measuring circuit.

When the strain gauges are mounted on an object, it is placed in a measuring circuit.
For accurate measurements a Wheatstone bridge circuit is used. Such a circuit is illustrated
on figure 4.2.

The fundamental idea of a Wheatstone bridge circuit is that four resistances R1 − R4
are placed with two on each side of the object. The resistances are connected through leads
and in points 2 and 3, the bridge excitation voltage Vs is connected. This is where the volt-
age is applied to the system. In points 1 and 4, the bridge output voltage V0 is placed
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FIGURE 4.2: Wheatstone bridge circuit. The resistances R1-R4 is connected
through leads. In points 2 and 3 the bridge excitation voltage Vs is con-
nected. In points 1 and 4, the bridge output voltage V0 i placed and thus

the measurement signal is recorded here.

and hence the measurement signal is recorded here. When no deformation is present, the
bridge is in balance which means that R1

R2
= R3

R4
and V0 = 0. But when the object on which

the bridge is mounted is deformed, the bridge will be unbalanced due to the difference in
voltage from the different resistances Rn.

The Wheatstone bridge circuit design exists in various versions, where one or more of
the active strain gauges are replaced with bridge completion resistances. This is known
as a quarter bridge (only R1 is an active strain gauge), a half bridge (R1 and R2 is active
strain gauges), a diagonal bridges (R1 and R3 is active strain gauges) or a full bridge (all
resistances are active strain gauges).
The advantage of a full bridge with respect to temperature effect is that the strain gauges
are placed in close distance of each other, which means the thermal effects on connecting
leads are very small. Furthermore, the temperature effect from the object in the form of
thermal strain is affecting all four strain gauges in the same way, and the influence on the
bridge unbalance will be small. Thus, it is said to have a good temperature compensation.
However, if both sides of the bridge is not subject to the same thermal effect, e.g. if there
is a temperature difference in the object measured on, this can create an difference in
resistance and result in measurement error.

4.2 The measurement setup

The measurements are conducted using a full size truck trailer, shown on figure 4.3. Inside
the trailer, around the rear-end axle, a beam with Doppler lasers is mounted to measure
the pavement deflection underneath the right rear-end tire during driving. This technol-
ogy is used in part III of this thesis to measure the structural rolling resistance and is
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explained in details in chapter 8. The measurement trailer will be referred to as the TSD
trailer in the following.

In addition to the Doppler lasers, the trailer is equipped to measure the following
other quantities (only equipment related to this project are listed):

• The driving velocity is measured using an odometer located behind the rear-end
tire.

• Air and road temperature is measured continuously. The road temperature is mea-
sured using infrared lasers mounted close to the right tire, and thus this measures
the road surface temperature.

• The driving velocity is controlled by cruise control in order to maintain a constant
driving velocity.

• Adjustable loads.
The trailer has an external weight system such that two external weights on ∼6
and ∼1 tonnes can be added to the undercarriage. By using these, we can obtain
four different axle load configurations ranging 6-10 tonnes (3-5 tonnes on each tire).
The absolute weight of the truck may vary from day to day, as equipment inside
the trailer is moved in and out of the trailer. Furthermore, the tire load on the left
and right tire is not the same, as equipment inside the trailer is located on top of
the right tire. The exact axle load in both sides is measured continuously during
measurements by use of vertical strain gauges.

• Temperature of the rear-end axle.
Through systematic analysis of the initial data, we found indications that the tem-
perature of the axle changes during the measurements, to a degree where it affects
the measurements. To account for temperature differences a temperature sensor was
mounted on the right hand side of the axle close to the strain gauges. The temper-
ature sensor measures the axle temperature with a frequency of 384 Hz and thus
provides a well resolved signal of axle temperature as a function of time.

4.2.1 Strain gauge setup

For this project, we have mounted three measuring circuits in each side of the rear-end
tire axle. Using these we measure vertical bending strain, horizontal bending strain and
torsion strain. On figure 4.4, a schematic sketch of the tire axle is shown with the location
of the strain gauges inserted. As seen they are placed close to the tires, in between the tire
and suspension attachment.

The system of strain gauges for vertical bending strain are mounted on top and bot-
tom of the axle, and the system of strain gauges for the longitudinal bending strain are
mounted in front and behind the axle compared to driving direction. Both are oriented
such that they measure bending along the axial direction. The system of strain gauges
that measures the torsion strain are oriented such that the active direction of the strain
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FIGURE 4.3: The Traffic Speed Deflectometer vehicle used in this study.
Strain gauges are mounted on the rear-end axle.

gauges are perpendicular to the axle direction. As a result, when the beam experiences
torsion, they will be stretched or compressed.

Each strain gauge circuit is placed in a full Wheatstone bridge configuration with two
strain gauges on each side of the axle. The strain gauges are glued to the axle and then
covered with a coat consistent of several layers in order to protect them from both water
and mechanical damage. The full Wheatstone bridge circuit ensures a high sensitivity to
strain as well as it minimizes effect of temperature.

When reporting raw strain gauge signals, we use the unit least significant bit, lsb. This
is the output when transforming the analog strain gauge signal into a digital one.

More in depth details about the measurement system, the mounting of the strain
gauges to the axle and the considerations that has been involved in this process is not
within the scope of this thesis and will not be covered here.

4.3 Calibration procedure for strain gauges

In order to convert the measured electrical resistance in the strain gauges to applied load
on the axle, a calibration process has been developed for each type of strain. Calibra-
tion procedure for the vertical strain gauges were established before this project started,
whereas procedures for longitudinal and torsion strain gauges were developed in this
project. The procedures depend on each other and described below.

4.3.1 Vertical strain gauges

The vertical strain gauges are calibrated using the adjustable loads and a specialized
weight which can measure the weight underneath the tires.

A series of different loads is applied to the axle and the vertical strain signal is mea-
sured simultaneously. An example of the calibration procedure is seen on figure 4.5a. On
figure 4.5b, a plot of the measured strain signal as a function of the applied load is shown.
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strain gauge

suspension system

driving

direction

FIGURE 4.4: Rear-end tire axle seen from above. The strain gauges are lo-
cated in between the tires and the suspension system, marked with red.
Each strain gauge circuit is placed in a full Wheatstone bridge configura-
tion with two strain gauges on each side of the axle. This ensures a high

sensitivity to strain and minimizes the effect of temperature.

A linear relation between load FL and vertical strain gauge signal Gv is found,

Gv = αFL + β. (4.2)

α and β will vary over time due to drift in the system, and consequently, this procedure
is conducted regularly to get a proper calibration of the equipment.

4.3.2 Longitudinal strain gauges

For the longitudinal strain gauges, a linear relation between strain and load is assumed.
As a result, a linear relationship between the measured strain gauge signal Gl and the
applied pulling force is assumed.

Gl = αFpull + γ (4.3)

The slope α is assumed to be the same as for the vertical strain gauges, and thus is
reused from the vertical calibration process.

The offset γ is found by measuring the strain signal when the pulling force is zero.
This is done by having the stationary TSD trailer on level ground with no brakes pulled.
On figure 4.6, a plot of the longitudinal strain vs time for the calibration procedure is
shown. The truck starts in a stationary position, is then moved a few meters forward,
stopped and backed up. The procedure is repeated 2-3 times. In figure 4.6, the stationary
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FIGURE 4.5: The vertical strain gauges are calibrated using the adjustable
loads and a specialized weight which can measure the weight underneath
the tires. A) The vertical strain gauge signal Gv is measured while changing

the axle load. B) A linear relationship between Gv and the axle load FL.

positions corresponds to the marked areas with constant signal and γ is determined as
the average value of these.

4.3.3 Torsion strain gauges

The torsion strain gauges requires calibration to correlate a given torsion in the axle τ
with the corresponding strain gauge signal GT. In order to do so, we exploit that when
the suspension is pulling in the axle, it creates a moment as it is not attached directly on
the horizontal plane. This moment can be written as

τ = F̄pull × raxle, (4.4)

where raxle is the radius of the tire axle. Assuming that the pulling force acts perpendicular
to the axle this becomes

τ = Fpullraxle. (4.5)

We conduct a measurement where the axle is forced to twist. This is done by having
the rear brakes pulled and moving the truck forwards and backwards. This means that the
trailer/suspension system will be pushing and pulling the axle, forcing a twisting of the
axle. The corresponding pulling force is measured using the longitudinal strain gauges.
A linear relation between Fpull and the torsion strain gauge signal GT is found (figure 4.7).

Fpull = aGT + b, (4.6)

τ = raxle(aGT + b). (4.7)
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Chapter 5

Axle deformation data

5.1 Preliminary measurements

Four series of preliminary measurements was made at Kystholmen, Copenhagen. For
each series, measurements was made at 30, 45 and 60 km/h and each measurement was
repeated three times in order to test reproducibility. The order of driving velocities is
mixed between the different series in order to avoid systematic biases (see tab. 5.1 for an
overview).

For each measurement in the series, a time series of PRR is obtained over approxi-
mately 2 km. A vital assumption in the derivation of PRR is that the measurements were
conducted under constant driving velocity. For this reason, the measurements are cut-off
such that only data under constant driving velocity was used (fig. 5.1a). The different
measurements can be compared, either within a measurement series or across measure-
ment series, in the form of time series (fig. 5.1b) or using an average value (fig. 5.1c).
Using the three repeated measurements at same driving velocity, one average value for
the particular driving velocity was obtained. The standard deviation of the three repeated
measurements are illustrated through error bars (fig. 5.1c).

5.1.1 Reproducibility of the method

Before the method can be used to state anything conclusive about the rolling resistance,
reproducible values of PRR have to be obtained. There are two types of reproducibility
to consider; reproducible results between measurements conducted on the same day, and
between measurements conducted over several days. The latter has been found difficult
for other methods (Sandberg et al., 2012).

Initial analysis of data shows poor reproducible for the three repeated measurements
at same driving velocity, conducted in the same data. This was seen for data in series
B, C and D. These measurement series are characterised by not having subsequent mea-
surements of the same driving velocity, but alternate between velocities. The effect of the
order at which measurements is collected is investigated by plotting the average value for
each data set as a function of time from the first measurement (fig. 5.2a).
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removes the high frequency part of the signal, and thus only shows low
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der to compare across different measurement series, an average of the time
series is obtained for each measurement. Furthermore, an average across
the three repeated measurement sets can be found, with the standard devi-

ations illustrated through error bars.
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TABLE 5.1: Four preliminary measurement series was conducted with
changing order of driving velocity. The order for each measurement A-D is

listed here.

# Measurement A B C D

1 60 km/h 60 km/h 60 km/h 30 km/h
2 60 km/h 45 km/h 45 km/h 45 km/h
3 60 km/h 30 km/h 30 km/h 60 km/h
4 45 km/h 60 km/h 60 km/h 30 km/h
5 45 km/h 45 km/h 45 km/h 45 km/h
6 45 km/h 30 km/h 30 km/h 60 km/h
7 30 km/h 60 km/h 60 km/h 30 km/h
8 30 km/h 45 km/h 45 km/h 45 km/h
9 30 km/h 30 km/h 30 km/h 60 km/h
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FIGURE 5.2: Four preliminary measurement series of the rolling resistance
loss PRR were made in order to study the reproducibility of the method.
A) PRR as a function of time from first measurement. A clear underlying
systematic trend was seen in data. B) Data is shown in form of longitudinal
strain gauge signal normalized with the first value. This was done in order
to compare data without introducing errors from the calibration process.
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Figure 5.2a reveals an underlying systematic trend in data, in which the signal is de-
creasing over time. The trend seems to be similar for measurement B, C and D. Further-
more, we find that the calibration procedure is not sufficient, as we get negative values
which is non physical. The calibration procedure is performed before starting the mea-
surements, t < 0, and thus it does not capture the time dependent features found in data.
In order to study the phenomenon without any influence of the calibration process, the
raw Strain gauge signal is plotted as a function of time from the first measurement (fig.
5.2b). The signal is normalized with the value of the first measurements to enabling com-
parison across measurement series. A clear decreasing trend in the strain gauge signal is
found.

The preliminary analysis of data indicates an underlying systematic measurement er-
ror. The origin of this error is speculated to arise from the following sources:

• Drift in the strain gauge system.
This is investigated through static measurements where the sensors is turned on
over a long period of time (∼ 16 hours). Some drift was found in the system, but
not in the order of magnitude as seen in figure 5.2b and we hypothesize that frequent
calibration of the strain gauges could eliminate this.

• Losses associated with the suspension system.
As the suspension system is located above the axle, we assume that effects in this
do not affect the measured axle deflection. This assumption might not be valid and
the influence of the suspension system was investigated by Fourier analysis of the
vertical strain gauge signals. Furthermore, an analysis of the behaviour of the sus-
pension system was made using simple spring-dashpot models. No obvious time
dependent behaviour was found in the vertical data or by the modelling. How-
ever, we found that a thorough analysis of the suspension system required more
elaborate modelling with nonlinear springs and dashpots. This approach was not
pursued further.

• Temperature effects in the system.
Temperature effects could arise from a number of places such as heating of the tires
while driving, effects in the bearings, increased axle temperature etc. The strain
gauge circuits were arranged in a full Wheatstone bridge which in theory should
minimize the effects of temperature. However, if the influence of temperature is un-
evenly distributed across the bridge or large temperature fluctuations is appearing,
this might influence the measurements. An experiment was constructed to investi-
gate the effects of temperature.

5.2 Temperature effects in the system

A preliminary study was made investigating how the temperature of the tire axle changes
during a set of measurements. The hypothesis is that when the truck decelerate, the brake
disks heat up and since these are mounted in extension of the end of the axle, this leads
to diffusing of heat into the axle. To investigate this hypothesis we measured the axle
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temperature manually with an infrared thermometer during series D (tab. 5.1). A conse-
quence of this is that the truck has to hold still while measuring and thus the axle temper-
ature is measured in between the data sets. However, this gives us an idea whether any
temperature changes is occurring in the axe and if so, an estimate of how big a tempera-
ture change is happening during the measurements.

On figure 5.3, a plot of the axle temperature as a function of time since first measure-
ment is shown, together with the longitudinal force. The temperature was measured both
in front and behind of the axle, in order to investigate if wind cooling effect on the axle cre-
ates a temperature gradient through the axle. Furthermore, the temperature of the brake
drum was measured as well as the air and road temperature for each measurement.

A large increase in the axle temperature was found, with an increase of approximately
30◦C. The measurement was performed a cold October morning, with an initial axle tem-
perature of approximately 4◦C (t=-2400 s) and thus the axle was expected to heat up while
driving from the Greenwood Engineering parking lot to the road section measured on.
However, a converging axle temperature was not seen as this increased monotonically
during the measurements. No big temperature change between the front and back of the
axle was observed.

Based on the preliminary investigation of axle temperature, we concluded that this
should be investigated further and a systematic experiment was designed to measure the
temperature dependence of the strain gauges.

5.2.1 Temperature dependence of the strain gauge signals

An experiment was made in order to establish if the strain gauges are temperature de-
pendent. In this, the tire-axle was heated as much as possible and afterwards the truck
was parked in a garage to cool down. The axle was heated up by doing a lot of acceler-
ation and braking with the vehicle, thus heating the brake disks. The axle temperature
was monitored while the axle cooled down. For this purpose, a temperature sensor was
mounted on the right side of the axle near the strain gauges, measuring the axle tempera-
ture continuously.

As the parked truck was stationary and no external forces were applied upon it, the
strain gauge signal was expected to be constant as a function of time. On figure 5.4a-c,
the strain gauge signal from the longitudinal, vertical and torsion strain gauges is seen
respectively. A clear non-constant behaviour was found. On figure 5.4d, the axle temper-
ature is shown as a function of time. The temperature started at an initial temperature of
42◦C and end at 20◦C.

The relationship between longitudinal strain gauge signal at no applied force Gl(Fpull =
0, T) and temperature were investigated and results are showed on figure 5.5. A second
order polynomial was found to fit the correlation well, giving the relation

Gl(Fpull = 0, T) = αT2 + βT + γ (5.1)

= −1.14T2 + 22.71T + 33976 (5.2)
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FIGURE 5.3: During measurement series D, the temperature of the tire axle
(top) and brake drum (middle) were measured manually in order to investi-
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FIGURE 5.4: An experiment was conducted where the axle is heated and
subsequently left to cool while the A) longitudinal bending strain, B) verti-
cal bending strain, C) torsion strain and D) axle temperature is measured.
As all other parameters is hold constant (no applied load) the dependence

in strain signal is due to temperature effects.
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FIGURE 5.5: A second order dependence between longitudinal strain gauge
signal Gl(Fpull , T) and axle temperature T is found when no pulling force is

applied.

In section 4.3.2, a linear relation between pulling force and strain gauge signal was
assumed, using coefficients that were not temperature dependent. However, this experi-
ment clearly illustrates that the offset is in fact are temperature dependent, and thus the
relation is

Gl(Fpull , T) = aFpull + Gl(Fpull = 0, T). (5.3)

A temperature increase from 7◦C to 32◦C , as seen on figure 5.3, results in a decrease
in offset value on ∆Gl(Fpull = 0, T) = −543 lsb. This is ∼1.5 % of an average offsets
calculated using the standard calibration procedure. Relating this to force (using a typical
scaling factor a= 0.12 lsb/N) gives

∆Fpull =

(
Gl(Fpull , T)− 1.14 · 322 + 22.71 · 32 + 33976

0.12

)
− (5.4)

(
Gl(Fpull , T)− 1.14 · 72 + 22.71 · 7 + 33976

0.12

)
(5.5)

= 4220N (5.6)

If we assume that the total rolling resistance is 1% of the load (∼ 5 tonnes), this cor-
responds to FRR = 490N. Thus, the errors introduced into the measured rolling resis-
tance due to temperature effects was almost 10 times as large as the quantity we aimed to
measure. This result depended on the specific calibration values obtained, but it clearly
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FIGURE 5.6: A linear correlation between vertical strain gauge signal and
temperature is found, given by Gv(FL = 0, T) = 6.8T + 34567.

showed that the temperature dependence was bigger than the rolling resistance signal we
were trying to measure, and thus can not be neglected in the described setup.

A similar analysis can be made of the vertical strain gauges. The relation between
strain signal and temperature is shown on figure 5.6. The axle was lifted from the ground
by several jacks such that the vertical load on the axle, in the end near the tires, during the
measurement was approximately 0 N. Thus, the temperature dependence found in figure
5.6 applies to the offset Gv(FL = 0, T),

Gv(FL = 0, T) = 6.8T + 34567 (5.7)

A change in temperature from 7◦C to 32◦C thus leads to a change in vertical force on

∆FL = −1416N. (5.8)

The vertical strain gauges are used to measure the dynamical or stationary load of the
truck. For the maximum load, the steady axle-load is approximately 49000 N, and thus
the influence of a jump in temperature of 25◦C is ∼ 2 % of this quantity. Consequently,
the influence of temperature on the vertical strain gauge sensors is small.

5.3 Test of simple temperature compensation

We aimed to test if the simple relation between strain gauge offset and temperature found
in equation (5.3) would be enough to compensate the measured PRR value for temperature
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effects. To do so, a set of measurements were made with the new setup on a highway
making three repeated repetitions at constant velocity of 80 km/t.

The axle temperature was found to increase steadily from 23◦C to 27◦C during the
measurements (fig. 5.7a). The measured longitudinal strain gauge signal is plotted on
figure 5.7b using a moving average filter. A clear difference between the first signal at
∼ 24◦C and the two subsequent signals was observed. Using the temperature dependent
relation between pulling force and strain gauge signal in equation (5.3), the strain gauge
signal was converted into pulling force and subsequently PRR. We chose to find PRR with
respect to a reference temperature Tre f =25◦C . In this case, the offset was given by

Gl(T, 0)− Gl(Tre f , 0) = α(T2 − T2
re f ) + β(T − Tre f ), (5.9)

m
Gl(T, 0) = Gl(Tre f , 0) + α(T2 − T2

re f ) + β(T − Tre f ). (5.10)

Consequently the temperature compensated rolling resistance power was found by

PRR =
Gl(T, Fpull)− Gl(Tre f , 0)− α(T2 − T2

re f )− β(T − Tre f )

a
v (5.11)

The resulting PRR is plotted on figure 5.8, with the average value of the three sig-
nals plotted to the right. We found that using a temperature compensated offset re-
sulted in better reproducibility. Taking the average of the three measurements yielded
PRR = −198.740± 2347 W.

The absolute value of PRR was clearly off, as this was found to be negative. This is
expected to be due to the fact that there was six month between the temperature depen-
dence measurement (fig. 5.5) and this measurements. As a result, drift in the system had
occurred and thus some unknown amount should be added or subtracted to the offset.
This error can be removed by making both calibration procedures close to the time of
measurement.

The standard deviation of the signal on the other hand, was not affected by a potential
underlying drift in the signal and thus this could be used to evaluate the reproducibility
of the method when we applied the simple temperature compensation. If the rolling resis-
tance was assumed to be 1% of the load, this would correspond to PRR = 10.889 W under
assumption of an driving velocity 80km/h and a load of 5 tonnes. Hence, the found devi-
ation in data was about 20% of the desired measured value. This means that the deviation
found in the signal across measurements was smaller than the desired quantity we aimed
to measure, and thus an improvement of the method. However, a standard deviation of
20% was believed to be bigger than the introduced changes in RR across different pave-
ments and thus further work on minimizing this is required.

The procedure was made for the vertical strain gauge signal as well, in order to investi-
gate what effect temperature compensation had on the calibrated signal. The temperature
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FIGURE 5.7: A) a set of measurements was made with the new setup on a
highway making three repeated repetitions at constant velocity of 80 km/t.
The axle temperature is monitored during the measurements and show a
steady increase. Grey lines show the axle temperature of the measurements
made in the reverse direction. B) The measured longitudinal strain gauge
signal as a function of distance for the three repeated measurements. A
moving average filter is applied to the signals in order to better compare

across measurements.
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can be used to evaluate the reproducibility of the method when we applied

the simple temperature compensation.
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FIGURE 5.9: The vertical strain gauge signal was converted to vertical force
using the temperature compensated offset found in equation (5.7). This was
done with respect to a reference temperature Tre f = 25◦C. To the right, an
average of the three signals and an overall average is shown. Compared
to the non temperature compensated method, a difference of −1.6% was
found. This indicated that temperature had no significant influence on the

method used to measure the vertical load.

compensated signal for the vertical force is seen on figure 5.9 and the average value is
FL = 48.672± 1.155 N. The difference between this and using the old calibration method,
which do not take into account temperature effects, is ∆FL = −758 N. Thus including
temperature effects gives a decrease in measured vertical force of −1.6%. From this we
concluded that temperature effects on the vertical strain gauge signal does not have a
significant influence on the method used for measuring the vertical load.
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Chapter 6

Summarizing conclusion

We set out to develop a new way to measure the total rolling of a truck. This was done by
using the correlation between deformation of the tire axle and the rolling resistance loss.
More specifically, we used the relationship between the force at which the trailer pulls
the axle (at constant velocity) Fpull and the dissipated energy due to rolling resistance PRR
given by

PRR = Fpullv. (6.1)

The pulling force Fpull was determined by measuring the deformation of the axle using
strain gauges. A measurement setup was developed in which we measured the vertical
bending strain, horizontal bending strain and torsion strain simultaneously. Furthermore,
a calibration procedure was developed for correlating the measured axle deformations to
the vertical force FL, the pulling force Fpull and the axle torsion τ respectively.

A set of four preliminary measurement series was conducted in order to evaluate the
reproducibility of the method. By analysing these, an underlying systematic measure-
ment error was found which decreased the longitudinal strain gauge signal in a similar
manner across the four measurement series. It was concluded that this was due to tem-
perature effects in the system due to heating of the tire axle. An improved version of
the setup was developed including a temperature sensor measuring the axle temperature
near the strain gauges.

The influence of temperature on the strain gauges was studied by heating the axle
and then measure the strain gauge signals as well as the temperature over time. This
study showed that the gauges are highly dependent on temperature. For the longitudi-
nal strain gauges, a second order polynomial dependence was observed between strain
gauge signal and temperature. Based on this, a simple temperature compensation method
was derived and applied to a set of measurements. We found that applying this simple
temperature correction results better reproducibility, however we measure an absolute
value which can not be used. Thus, if this has to be applied, a temperature calibration
should be made shortly before or after the measurements in order to counteract for drift
in the system. Furthermore the standard deviation of the measurements was found to be
approximately 20% of the desired signal and hence a change in rolling resistance will be
impossible to measure accurately.
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The conclusions about the simple temperature compensation method was made based
on three repeated measurements conducted within a short time frame (∼ 20 min) and as
a consequence, the temperature difference were only around 4◦C. The preliminary mea-
surements had a time frame of hours, resulting in a temperature increase of 25◦C . Thus
the longer a measurement series, the bigger a temperature change is seen. and hence the
simple method should be tested for such large temperature changes as well.

It was hypothesised that the increased temperature of the axle originates from the tire
brakes which where found to become very hot (around 200◦C ) during the measurements.
As a consequence, we suspected that the increase in axle temperature was not uniformly
distributed over the axle, but a temperature gradient in the axle exists. This was believed
to arise not only from the sides and inwards, but also from the front of the axle to be-
hind. The latter was due to cooling of the front of the axle due to aerodynamic effects. If a
temperature gradient was present in the axle, this would introduce an error in the strain
gauge signal as the Wheatstone bridge only compensates for uniformly distributed tem-
perature effects (all strain gauges in the circuit would experienced the same temperature).
A way to study the temperature dynamics in the axle is to apply several temperature sen-
sors located both in the front and behind of the axle as well as close to and far away from
the brake drums.

In conclusion, a proper understanding of the temperature effects in the axle system is
needed in order to make reproducible and applicable measurements of the rolling resis-
tance. For future work, the temperature effects should be studied in more depth in order
to develop a better temperature compensation method. As the effects due to rolling re-
sistance we aimed to measure are very small, the method needs to be able to reproduce
measurements accurately before any conclusions are made. The experimental setup also
includes measurements of the torsion in the axle which in the long term can be used to
subtract contribution from the bearings and thus make the estimate of PRR more accurate.
However, these measurements are also affected by temperature and thus this problem
should be solved first.

A practical method for reducing temperature gradients within the axle, is to coat it in
an isolating material. This could create a more uniform temperature distribution within
the axle. Furthermore, initial heating of the axle and tires is recommended before begin-
ning the measurements. For measurements presented here, the truck had driven at least
10 km before and thus we would expect the tires and other components to have reached
some equilibrium temperature value. However, as seen on figure 5.7a, the axle tempera-
ture was steadily increasing and did not reach an equilibrium value within the time frame
of the presented measurements.

Lastly, we investigated the effects of temperature in the strain gauges measuring verti-
cal deformation. As the vertical load is a much larger quantity than the rolling resistance,
we hypothesised that the effects of temperature would be smaller. Using the correlation
between strain gauge signal and temperature, a calibration method including temperature
effects was developed. We found that the difference in calculated vertical force, between
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applying the original calibration method and the one which take into account temperature
effects was 1.6%. Thus, we conclude that temperature effects did not have a significant
effect on the measured vertical load.
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Part III

Measuring Structural Rolling
resistance
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Chapter 7

Structural rolling resistance

A pavement subject to a moving load will deform underneath it. If the pavement is vis-
coelastic, this deformation will result in energy dissipating into the pavement structure.
In order to maintain a constant driving velocity, the lost energy has to be compensated
through additional work from the vehicle engine (Louhghalam et al., 2014). The amount
of additional energy needed depends on the structure of the pavement and is called the
structural rolling resistance (SRR) loss.

Viscoelastic materials are materials which behaves both elastic and viscous at the same
time. They are characterized by having a time dependent relationship between stress
and strain. This means that the resulting strain to an applied load will depend on the
loading history and the frequency at which the loading is applied. Asphalt consist of
bituminous materials, which are known to be highly viscoelastic (Chupin et al., 2010). In
fact, most engineering materials behave viscoelastic to some extend, but they are often
represented as elastic for the sake of simplicity. The viscoelastic properties of a pavement
subject to a moving load are expressed through an asymmetric pavement deflection basin.
A simulated pavement deflection basin for a viscoelastic and purely elastic pavement is
seen on figure 7.1a. The center of the load is at x = 0 and due to the time delay in the
viscoelastic pavement response, the maximum deflection appears behind the load. As a
result, the tire is always driving on a uphill slope. This is illustrated by looking at the
pavement deflection slope (fig. 7.1b) in x = 0. As a result, the tire has to do work in
order to maintain a constant driving speed when driving on an viscoelastic pavement
(Flügge, 1975). Using this uphill slope notion, the SRR can be calculated directly from the
asymmetric deflection basin (Chupin et al., 2010; Balzarini et al., 2018; Chupin et al., 2013).

In this part of the thesis, we will present a newly developed method for direct mea-
surement of the structural rolling resistance. This method uses an already existing mea-
suring technology explained in section 8. Three sets of data has been collected through
the period of the project on which the newly proposed method is applied to calculate SRR.
The method was first proposed in Nielsen et al. (2020b) and it will be described in detail
in chapter 10.

7.1 State of the art

The subject of structural rolling resistance is investigated in the literature through indirect
measurements and numerical/analytical model studies.
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FIGURE 7.1: (a) Simulated deflection basin underneath a moving load for
an elastic (dashed line) and viscoelastic (solid line) pavement, and (b) asso-
ciated deflection slope for the elastic and viscoelastic pavement. The basin

is obtained using a numerical simulation explained later in this thesis.

Although SRR has been studied for decades, it has proven difficult to devise accurate
and robust ways of measuring it (Akbarian et al., 2012). There are two main reasons for
this. First of all, it is a very small quantity to measure. The viscous effects are manifested
through the asymmetric pavement deflection underneath the tire, which is of the order
of magnitude millimeters to micrometers. This is a small quantity compared to other
dimensions of a standard truck and is, as a result, difficult to measure with high enough
accuracy and reproducibility. Secondly, the effect from pavement structure is found to
be highly dependent on external parameters such as road temperature, vehicle speed,
pavement conditions, and so forth (Harvey et al., 2016). This makes it difficult to compare
measurements across studies.

Akbarian et al. (2012) gives a review of studies evaluating the correlation between
pavement deflection and fuel consumption. These types of studies compare fuel con-
sumption measurements on flexible (asphalt) and rigid (concrete) pavements. The un-
derlying assumption is that rigid pavements have little or no viscous losses and thus the
difference in fuel consumption between these types of pavements can be ascribed to the
viscous behavior of the asphalt (Balzarini et al., 2018; Zaabar and Chatti, 2014; Balzarini
et al., 2017a). Overall, the studies concludes that there are a difference in fuel consump-
tion between the two pavement types. However, the measured fuel consumption is quite
small and a high variability in the resulting change in fuel consumption was found. Fur-
thermore, the measurements are performed under different external conditions and thus
it is difficult to get a clear conclusion based on the measurements (Akbarian et al., 2012).

This illustrates very well the challenges that come with these types of measurements,
as external parameters such as temperature, wind etc can change from pavement to pave-
ment and in the end introduce errors when change in fuel consumption is calculated and
different pavements are compared. Nevertheless, these kind of measurements have the
advantage that they are easy to perform and give some kind of qualitatively insight into
the problem.
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As it is not possible to measure SRR directly, estimates of SRR typically involves some
kind of modelling process. Some studies are purely numerically/analytical, whereas oth-
ers use empirical results to calibrate the models or compare their numerical results. Data
used for calibration of models are often obtained using Falling Weight Deflectometer (FWD)
measurements. FWD is a non-destructive technology that is widely used to evaluate struc-
tural properties of asphalt pavements (Zhao et al., 2015). In short, the principle behind the
technology is to apply a stationary impulse load and then measure the resulting surface
deflection at different locations around the load (Gopalakrishnam et al., 2014). Through a
backcalculation procedure, characteristic structural parameter values can be estimated and
used to either calculate the given stress and strains in the pavement structure for analysis
purposes or as a basis for simulating pavement responses.

Another modelling approach is to develop a mechanistic founded model and through
this correlate material and structural parameters with the pavement deflection, and in
the end fuel consumption (Akbarian et al., 2012). In these studies, empirical results from
rheological measurements of bitumen mixes are used to gain information about the vis-
coelastic behaviour of asphalt.

There exist other measurement techniques with the purpose of assessing structural
pavement response. This includes e.g. in-ground sensors which can measure the defor-
mation, stress, temperature etc. (Di Graziano et al., 2020). To our knowledge, these have
not been used to evaluate the dissipated energy due to pavement deformation, and thus
we will not touch upon this further.

Theoretical analysis of the deflection of a structure subject to a moving load has been
reported in the literature since the 1960s. A pioneering study was made in Flügge (1975),
where the viscoelastic response of a Kelvin beam is analyzed, and the viscoelastic effects
reported to manifest themselves through an asymmetric deflection basin. When mod-
elling pavement response to a moving load, there are two overall frameworks in which
this can be done; a fixed or moving reference frame.

• The fixed reference frame is also called dissipation-induced pavement-vehicle interac-
tion. In this, the energy dissipation is evaluated as as a function of time in a finite
pavement segment as a load is moving by (Louhghalam et al., 2013). Thus the pave-
ment deflection is calculated for one (or more) observation points on the pavement
as the load moves past. This is illustrated on figure 7.2a. Examples on models in
this framework is Pouget et al. (2012); Coleri and Harvey (2017); Lee (2014). Here
the dissipated energy is calculated based on finite-element modelling of the pave-
ment segment.

• The moving reference frame is also called deflection-induced pavement-vehicle interac-
tion (Louhghalam et al., 2013). In this framework, a steady-state is assumed (con-
stant driving velocity) and the tire is considered to stay in the same place while the
pavement "moves" underneath it. In order to go from fixed to moving reference
frame the following coordinate change is applied, x = x′ − vt. The uphill slope
analogy explained above is set in a moving reference frame. Studies made in this
framework includes Flügge (1975); Akbarian et al. (2012); Akbarian and Ulm (2012).
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FIGURE 7.2: Interaction between a moving tire and the pavement surface
for A) fixed reference frame and B) moving reference frame. The figure is

inspired by figure 1 in Louhghalam et al. (2013).

The two methods are equal from a thermodynamic point of view, thus the predicted dis-
sipated energy is the same (Louhghalam et al., 2013). A comparison of the two methods
is found in Lee et al. (2018). In this thesis, we will focus on studies made in a moving
reference frame, as this can be compared directly to measurements made with the Traffic
Speed Deflectometer.
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Chapter 8

Traffic Speed Deflectometer

In this thesis, we used the Traffic Speed Deflectometer (TSD) technology to study the pave-
ment response underneath a moving load and to calculate the structural rolling resistance.
The TSD measuring principle was developed by Greenwood Engineering in 2004 and is
a nondestructive measuring method, meaning that it can be used to determine structural
characteristics of a pavement without damaging it. Essentially, it provides measurements
of the pavement deflection slope underneath the right rear-end tire while driving.

TSD measurements are conventionally used for continuous bearing capacity measure-
ments of the pavement, which are used within pavement management and currently 16
TSD’s exist around the world (Ferne et al., 2009; Nasimifar et al., 2020; Engineering, 2020).
Each of them have different features as they are continuously developed and refined. The
vehicle used for data collection in this thesis was the TSD 7 (fig. 8.1a), which belongs
to Greenwood Engineering and all technical details written here regards this specific ve-
hicle. In this chapter, the fundamental principle behind the measurement technology is
described. In the next chapter, the three main data sets which is the foundation for the
later analysis is presented.

8.1 The TSD principle

The main principle behind the TSD is to use Doppler lasers to measure the vertical pave-
ment velocity around the tire as the vehicle moves. From this, the pavement deflection
slope can be found and subsequently the pavement deflection. The TSD is a full size cus-
tomised truck and as a result, it can operate under realistic axle loads (10 tonnes) and
driving speeds. The trailer is the same as the one used in the experimental setup for mea-
suring total rolling resistance in part II of this thesis. Inside the trailer, a series of Laser
Doppler vibrometers are mounted on a rigid steel beam, pointing downwards towards the
pavement (Nielsen, 2019; Ferne et al., 2009). This is illustrated on figure 8.1b where a
sketch of the inside of the trailer is seen with the sensor beam arranged around the right
rear-end tire.

A Laser Doppler vibrometer measures the velocity of an object moving away or to-
wards it using the Doppler effect. Thus, it measures the frequency shift in the reflected
light beam that arise due to the instant velocity of the object. Using this, the lasers are
capable of measuring the instant velocity of the pavement while the truck is driving.
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(A)

(B)

FIGURE 8.1: A) Picture of the TSD 7 used to conduct all measurements in
this thesis. B) Technical sketch of the TSD trailer. Inside the trailer a series
of Doppler lasers are mounted on a rigid steel beam, pointing downwards
towards the pavement. Using these the pavement deflection slope is mea-

sured around the right rear-end tire.
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In order to remove effects from the vertical movement of the truck, a reference laser
is mounted 3.1 meters from the rear-end axle, where the deflection of the pavement is
assumed to be zero (red sensor on figure 8.2a).

In practice, it is not possible to mount the sensors without some angle with respect to
the beam. As this angle differs for the different sensors, a calibration procedure is applied
in order to subtract related effects from the measured signal. This procedure, as well as
more in depth technical details will not be described here as it is not within the scope of
this thesis.

The Doppler sensors are located in a line going through the right rear-end tire pair,
as illustrated on figure 8.2a. Note that the distance between the two tires on the sketch is
exaggerated compared to the real distance (64 mm). Having this location of the sensors
makes it possible to measure close to the center of the load. However, due to the presence
of the tire axle, it is not possible to measure directly underneath the load. We assume
that the two tires are so close together that they can be considered as one, and that we
measure in the center-axis of the load (meaning that the load on the left and right side of
the center-axis is symmetric). How valid this assumption is, and if it affects the resulting
conclusions, is discussed in section 10.5.

(A)

dz
dx

Doppler laser

x

z

dz
dt

dx
dt

(B)

FIGURE 8.2: (A) Top view sketch of the TSD. Nine Doppler sensors are
located in between the right rear-end tire pair indicated with blue dots. The
measured vertical pavement velocity is adjusted for vertical movement of
the truck due to, e.g., unevenness in the road, by a reference sensor located
3.1 m from the rear-end axle and indicated with a red dot. Note that the tires
in the tire-pairs appear further from each other on the sketch than they, in
fact, are (64 mm). (A) The vertical pavement velocity ( dz

dt ) in a given point
is measured using a Doppler laser. The deflection slope in that point ( dz

dx )
corresponds to the slope of the tangent going through the point (grey dotted
line) and can be found by dividing dz

dt with the horizontal driving speed, dx
dt .

Figure is taken from Nielsen et al. (2020b).

From the measured vertical pavement velocity, the pavement deflection slope, dz
dx , at

the sensor point can be calculated. This is done by dividing the vertical pavement velocity
( dz

dt ) with the driving velocity ( dx
dt )
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∂z
∂x

=
∂z
∂t
∂x
∂t

, (8.1)

as illustrated in figure 8.2b. The driving speed, dx
dt , is measured using a odometer

located behind the right rear-end tire pair.
Thereby the measurements obtained from the TSD are measures of the pavement de-

flection slope around the load. The associated pavement deflection basin can be found by
use of a model (fig. 8.3).

The TSD is equipped with Doppler lasers both in front and behind of the right rear-
end tire, see figure 8.2a. This enables us to capture the viscoelastic effects in form of the
asymmetric deflection basin (fig. 8.3), which is not captured when pavement deflection
only is measured in front of the load. As this specific TSD vehicle is used continuously for
research and development, the number of sensors and their locations is not the same for
all measurements used in this thesis. The specific sensor locations are listed together with
data.

The sensors in the TSD collect data at a sampling frequency of 250.000 samples per
second, thus we obtain almost continuously measurements of the pavement deflection
slope as a function of time or distant driven. In our case, such a high resolution in data is
not needed and thus data used here is averaged over 10 meter unless it is stated otherwise.



8.1. The TSD principle 55

x

d
z
/d

x

x

z

center of load

Deflection slope

Deflection basin

Model

FIGURE 8.3: From the measured vertical pavement velocity the pavement
deflection slope, ∂z

∂x , at the sensor point can be calculated. The associated
pavement deflection basin can be found by use of a model. As the TSD is
equipped with Doppler lasers both in front and behind of the right rear-end
tire, the asymmetric behaviour of the deflection basin caused by viscoelastic

effects can be measured.
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Chapter 9

Traffic Speed deflectometer data

In this chapter, data used for analysis in the remaining part of the thesis will be presented.
Overall, three series of TSD measurements have been collected during the project. Two of
these are measured on the same road segment in Måløv, Denmark, approximately 1 year
apart and the last is measured in Muonio, Finland. For simplicity, they will be referred to
as Måløv data and Finland data.

The underlying aim behind the measurements in the two locations was different, and
thus the data series and treatment of these are also different. For data in Måløv, the aim
was to look at the pavement deflection over a longer distance and at different temper-
atures. This enabled us to investigate spatial variations in the pavement deflection and
have enough data sets to say something general about underlying trends. Furthermore,
having a spatial resolution in the signal at two temperatures gave us the possibility to
investigate the impact of temperature as a function of pavement structure. The two data
series measured in Måløv are presented in the section Spatial variations and temperature
dependence (Måløv data) (sec. 9.1).

The Finland data, on the other hand, was collected in order to study pavement prop-
erties at different velocities and temperatures. Thus, we investigate a specific pavement
structure over a wide range of velocities and temperatures. These data are presented in
Temperature and driving velocity dependence (Finland data) (sec. 9.2).

The different measurements was collected in different steadies of the project and con-
sequently, they have been processed in different amount. Data presented in 9.1.1 was
obtained within the first year of the project and as a result this data has been the base of a
thorough sensitivity analysis and model study. The result of which is included in Nielsen
et al. (2020b) and Nielsen et al. (2020a).

9.1 Spatial variations and temperature dependence (Måløv data)

Two series of TSD measurements were conducted on a road segment in Måløv, Denmark.
The first in spring 2018 with a road temperature of ∼18◦C and the latter in the summer
of 2019 with a road temperature of ∼ 35◦C. Both measurements were made on a 9.7 km
road segment and three subsequent measurements were conducted in order to evaluate
the reproducibility. The axle load was 10 tonnes, approximately 5 tonnes in each side.
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9.1.1 Measurements at 18◦C

For this data series, the sensor position relative to the center of the tire axle (in meters)
was

Sensor position = [−0.366,−0.269,−0.167, 0.163, 0.260, 0.362, 0.662, 0.964, 1.559]. (9.1)

As the TSD follows the traffic flow, the exact driving speed changes during the mea-
surements. On average it was between 50-60 km/h, with the exact driving speed being
recorded during all measurements. The velocity profile is seen on figure 9.1a. The mea-
surements were conducted under almost constant air temperature of ∼14◦C and road
temperature of ∼18◦C . The temperature profiles are seen on figure 9.1b and 9.1c respec-
tively.
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FIGURE 9.1: A) The driving velocity is measured using a odometer located
behind the right rear-end tire pair. As the TSD follows the traffic flow,
the driving velocity varies during the measurement. B) The road surface
temperature is measured using an inferred laser and is found to be sta-
ble ∼ 18◦C during the three repeated measurements. The standard devia-
tion based on the three repeated measurements are illustrated with a gray
shaded area. C) Air temperature is measured during the measurements and

is found to be constant at 14− 15◦C .

On figure 9.2, a plot of the mean value for each sensors is seen as a function of dis-
tance. The measured deflection slope for each sensor varied significantly throughout the
measured distance. These variations were however highly reproducible, with average
standard deviation for the sensors, found from the three measurement runs, in the inter-
val 12-26 µm/m, which corresponded to 4-10% of the measured slope. This means that
the observed variations was not due to noise, but an artifact of the changing pavement
structure.
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A change in amplitude of the slope signals was seen around 2.5 km, with a signifi-
cantly lower slope signal seen before this limit. This could indicate that there was a struc-
tural difference between the road segment before and after 2.5 km. No visible changes
in the asphalt layer was seen on the road in this area, and thus this was expected to be a
feature of one of the underlying layers.

FIGURE 9.2: Measured pavement deflection slope at 18◦C . The sensors 1,2
and 3 are located behind the load and the sensors 4-9 are located in front of

the load.

On figure 9.3a, an example of measured deflection slope as a function of sensor po-
sition is shown for measurement at 2 km. The center of the load is located at x=0. The
standard deviation found from the three repeated runs is illustrated with error bar. Note
that for some data points the standard deviation was so small that the resulting error bars
were smaller than the markers.

The deflection slope curve was characterised by having a maximum in front of the
load and a minimum behind the load. We chose to divide the data sets within the series
into groups based on the behaviour of the maximum deflection slope peak. This yielded
a qualitatively way to group data and later these groups will be correlated with different
structural characteristics.

Group division based on the x-position of maximum deflection slope

In table 9.1, an overview of the criteria on which data was divided into group 1, 2 and 3
is presented. In group 1, the maximum deflection peak must be closer than, or exactly at,
sensor 4 (counted from the left). In group 2, the maximum occurs around sensor 5 and
finally for group 3, the maximum deflection slope is around sensor 6 or further away from
the load. Thus, the x-position of the maximum deflection slope peak moved further away
from the center of the load when going from group 1 to 3. In terms of the deflection basin,
this means that the basing got broader. Three exemplary data sets are shown on figure
9.3b illustrating the difference on the three groups.
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FIGURE 9.3: A) Example of pavement deflection slope data measured with
the TSD. The deflection slope curve is characterised by having a minimum
behind the load and a maximum in front of the load. B) Examples of group
1, 2 and 3. The division is based on the x-position of the maximum and the

criterias are listed in table 9.1.

A high amplitude of the maximum was often correlated with a x-position close to the
load (group 1) and thus it was often the case that the amplitude in group 1 was higher
than in group 2 and 3. However, this correlation was not consistent, and thus we chose to
divide data independently based on x-position and amplitude.

TABLE 9.1: Table explaining the criteria on which the groups are divided.

x-placing of maximum deflection slope

Behaviour of the measured signal in n′th sensor

Group 1 sensor 4 > sensor 5 and sensor 5 > sensor 6

Group 2 sensor 4 ≤ sensor 5 and sensor 5 > sensor 6

Group 3 sensor 4 < sensor 5 and sensor 5 < sensor 6

Group division based on amplitude of maximum deflection slope

Data was divided based on the amplitude of the maximum deflection slope. The criteria
of division is listed in table 9.2 and is illustrated on figure 9.4. Here a plot of all data sets
is seen on the left, and on the right these are divided into group A, B and C.

As seen, data in group A had the smallest amplitude and data in group C had the
largest. The general trend was that when the amplitude of the maximum decreased, so
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FIGURE 9.4: Division of data into group A, B and C. On the left all mea-
surement sets in the data series is plotted and on the right these are divided

into groups based on the amplitude of the maximum.

did the minimum. However, the minimum was often not fully resolved within the three
sensor points and thus the division was only done based on the maximum.

TABLE 9.2: Table explaining the criteria on which the groups are divided
based on the amplitude of the maximum.

Amplitude of maximum deflection slope

The maximum measured signal in sensors in front of load

Group A Underneath 1
4 of total maximum amplitude for the data series

Group B In between 1
4 and 2

4 of total maximum amplitude for the data series

Group C Above 2
4 of total maximum amplitude for the data series

Groups as a function of distance

On figure 9.5, the distribution of the different groups over the measured distance is shown.
We find a clustering of data with group 1 and B and C data primarily located after 2.5 km
and opposite, data in group 3 and A are primarily located before 2.5 km.

A physical interpretation of the underlying structural changes which causes these
changes in deflection slope behaviour is made in section 20.3 using a pavement response
model derived in section 15.
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FIGURE 9.5: Plot showing in which area of the road the different groups of
data belongs. With gray is the full data series, with 9 points on the y-axis
representing the slope values in each sensor for the given distance. Since the
data points are averages over 10 meters, it jumps between groups from one
data set to another. This is why it in some places looks like two of the same
type of groups are represented in one data set. However when zooming in,
this is not the case as each data set only belongs to one of group 1, 2, 3 and

one of group A, B, C.
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9.1.2 Measurements at 35◦C

Due to maintenance of the equipment, the sensor position is slightly different compared
to the measurements in 9.1.1. The sensor position with respect to the center of the axle is:

Sensor position = [−0.424,−0.324,−0.224, 0.11, 0.21, 0.31, 0.61, 0.91, 1.51] (9.2)

As before, the driving velocity, road and air temperature were monitored during the
measurements. These are plotted on figure 9.6a, 9.6b and 9.6c respectively. The driving
velocity was seen to vary since we follow the traffic flow, with a top velocity at 60 km/h.
The road temperature is found to be approximately 35◦C and the air temperature approx-
imately 30◦C .
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FIGURE 9.6: A) Velocity profile for measurements in Måløv at 35 degrees.
B) The road surface temperature is measured using an inferred laser and is
found to be stable ∼ 35◦C during the three repeated measurements. The
standard deviation based on the three repeated measurements are illus-
trated with a gray shaded area. C) Air temperature is measured during

the measurements and is found to be constant at 30◦C .

A plot of the measured deflection slope signal as a function of distance is seen on figure
9.7. As for measurements in section 9.1.1, spatial fluctuations due to changing structural
conditions is seen. The average standard deviations based on the three measurements lay
in the interval 15-35 µm/m (6-9%). An exception was for senor 9, which measures values
close to zero and thus had high percentage derivation (24%).
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FIGURE 9.7: Measured pavement deflection slope as a function of distance
for road temperature of 35◦C . Sensor 1-3 is located behind the load and 4-9

in front of the load.

Division into groups

In section 9.1.1, data were divided into groups based on their behaviour in front of the
load. This was done for data at 35 ◦C as well. On figure 9.8, the distribution of the different
groups over the measured distance was shown. We found that a large proportion of the
data sets belong to group 1 and that almost none belonged to group 3. Thus, the maximum
peak location was in general close to the load. Furthermore, we observe that before 2.5
km there was almost exclusive data belonging to group A, thus with low amplitude of the
maximum, relative to the average maximum amplitude.
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FIGURE 9.8: Distribution of the different groups over the measured dis-
tance. We find that data in the section before 2.5 km belong mainly to group

2/3 and A, whereas data after 2.5 mainly belong to group 1 and B/C.
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9.1.3 Qualitatively comparison of the measured deflection slope at 18◦C and
35 ◦C

Based on the presented data here, we could make a preliminary analysis of the effect in-
creased temperature have on the measured pavement deflection slope.

Firstly, by comparing the measured pavement deflection slopes in figure 9.2 and 9.7,
we found that in general the amplitude of the deflection slope is higher for measurements
at 35 ◦C . On figure 9.9, a plot of all data sets for 18◦C and 35◦C respectively is seen,
divided into groups. As the groups were divided relative to the maximum and minimum
amplitude within the specific data series, a comparison across data series was not possible.
Instead a comparison of some characteristic values of the maximum amplitudes is seen
in table 9.3. This, together with visual inspection of figure 9.9, lead to the conclusion that
the average amplitude of the maximum deflection slope increased when temperature was
increased.

18◦C 35◦C

Maximum amplitude in data series [ µm
m ] 1668 1873

Spread in amplitudes [ µm
m ] 1610 2089

Average amplitude [ µm
m ] 494 530

TABLE 9.3: Comparison of characteristic values of the maximum ampli-
tudes for measurements at 18◦C and 35◦C .
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FIGURE 9.9: All data sets divided into groups based on the amplitude of
the maximum for data measured at a) 18◦C and b) 35◦C .

The amount of data sets belonging to group 1, 2 and 3 can be compared across the two
different data series and gives an indication if the maximum deflection placing is affected
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by temperature. In table 9.4, the amount of data set belonging to each group is listed. We
found that there was a clear shift as more data sets belong to group 1 at 35 ◦C . In figure
9.10a, a plot of two measurements measured at the same location at 18 and 35 ◦C is seen.
Here it was clearly illustrated how the amplitude was increased in the 35 ◦C measure-
ments and also how the maximum peak placing was moved closer to the load (x=0).

number of measurements (18 ◦C ) number of measurements (35 ◦C )
Group 1 506 620
Group 2 270 261
Group 3 161 53

TABLE 9.4: Number of data sets within each group for measurements at
18◦C and 35 ◦C .

Another feature which changed a lot with temperature was the behaviour of the min-
imum peak. For measurements at 18◦C , this was almost always unresolved within the
sensors as it was located far away from the load. However, in data measured at 35 ◦C the
behaviour seemed to have changed. In order to investigate this, the two data series were
divided into groups based on the x-placing of the minimum. We call these groups group
4, 5 and 6 and illustrative data sets from each group is seen on figure 9.10b.

In table 9.5, the amount of data sets belonging to each group is listed. It was observed
that for measurements at 18◦C almost all data sets had the minimum peak location fur-
ther away from the load than sensors were located (group 6). A significantly shift was
seen for measurements at 35◦C , where approximately half of the measurements had the
x-position of the minimum within the reach of sensors or even closer to the load than the
sensor location (group 4 and 5). We must keep in mind that the location of the sensors
had changed between the two measurements, but this alone can not explain the observed
change in behaviour.

In conclusion, we have found that both amplitude and peak position of the maximum
and minimum deflection slope curves were affected by temperature. The general trend
was that the x-position of the peaks moves closer to the load and their amplitude was
increased when going from 18◦C to 35◦C . This indicated that the deflection basin gets
more narrow and steeper. A physical interpretation of this was that the top layer got
softer and deform around the load under high road temperatures.

number of measurements (18 ◦C ) number of measurements (35 ◦C )
Group 4 1 100
Group 5 80 313
Group 6 835 494

TABLE 9.5: Number of data sets within group 4, 5 and 6 for measurements
at 18◦C and 35◦C .
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FIGURE 9.10: A) Measured pavement deflection slope at 2.56 km at 18◦C
and 35◦C . B) Illustrative data sets representing group 4, 5 and 6 which is

divided based on the x-position of the minimum.
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9.2 Temperature and driving velocity dependence (Finland data)

A series of measurements was conducted in Muonio, Finland. These measurements was
a part of a larger study where in-ground sensors was compared to TSD measurements
of the pavement deflection. In this thesis, only the TSD sensor data will be included.
The aim of the study was to measure the pavement response under different velocity and
temperature conditions. Measurements was made under 5 different driving velocities and
2 road temperatures, at two different locations on the road approximately 800m apart.

Changes in the pavement surface were obtained by conducting measurements at day
(∼ 22◦C) and night (∼ 14◦C). In table 9.6, the velocity-temperature configurations mea-
sured is seen. Each velocity-temperature configuration was measured three times in order
to investigate reproducibility. The exception was 5 km/h at 14◦C, which was only mea-
sured ones due to logistical reasons.

TABLE 9.6: Velocity-temperature configurations and how many repetitions
was made. Each configuration was repeated three times with the exception

of 5 km/h due to logistical reasons.

Day Night
T ∼ 23◦C T ∼ 14◦C

speed rep. speed rep.
10 3 5 1
20 3 20 3
40 3 40 3
80 3 80 3

9.2.1 Driving velocity dependence

On figure 9.11, a plot of the pavement deflection slope as a function of distance to the
axle is shown, for each location at the two temperatures. The mean deflection slope for
each velocity was found from the three repetitions and illustrated with a marker and
the corresponding standard deviation is illustrated with an error bar. We find that the
measurements were highly reproducible with low error bars for all velocity-temperature
configurations and locations. Often the standard deviations were so small that the error
bars were smaller than the markers.

A common trend for all location and temperature variations was that the magnitude of
the maximum and minimum deflection slope decreased when the velocity increased. This
indicated a shallow deflection basin, thus the pavement behaved more stiff. Furthermore,
we observe that the x-position of the maximum was unchanged when driving velocity
changes. The x-position of the minimum on the other hand, was moved closer to the load
when driving velocity was decreased. This behaviour was mostly evident for location 1
data and was observed for both temperatures. An increased amplitude of the minimum
combined with a x-position closer to the load indicated that the pavement deflection basin
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FIGURE 9.11: Mean pavement deflection slope signals for different driv-
ing velocities, road temperatures and locations. Overall a decrease in the
amplitudes of both maximum and minimum is seen when driving veloc-
ity increases. Furthermore a change in the x-position of the minimum is
seen when changing the driving velocity. Standard deviations found from
the three repeated measurements is illustrated with error bars and shows a

good reproducibility in data.
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FIGURE 9.12: Temperature profile of the surface temperature during mea-
surements.

behind the load was getting more steep and deep. Thus, we observe a softer behaviour of
the pavement when velocity was decreased.

Finally, an interesting observation in location 1 data was that the range of which ve-
locity influence the sensor signals changed. For 22◦C, a change was seen in sensor 2-6
(±0.5m), whereas for 14◦C a change in the sensor signal in front of the load was also
seen in sensor 7 and 8. Even though this was not a large difference, it indicated that the
influence of velocity became increasingly centered around the load when temperature in-
creased and the outer parts of the deflection basin in this case were unaffected of velocity
changes.

9.2.2 Temperature dependence

In order to study the effect of temperature, measurements was conducted at daytime and
nighttime. The temperature profile is plotted on figure 9.12 and showed reasonable stable
road temperatures during the measurements.

On figure 9.13, a plot of the deflection slope for comparable velocities at different tem-
peratures is seen. The temperature indicated in the legend is the average road surface
temperature over the three measurements. Overall, it was found that the maximum and
minimum amplitudes was higher for the daytime measurements than nighttime, with the
largest change seen in the minimum. Furthermore, for 20 km/h (and in some degree for
40 km/h) the x-position of the minimum moved closer to the load when temperature was
increased. These changes in the pavement deflection slope indicated that an increase in
the road temperature resulted in a softer pavement.
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FIGURE 9.13: Deflection slope signals at different temperatures. We find
that increasing the road temperature makes the amplitude of the maxi-
mum and minimum deflection slope increase. Furthermore it affects the

x-location of the minimum.
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Chapter 10

Estimating structural rolling
resistance from TSD data

In this chapter, a simple approach for calculate the structural rolling resistance based on
measured pavement deflection slopes using the TSD was presented. Subsequently, the
method was applied to calculate the structural rolling resistance for the TSD data series
presented in section 9. The proposed method aimed to be simple and easy applicable,
and as a result no modelling procedure of data was involved. As a consequence, a linear
interpolation between data points was used to estimate the deflection slope underneath
the load. An extension of the method was derived in section 10.3, where a simulated
pavement response underneath the load could be used instead. Using a set of simulated
pavement responses, the two approaches were compared with the aim of determine when
the linear interpolation methods provided a valid estimate of SRR, and when the extended
method should be used.

The method was presented in Nielsen et al. (2020b) and thus some of the details here
will overlap with details given in the paper. However, in this chapter a more elaborate
and detailed description of the method will be given, as well as a thorough discussion of
the underlying assumptions and its validity.

10.1 The simple approach

A pavement subjected to a moving load will deform underneath it. In the following, we
assume that the applied load is a point load at the center of the tire, corresponding to
x = 0, with the magnitude FL (fig. 10.1). The dissipated power in x=0 can be found from
the applied load and the pavement velocity at this point ( ∂z(x=0)

∂t ) and is noted PSRR ,

PSRR = FL
∂z(x = 0)

∂t
. (10.1)

The vertical pavement velocity can be rewritten in terms of pavement deflection slope
( dz(x=0)

dx ) by using the horizontal driving velocity dx
dt and the chain rule. Thereby, the dis-

sipated energy can be written as

PSRR = FL
∂z(x = 0)

∂x
dx
dt

. (10.2)



74 Chapter 10. Estimating structural rolling resistance from TSD data

For simplicity, was the horizontal driving velocity denoted v in the rest of the thesis.

In the case of a perfectly elastic pavement, the maximum deflection will occur directly
under the load, making the deflection slope at this point zero and thus PSRR = 0. For a
viscoelastic pavement however, the maximum deflection occurs behind the load and there
is an uphill slope underneath the load, thus PSRR > 0.
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FIGURE 10.1: Sketch of pavement deflection underneath a moving load for
a viscoelastic pavement. The applied load is assumed to be a point load at
the center of the tire, marked with a black arrow. The dissipated power in
that point (x=0) can be found from the vertical velocity of the pavement,

given by dz(x=0)
dt and the magnitude of the load FL.

The TSD setup measures the deflection slope in between the two right rear-end tires
and as a consequence, the tire axle prevents measurements directly underneath the load.
In order to obtain information about this, it has to be estimated from sounding data points.
If the slope underneath the load is assumed to behave linearly, it can be estimated through
linear interpolation between the measured deflection slope in the two sensors located
closest to the center of the load (sensor 3 and 4), see figure 10.2.

When using a linear interpolation, the dissipated energy can be written as follows

PSRR = FLvb , (10.3)

where b is the intersection of the linear interpolation ∂z
∂x (x) = ax + b with the z-

axis, ∂z
∂x (x = 0). From the dissipated power we can define the rolling resistance force

as FSRR = Psrr
v = FLb. Using the standard definition of rolling resistance coefficient as

the ratio between rolling resistance force and the load, this leads to the following simple
relation between deflection slope at x = 0 and the SRR coefficient
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FIGURE 10.2: The deflection slope directly underneath the load is estimated
by use of a linear interpolation between sensor 3 and 4 (counted from the

left). Here seen done for a data set measured in Måløv at 18◦C .

CSRR =
FSRR

FL
= b . (10.4)

10.2 Structural rolling resistance from data

The simple method for calculating structural rolling resistance was applied to the TSD
measurements, and the results were presented here.

10.2.1 Måløv data

Data from the TSD measured at Måløv was presented in section 9.1.1 and 9.1.2. Using the
simple method presented above, the structural rolling resistance was calculated for pave-
ment response measured at two temperatures. These results are also discussed in Nielsen
et al. (2020b) and Nielsen et al. (2020a) (see appendix A).

In figure 10.3, the calculated structural rolling resistance coefficient is plotted as a func-
tion of distance for the two temperatures. Bellow the difference between the two signals
was calculated as

Change in CSRR =
C35

SRR − C18
SRR

C18
SRR

. (10.5)
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FIGURE 10.3: Calculated structural rolling resistance coefficient plotted as
a function of distance for the two temperatures 18◦C and 35◦C . The differ-
ence between the two signals is seen below, calculated as (C35

srr −C18
srr)/C18

srr.

The calculated structural rolling resistance coefficient is shown in the form of a his-
togram on figure 10.4.

On figure 10.3, we found that the CSRR values for both temperatures varied consider-
ably over the traveled distance, reflecting the spatial variation in the measured pavement
deflection slope. These variations occurred since the structural properties of the road
segments varied as a function of distance. The variations were completely reproducible
with median standard deviation on 9% for 18◦C and 5.5% for 35◦C . This emphasised the
robustness of the method and its ability to measure CSRR with a high spacial resolution.

Furthermore, a clear change in CSRR was observed at 2.5km, with significantly higher
CSRR after this point. This trend was seen for both temperatures.

When comparing CSRR for the two temperatures we found an overall, systematic
increase in CSRR when temperature increased, with the average value increasing from
0.014% of the load to 0.024% of the load (fig. 10.4).

The distribution of 10.4 became broader when temperature increased. This was re-
lated to the fact that we are not looking at a homogeneous road section, but a section
which most likely has a changing structural characteristics. Thus, the effect of increasing
temperature varied across the different areas of the road. This is clearly seen in figure
10.3, where the difference in FSRR varied from 50-150% with some outliers going as high
as 400-500%.
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FIGURE 10.4: Histogram of measured structural rolling resistance for road
temperature 18◦C and 35◦C . We see an increase in the mean (µ) CSRR value,
when the road temperature is increased. Furthermore the distribution of

measured values is broadening under warm conditions (increased σ).

In table 10.1, the average SRR values were listed for the group division based on the
x-position of the maximum deflection slope (group 1, 2 and 3). The SRR values were given
in form of CSRR , PSRR and FSRR . Looking within the same road temperature, we found
that there was a clear difference on SRR within the different groups, with the highest value
in group 1 and the lowest value in group 3. If we compared across the two different road
temperatures, SRR was increasing within group 1 and 2, similarly to the overall trends.
For group 3 data, however, we find that the average SRR was decreased when going from
18◦C to 35◦C . On figure 10.3, these data sets have a difference below 0.

The behaviour in data sets having a difference below 0 was qualitatively investigated
by visual inspection of the associated pavement deflection slope plots. Figure 10.5a illus-
trated the most commonly behaviour in cases where the SRR was decreased when tem-
perature was increased, namely that only a small difference was seen in the maximum but
a large difference was seen in the amplitudes of the minimum. Since this simple method
used to calculate SRR used an interpolation between sensor 3 and 4, it was highly affected
by this change of behaviour in the minimum.

Recall from the data presentation, that when temperature increased we found a signif-
icant change in the minimum, moving closer to the load. If the movement of the minimum
is combined with no or a small decrease in maximum amplitude, it can result in a negative
calculated SRR value (fig. 10.5b). From figure 10.3, we found that this situation happend
a few times during the 9.5 km road segment measured. Having a negative SRR is un-
physical, as it would mean that energy is led into the system. Instead, it is an artifact of
the linear interpolation used in the simple method. Thus, we can conclude that when the
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TABLE 10.1: Average values for FSRR , PSRR and CSRR divided into group 1,
2 and 3 for 18◦C and 35◦C . The standard deviation indicates the spread of

SRR values within each group.

CSRR PSRR FSRR
18◦C 35◦C 18◦C 35◦C 18◦C 35◦C

Group 1 1.7 · 10−4 ± 6 · 10−5 2.9 · 10−4 ± 1.3 · 10−4 124.2± 57 212.2± 112 8.6± 3.0 14.4± 6
Group 2 1.2 · 10−4 ± 4 · 10−5 1.3 · 10−4 ± 4.9 · 10−5 84.9± 30 97.5± 52 5.9± 1.8 6.4± 2
Group 3 0.9 · 10−4 ± 3 · 10−5 6.7 · 10−5 ± 4.0 · 10−5 61.7± 21 46.8± 32 4.2± 1.3 3.3± 2

pavement became warm, using a simple linear interpolation may not be sufficient and a
more sophisticated method should be used to estimate the deflection slope underneath
the load.

10.2.2 Finland data

The simple approach was applied to Finland data presented in section 9.2 and the impact
of temperature and velocity on SRR was studied. The calculated values for FSRR and PSRR
is seen on figure 10.6 for the two locations studied.

With respect to velocity, we found that this had no influence on CSRR in location 1,
whereas a small decrees in CSRR was seen at increased driving velocity for location 2 14◦C
. This trend was not seen for 22◦C .

With respect to temperature, we found that in location 2 when comparing CSRR for
same driving velocities, it was increased with temperature. This was consistent with
trends seen in Måløv data. For location 1, no significant trend was found, as the difference
in CSRR within the two temperatures was not larger than the standard deviations.

10.3 Extension of simple approach

The simple approach presented above uses a linear interpolation to estimate the pave-
ment deflection underneath the load. In the following, an approach using a simulated
deflection slope instead was derived. In this, the assumption that the tire load can be seen
as a point load was no longer needed, as the extended approach used the integral over
the area where the tire and pavement interacts, the contact area.

In order to calculate the structural rolling resistance using a simulated deflection slope
we adopted an expression for the structural-induced power dissipation due to the rolling
of a wheel derived in Chupin et al. (2013). This expression take into account that the tire
load on the pavement surface is a distribution of vertical pressures p over the contact area
S. A uniform pressure distribution was chosen over a more complicated distribution, as
this simplification do not affect the resulting dissipated energy (Chupin et al., 2013).
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FIGURE 10.5: A) Representative data set where SRR is higher for 18◦C
(8.8 · 10−5) than for 35◦C (8.2 · 10−5). The reason for the negative difference
in CSRR is that only a small difference is seen in the maximum but a big
difference is seen in the amplitudes of the minimum. Data points in front
of the load was cut of in order to enlarge the intersection with the y-axis.
B) Example on a data set where SRR calculated for 35◦C is negative. The
reason is the big change in the minimum deflection, where the peak moves
closer to the load and its amplitude increases. In this case, a simple liner
interpolation is not sufficient to estimate the deflection slope underneath

the load, but a more complex approach should be used.
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FIGURE 10.6: Structural rolling resistance calculated for Finland data. Here
the effect of driving velocity and temperature is studied on two different

locations.

The power dissipation due to structural effects can be written as follows,

Pcontact area
SRR = pv

∫

S

∂z(x, y, z)
∂x

dS. (10.6)

Here v is the driving speed, z is the vertical component of the displacement field of the
pavement surface, and ∂z(x,y,z)

∂x is the derivative with respect to the driving direction x
(Chupin et al., 2013).

The expression in (10.6) is written in a moving reference frame (hence assuming con-
stant velocity) and thus is comparable with the framework used in the simple method
derived in this thesis. In the derivations of equation (10.6), it was assumed that the tire is
non-dissipative, that there is a constant load (thus no dynamic loading effects) and that
the power dissipation arising due to horizontal forces can be neglected (Chupin et al.,
2013).

Note that the two approaches are equal if the the pavement deflection slope within the
contact area is assumed linear and the contact area is circular in the x-y plane.

Pcontact area
SRR = pv

∫

S

∂z(x, y, z)
∂x

dS = pv
∫ r

−r

∫ √r2−x2

−
√

r2−x2
(ax + b) dy dx

= pvbπr2 = Fvb = Ppoint load
srr .

(10.7)
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FIGURE 10.7: Sketch of the tire-pavement interaction. The tire is applied
with an axle load F, which is applied to the contact surface S in form of
the distributed vertical pressures p. The sketch is inspired by figure 2 in

Chupin et al. (2013).

Here we use that F = pA, where the area of a circle is A = πr2.
Thus, for a linearly varying deflection slope the calculated dissipated power using the

simple approach is the same as using the extended approach with a contact area. How-
ever, if the pavement deflection slope deviates from a linear behaviour the two approaches
will give different SRR estimates.

10.4 Investigating validity of the simple approach through sim-
ulated pavement responses

We aimed to investigate under which circumstances the simple approach which assumes
a linear pavement deflection provided valid estimates of SRR and when the extended
method should be used instead. This was done by analysing different simulated pave-
ment responses and comparing the estimated SRR values.

In section 9, it was observed that the TSD data could be divided into groups accord-
ing to the behaviour of the maximum deflection slope. We aimed to simulate pavement
sections which has pavement responses matching these general trends. Note that the aim
here was not to reproduce the behaviour seen in TSD data with respect to absolute am-
plitude and peak position, but rather to simulate responses following the general trends.
Using the simulated pavements, a general statement about the validity of the simple ap-
proach can be derived.

10.4.1 ViscoWave II-M

For simulating the pavement responses used in the following analysis, we used the time-
domain based viscoelastic solver Viscowave II-M, developed at Michigan State Univer-
sity (Lee, 2013; Balzarini et al., 2017b). ViscoWave II-M employs the so-called spectral
element method, where each element is defined as one layer of the pavement, to solve the
wave propagation problem in a pavement structure and thereby calculate the pavement
response to an arbitrary loading. The model can simulate the time-dependent responses
and allows each pavement layer to be either elastic or viscoelastic (Lee et al., 2018).
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FIGURE 10.8: The loading configuration in ViscoWave II-M was modified
to be used in this study such that the response to two dual tires with 6.4
cm spacing is calculated. This configuration matches the TSD setup. Here
the pavement deflection underneath a dual tire is simulated and illustrated
with contour lines. This shows that the pavement deflection is manifested
as one deflection basin located symmetric symmetric around y=0 (seen by
closed contour circles) and with two local maximum deflection points on
each side of y=0. Due to the viscous effects in the asphalt, the maximum
deflections is located behind the center of the load with respect to the driv-

ing direction.

As developing the program was not a part of this thesis, it will not be discussed in
detail here. A brief overview of the fundamental principle used within the solver is given
in appendix B. For more information, we refer to Lee (2013) or appendix C in Chatti et al.
(2017).

The output of the program was slightly modified to be used in this study. First of all,
the simulation output was changed such that the simulated conditions were similar to
the TSD setup. The original solution calculated the pavement deflection under a tire in
a steady reference frame. A coordinate shift was made such that the model output was
in a moving reference frame. Furthermore, the loading configuration had been modified
such that the response was calculated in between two dual tires with 6.4 cm spacing,
matching the distance at the TSD. This is illustrated on figure 10.8, where a contour plot of
simulated pavement deflection is shown together with the location of the two tire contact
areas (assumed circular with a load of 2.5 tonnes each). To mimic the TSD setup, the
pavement response used for the analysis was obtained through the line at y=0 (fig. 10.8).

Secondly, numerically differentiation was used to obtain the deflection slope as Vis-
coWave provides the pavement deflection. As a consequence, some numerical noise was
introduced to the signal. A filtering procedure was developed, which removed numeric
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FIGURE 10.9: Example on pavement deflection slope simulated using Vis-
coWave II-M. The raw signal (blue line) has both high and low frequency
noise, seen as fast and more slow oscillations in the signal. The noise is an
artifact related to numerical differentiation and is removed by use of filter-

ing process explained in appendix B (red line).

noise from the system but left any physical related features in the slope signal (fig. 10.9.
The procedure is described in more detail in appendix B.

10.4.2 Simulated pavement sections

The pavements used in this analysis all consist of three layers, representing an asphalt
layer, a base layer, and a subgrade layer. The parameters for the structure (height, elastic
moduli, Poisson’s ratio and density) were chosen to be typical values for these kinds of
pavement layers, and they are listed in table 10.2. The base and subgrade was assumed
semi-elastic as some damping need to be present in order to stabilise the numerical so-
lution. The asphalt layer was assumed viscoelastic and its viscoelastic properties were
described by the relaxation modulus E(t).

We chose to simulate four pavements with the same mechanical characteristics in the
base and subgrade layer, and different viscoelastic properties of the asphalt layer. The
viscoelastic properties of the asphalt layer are described through the relaxation function
E(t), given by

log(E(t)) = c1 +
c2

1 + e(−c3−c4 log(tR))
, (10.8)

log(tR) = log(t)− log(aT) , (10.9)
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TABLE 10.2: Mechanical characteristics for the simulated pavement. All
pavement structures are made of three layers, each characterized by their
Poisson’s ratio (ν), mass density (ρ), average thickness (h) and the relax-
ation modulus (E). The relaxation modulus for the asphalt layer is given by

equation (22.38).

Asphalt
E(t)
ν = 0.35
ρ = 2322.7 kg

m3

h = 0.15 m
Base

E2 = 124.3 MPa
ν = 0.35
ρ = 2082.4 kg

m3

h = 0.3 m
Subgrade

E3 = 65.4 MPa
ν = 0.45
ρ = 1762 kg

m3

h = ∞

where c1, . . . , c4 are the sigmoid coefficients, tR is the reduced time and aT is the shift factor
(Balzarini et al., 2019).

In order to ensure realistic E(t) curves, the parameters for the relaxation modulus were
taken from backcalculated falling weight deflectometer tests on road segments located in
California (Balzarini et al., 2019) (fig. 10.10). The characteristics of these moduli ranged
from very stiff with high damping to very soft with little damping, see table 10.3.

Using the parameter values listed in table 10.2 and 10.3, four different pavement re-
sponses to a moving road was simulated. The deflection basin and associated deflection
slopes are shown on figure 10.11.

In the simulated deflection curves, the stiff pavement with large damping (PAV4) re-
sulted in a shallow deflection basin, and consequently the deflection slope maximum and
minimum has a low amplitude and is located far from the load. The soft pavement with
little damping (PAV1) results, on the other hand, in a steep deflection basin, and have a
deflection slope maximum with a big amplitudes and x-location close to the load.

In Figure 10.12, a zoom of the contact region for each of the simulated deflection slope
curves is shown. By assuming that the contact surface is circular with center in x=0, the
contact region is given by the radius r which can be calculated from the tire pressure (p)
and load (F), r =

√
F

pπ . Using standard values from the TSD vehicle we found r = 14.5
cm.
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FIGURE 10.10: The asphalt layer is assumed viscoelastic and its viscoelastic
properties are described by the relaxation modulus E(t) given by equation
22.38. In order to ensure realistic E(t) curves, the parameters for the relax-
ation modulus are taken from backcalculated falling weight deflectometer

tests on road segments located in California (Balzarini et al., 2019).

TABLE 10.3: For the study, four different E(t) were used and their proper-
ties are listed here. The relaxation modulus are taken from backcalculated
falling weight deflectometer tests on road segments located in California

(Balzarini et al., 2019) and is plotted on figure 10.10.

Pavements

PAV1 PAV2 PAV3 PAV4

Sigmoid coefficients
c1 1.4 1.054 0.978 1.67
c2 2.04 2.986 3.8 3.39
c3 0.944 0.335 0.521 0.981
c4 -0.417 -0.436 -0.519 -0.767
Shift factor log(aT) 0.37 0.32 0.49 0.34
E(t) characteristics
E0 [Mpa] 2,753 10,956 59,970 114,820
E0 − E∞ [Mpa] 2,728 10,945 59,960 114,770
Stiffness −−−−−−−−−−−−→

Amount of damping −−−−−−−−−−−−→
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FIGURE 10.11: Simulated pavement response using the parameter values
listed in table 10.2 and 10.3. The contact area between the tire and pavement
is assumed circular with radius (r). The interval [-r;r] is marked with a gray

color.

10.4.3 Structural rolling resistance using simple and extended approach

Using the simulated pavement sections, we could calculate the structural rolling resis-
tance using the simple and extended method and subsequently compare the estimated
values.

When using the extended approach (eq. 10.6), the surface integral was taken over the
contact area S. Thus, it required knowledge about both the shape of S and the pavement
deflection in the x-y plane. If we assume the contact area is circular with radius r, equation
(10.6) can be rewritten as

PSRR = −pv
∫ r

−r

∫ √r2−x2

−
√

r2−x2

∂w(x, y)
∂x

dydx. (10.10)

Through Viscowave, it was possible to simulate deflection underneath the contact area
and obtain information in both x and y direction (fig. 10.8). However, as we aimed to
mimic the TSD setup, only information about the deflection obtained in-between the tires
was used. Consequently, in order to integrate over S, we assumed that the deflection slope
∂w(x,y)

∂x was constant in the y direction. In this case, the integral with respect to y could be
evaluated as

∫ √r2−x2

−
√

r2−x2

∂w(x, y)
∂x

dy = 2
∂w(x, y)

∂x

√
r2 − x2. (10.11)

And thus, equation (10.10) becomes

PSRR = −pv
∫ r

−r
2
√

r2 − x2 ∂w(x, y)
∂x

dx. (10.12)

Equation (10.12) enables calculation of SRR based on simulated deflection slope be-
haviour underneath a load with a finite size.
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A comparison study of calculated SRR values using the simple and extended approach
were made. In total, four different methods for calculating SRR will be compared.

Method 1 This uses the simple approach given by equation (10.3), where a point load is as-
sumed and a linear interpolation is used to estimate the pavement deflection slope
underneath the load. The linear interpolation was made from the simulated deflec-
tion slopes values in the x-positions corresponding to sensor 3 and 4 (according to
Måløv 18◦C data). This is marked on figure 10.12 by a black line.

Method 2 This uses the simple approach in equation (10.3), but includes a more elaborate in-
terpolation method instead of the linear. We chose to use a cubic spline interpolation
which is seen with dotted line on figure 10.12. In this, a 3rd order polynomial was
used to find the values in-between the two interpolation points instead of a lin-
ear function, and thus this yielded a smoother interpolation curve. As this method
has more unknown parameters to fit than the linear, we needed all nine simula-
tion points to make the interpolation. The deflection slopes corresponding to these
points were found in x-positions corresponding to the TSD sensors (according to
Måløv 18◦C data). Using a spline interpolation includes no modelling of the pave-
ment, and thus remains an easy and fast evaluation method of the SRR value. How-
ever, as it used a 3rd order polynomial to find values in between two interpolation
points, more unknown parameters were included and it will mimic the shape of the
used data points to a higher degree.

Method 3 This uses the simple approach where a point load is assumed, but uses the simulated
deflection slope intersection with the y-axis, ∂z(x=0)

∂x . This method is a combination
between the simple and extended approach, as it used a simulated deflection slope
but no assumptions about the shape of the contact area was made.

Method 4 This uses the extended approach given by equation 10.12, where a simulated pave-
ment deflection over a finite contact area was used to estimate the SRR value.

In table 10.4, the dissipated energy due to structural effects calculated using the four
methods are listed. As the extended approach (method 4) uses both the simulated pave-
ment deflection and a finite contact area, we assumed that this provide the closest estimate
to the real SRR value as possible. The relative difference between the extended approach
and another method , e.g. method 1, was found as

∆Pmethod 1 =
Pmethod 4

SRR − Pmethod 1
SRR

Pmethod 4
SRR

. (10.13)

The analysis showed that the difference between the simple approach (method 1) and
the extended approach (method 4) indeed depends on the shape of the deflection slope
curve. For PAV4, where the deflection maximum and minimum were far apart, a differ-
ence on 9% was seen. Decreasing stiffness of the pavement result in the maximum and
minimum moving closer to the load and consequently, the relative difference increase,
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FIGURE 10.12: A linear interpolation is made between the pavement de-
flection slope values in x-position corresponding to sensor 3 and 4 in the
TSD setup. When calculating PSRR using this and comparing with PSRR cal-
culated using the simulated deflection slope we find that the linear interpo-
lation method underestimated the value. How large the underestimation is

depends on the specific pavement characteristics.
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TABLE 10.4: Calculated PSRR values using method 1-4 for four simulated
pavements. The relative difference between a method and method 4 is

given as ∆P (eq. (10.13)).

PAV1 PAV2 PAV3 PAV4
PSRR ∆P PSRR ∆P PSRR ∆P PSRR ∆P

Method 1 175 48% 219 38% 140 18% 54 9%
Method 2 289 14% 325 9% 167 1% 60 0%
Method 3 391 -16% 401 -13% 179 -6% 61 -3%
Method 4 335 - 356 - 170 - 60 -

with the largest deviation found in PAV1, where ∆P = 48%. Assuming that method 4
provided an estimate of the real SRR value, this means that the simple approach underes-
timated SRR with 48% in this situation. From the analysis we can conclude that calculat-
ing SRR using a linear interpolation, provides a valid estimate when the peaks are located
further away from the load than the sensors.

We also compared method 2 and 3, where a point load is assumed and the pavement
deflection slope is estimated through a spline interpolation and simulation, respectively.
These methods were found to improve the estimated SRR compared to method 1 and
provides results closer to method 4. However, they also included more underlying as-
sumptions than method 1.

10.4.4 Conclusion about using a linear interpolation

By use of four simulated pavement deflection slope curves, we found that using a lin-
ear interpolation to estimate the deflection slope underneath the load underestimated the
SRR. Thus, the simple approach provided a lower limit for the real SRR. The extent of
which the simple method underestimated SRR depended on the x-position of the maxi-
mum and minimum deflection slope. If these were located further away from the load
than the sensors, the underestimation was small, whereas it increased when the peaks
moved closer to the load.

Using a cubic spline interpolation between nine positions corresponding to the TSD
sensor positions, improved the SRR estimate considerably. Confirming that the resolution
of the maximum was critical for the interpolation approach to give accurate results. How-
ever, there was still a large difference in the estimated PSRR when the peak was located
closer to the load that the sensors (PAV1).

The simulated pavement deflections was created such that they mimicked the be-
haviour seen in data with respect to the x-position of the maximum. In the TSD data, we
identified changing behaviour in the maximum x-placing, which led to the coarse grained
group division into group 1, 2 and 3. In group 3, the maximum was fully resolved peak
and thus, based on the above analysis, we expected the simple approach to provide valid
estimates of SRR. For data in group 1, however, the maximum peak was located closer to
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the load than the sensor location, and thus we expected the simple approach to underes-
timate the SRR value.

As the peak was found to generally move closer to the load when temperature in-
creased, we expected the calculated SRR to be underestimated to a higher degree in data
for 35◦C .

As a conclusion, for data sets belonging to group 1 we propose that the pavement
deflection slope underneath the load is estimated using a model. Furthermore, analysis in
table 10.4 indicated that a finite contact area should be included in order to obtain a good
estimate of SRR.

10.5 Investigating dual tires vs a single load

In the derivation of the simple method, we assumed that we measure the pavement de-
flection slope underneath the center of the load. This does, however, not correspond with
the TSD setup where we have two dual tires and measure in-between these. The under-
lying assumption was that since the width of the tires was much larger than the space
between them, we could see it as one big tire creating a contact surface with center in the
line the sensors were located. This assumption is strengthen if we consider the asphalt
layer a stiff layer which bend underneath the loads, and thus helps distribute the load
over a bigger area than just the contact area.

The validity of the assumption was investigated by use of simulated pavement deflec-
tions from ViscoWave II-M. In ViscoWave II-M, a double dual tire is used with a circular
contact area as sketched on figure 10.8. We simulated the pavement deflection in a grid
underneath the applied loads and using this, made a contour map over the pavement de-
flection. This is seen on figure 10.8 where the x-y plane is the pavement surface, and the
pavement deflection is plotted in the z direction illustrated through contour lines. The
contact areas for the dual tires is seen as white circles on each sides of the TSD sensor line.

We found that the pavement deflection due to the dual tires was manifested as one
deflection basin located symmetric symmetric around y=0 (seen by closed contour circles)
and with two local maximum deflection points on each side of the sensor line (y=0). Note
that due to the viscous effects in the asphalt, the maximum deflections was located behind
the center of the load with respect to the driving direction.

Based on the simulated pavement deflection, we calculated the PSRR using the ex-
tenden approach (method 4) and taking the pavement deflection in y=0 (As done in the
analysis above) and in y = −0.13 (underneath one of the dual tires), respectively. From
this we obtain Py=0

SRR = 169.7 W and Py=±0.13
SRR = 194.8 W. The relative difference between

the two methods ∆P was 3.1%.

The analysis made here was based on a numerical model study, and thus the result
depended on the chosen structural characteristics of the simulated pavement. If the sim-
ulations were made with a stiffer asphalt layer (PAV4), the difference between the two
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methods decrease to 0.7%, as the stiff asphalt layer helps distribute the load over a bigger
area of the foundation.

Consequently, we conclude, that assuming the deflection slope measured in between
two dual tires located close together to be the same as the deflection in the center of one
load was valid.
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Chapter 11

Partial conclusion on the simple
approach

A novel simple method for measuring the structural rolling resistance (SRR) was pre-
sented. The method was based on the relation between SRR and the slope of the deflec-
tion basin under a moving load. For measuring the pavement deflection underneath a
moving tire, we used the Traffic Speed Deflectometer (TSD) technology, which provide
high resolution measurements of the pavement deflection slope. The proposed method
was aimed to be simple and easy applicable, and as a result no modelling procedure of
data was involved. Consequently, a linear interpolation between data points closes to the
load was used to estimate the deflection slope underneath the load.

The method was used on three set of TSD data, each containing three repeated repe-
titions in in order to evaluate reproducibility. The method was proven to obtain highly
reproducible measurements of SRR (standard deviations from three repeated measure-
ments of 4-10%) with a high spatial resolution. From the TSD data, effect of spatial vari-
ation, temperature and velocity on SRR was studied. We found that the estimated CSRR
values varied considerably over the traveled distance, reflecting the spatial variation in
the measured pavement deflection slope. These variations occurred since the structural
properties of the road segments varied as a function of distance. The variations were com-
pletely reproducible with median standard deviation on 9% for 18◦C and 5.5% for 35◦C .
This emphasised the robustness of the method and its ability to measure CSRR with a high
spacial resolution.

Furthermore, CSRR increased with increased temperature. However, the percentage in-
crease in CSRR differed over the measured data sets, and we speculate that this depended
on the local structural characteristic of the pavement.

The validity of using the simple approach was investigated by comparing estimated
SRR values on four simulated pavement sections with an extended method. In the ex-
tended method, the pavement deflection underneath the load is simulated using a pave-
ment response model and furthermore a finite contact area is assumed. We found that
using a linear interpolation to estimate the deflection slope underneath the load in some
cases underestimates the SRR. Thus, the simple approach will provide a lower limit for
the real SRR. The amount of which the simple method underestimates SRR was highly
dependent on the x-position of the minimum and maximum. As a result, we predicted
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that the simple approach underestimated SRR for TSD data belonging to group 1. For
these data sets, we recommended that a simple pavement response model was fitted to
data, and a more exact estimate of the deflection slope underneath the load was obtained.
Such a simple pavement response will be derived in part IV.
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Part IV

Modelling the pavement deflection
underneath a moving load
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Chapter 12

Pavement response models

In the previous part, we concluded the need for developing a simple model that can be fit-
ted to data in order to estimate the pavement deflection slope underneath the load. In this
part, a simplified model was developed and studied. As the model is founded in physical
elements, it can in addition be used to deduce information about structural characteristics
of the measured pavements.

The dynamic response of a pavement subject to a moving load has been studied through-
out the last decades. There exists a variety of different approaches towards simulating
a pavement system, going from complex numerical methods to simple models where
closed-form solutions can be obtained. Two good reviews in the area are Beskou and
Theodorakopoulos (2011) and Wang et al. (2005). The different modelling approaches
have advantages and disadvantages and are suited for different purposes. Thus, the end
goal of the modelling process should guide the choice of model approach.

In order to model the entire pavement structure, a multi-layered model is needed,
with different mechanical properties of each layer. An example is the viscoelastic solver
Viscowave used in section 10.4.1. However, these types of models easily get complicated
and often contain insensitive parameters. Another approach, which we will follow in
this thesis, is to model a simplified pavement structure with limited layers. Simple mod-
els have the advantage that they contain few parameters and thus changes in the model
output can, to a higher degree, be correlated with one or more specific parameters. Fur-
thermore, the models used in this thesis are based on physical assumptions, and thus the
used parameters all have a physical interpretation. As a consequence, a change in data
behaviour can be related to changes in specific physical properties of the pavement struc-
ture. However, the inherent model limitations always have to be taken into account when
interpreting simplified model results.

One of the simplest ways to model the dynamic response of a pavement, is to consider
an elastic Euler-Bernoulli beam supported by an elastic foundation consisting of uniform
distributed springs. This is known as a Winkler foundation (Saito and Terasawa, 1980).
Such a model is a simple one-dimension representation of the pavement structure, with
the top layer modelled by a beam and all underlying layers represented by a single foun-
dation. The big advantage of this model is that an analytical expression can be derived,
and thus the influence of the different layers on the pavement deflection can be studied
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directly (Seong-Min Kim and Roesset, 2003).

Although models containing Winkler foundation have proven successful in modelling
pavement response of a moving load, its simple nature puts some limitations on its use
(Wang et al., 2005). E.g. the foundation in the Winkler model mimics a single elastic
soil layer, however soil is known to posses damping (Michaels, 1998). As a consequence
modelling the foundation as a purely elastic media might result in unrealistic behaviour
in the simulated pavement response. Furthermore, as soil is a continuous medium there
are interactions among the soil particles and these are not accounted for by the parallel
springs in the Winkler foundation.

Damping is often included into the foundation by adding a set of uniform distributed
dashpots, thus modelling the soil as a viscoelastic material (Beskou and Theodorakopou-
los, 2011). This does, however, not address the problem that the foundation consists of
non-interacting elements which do not model the cohesive bonds between the particles.
In order to approach a more realistic behaviour of the foundation, a coupling between
foundation elements is included. Several approaches to do so has been made in literature
(Wang et al., 2005), one of which is to connect the top of the elements with an incompress-
ible layer, known as a Pasternak foundation (Froio et al., 2018). The Pasternak foundation
is a popular choice of foundation model when shear interactions between foundation ele-
ments have to be taken into account, and we will also be using it in this thesis (Saito and
Terasawa, 1980; Yu et al., 2017; Tanahashi, 2004; Froio et al., 2018).

When modelling the pavement response through a beam model, the problem is simpli-
fied into a one-dimensional situation. A natural extension from this into a two-dimensional
case, is to consider a plate resting on a foundation instead (Beskou and Theodorakopou-
los, 2011). For the purpose of this thesis however, we aimd to develop as simple a model
as possible which can mimic the deflection slope behaviour of the TSD data.

The response measured using the TSD was obtained between two dual tires and was
of nature a two-dimensional response, where each tire affects the resulting pavement de-
flection basin. However, if the contributions from the tires can be assumed equal, the
response is measured on a symmetric line. Furthermore, as the width between the tires
are much smaller than the width of the contact area between tire and pavement, the TSD
measurements will to a good approximation give us the pavement response in the center
of the overall deflection basin. In this case, a simplification of the TSD measurements into
a one-dimensional model was believed to be a good approximation.

It was assumed that the pavements measured on was characterised by having a stiff
asphalt layer compared to the underlying foundation, and as a result the deformation
occurred in the underlying layers. Consequently, the top layer acted as a stiff incom-
pressible layer which bend underneath the tire load. Thus, it could be modelled as an
Euler-Bernoulli beam.

In this part of the thesis, we derived a pavement response model consisting of a vis-
coelastic Euler-Bernoulli beam resting on a Pasternak foundation. The govern equation
for the pavement response to a moving load of the model in a moving reference frame
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is derived in section 15. Before this, the needed theory about viscoelastic materials is
presented in chapter 13, and the govern equation for deflection of a viscoelastic beam is
deduced in chapter 14. The author has chosen to give a thorough introduction into de-
flection of Euler-Bernoulli beams, as the assumptions behind is important for later discus-
sions and no coherent introduction into the field of dynamic and viscoelastic beams was
found in the literature. The part ends with an numerical study of the model presented in
chapter 16, 17 and 18.

The work presented in this part is the basis of paper draft 1 (appendix A.3).
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Chapter 13

Elasticity and Viscoelasticity

Due to viscoelastic properties of the pavement structure, energy is dissipated when it
is subject to a moving load. A pavement structure consists of several different layers,
each having its own mechanical characteristics. The asphalt layer consists of a mix of
crushed rock aggregate, gravel and bitumen mixture, which is known to have viscoelastic
behaviour affecting the dynamic response of the pavement. This is especially true under
warm conditions (Lv et al., 2010). The materials in underlying layers such as soil are also
known to have a damping effects, and can be treated like a visco-elastic material (Bolton
and Wilson, 1990).

In this chapter, a basic introduction to linear elastic and viscoelastic theory is given.
As these are two comprehensive subjects, we will mainly focus on the parts of the theories
that is relevant for the work made in the thesis. For a more comprehensive review of the
theory see Flügge (1975).

13.1 Mechanics of continuous matter

The mechanics of continuous matter is the field of studying materials which can be con-
sidered as a continuous mass instead of a set of individual particles (Lautrup, 2011). In
this field, there are three important quantities; stress, strain and displacement.

Stress describe the forces acting on a body per unit area and is denoted by σ. A dis-
tinction is made between internal stress, acting on some cross section within the body, and
external stress which is acting in the interface of a body and its environment. Stress can act
both normal to the surface, or along a tangent in which case it is called shear stress.

Strain describes the local deformation of a body subject to an external force and is
denoted by ε. Like stress, deformations can occur tangent to the principal axis which
results in shear strain.

Where strain describes the local deformation of a material, the displacement describes
how a point or line element is moved away from its original position, with respect to
some reference coordinate system, during a deformation (Flügge, 1975). The relationship
between strain and displacement for a body is known as the kinematic relation which will
be derived for a beam later on.
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FIGURE 13.1: The mechanical response of A) an elastic material and B) a
viscoelastic material can be represented by a mechanical analog in form of

a linear spring and dashpot respectively.

13.1.1 Linear elastic solid materials

The mechanical response of a elastic material is often represented by a mechanical analog
in form of a spring (fig. 13.1a). Following Hooke’s law, the displacement of a spring
is proportional to the applied force with a proportionality constant k, called the spring
constant.

F = kx. (13.1)

Likewise, an elastic solid material is characterised by having a linear relation between
stress (σ) and strain (ε) in all directions. If this is to be written in its most general form,
it contains 81 different elastic constants describing the linear relations in all directions
(Gould and Feng, 2018). The problem can be simplified by assuming the material is
isotropic, hence the material properties is the same in all directions. In this situation,
only two elastic constants remains and a total of six equations is needed to describe the
relationship between stress and strain in the material.

In the specific situation where an uni-axial stress is applied (e.g. a vertical load on a
beam), the relationship between stress and strain in the material can be described by the
simple relation

σ = Eε. (13.2)

E is called Young’s modulus and it is a measure of the stretchability of the material
(Lautrup, 2011). The higher E, the harder it is to stretch. All elastic materials considered
in this thesis are assumed isotropic materials under uni-axial stress, and thus the relation
between stress and strain is given by equation (13.2).

An elastic material has the property that if it is deformed and then return to its original
shape, the work done is zero and thus no energy is dissipated (Wineman and Rajagopal,
2000).
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13.1.2 linear viscous materials

The mechanical analog used to describe a linear viscous material is a viscous damper
(fig. 13.1b). The response of a viscous damper is characterised by having a linear relation
between stress and the rate of strain,

σ = µ
dε

dt
. (13.3)

η is the viscosity of the material.
If a viscous material is deformed and then returned to its original shape, then the work

is completely converted to thermal energy (Wineman and Rajagopal, 2000).

13.2 Viscoelastic materials

Some materials exhibit both elastic and viscous behaviour and are called viscoelastic ma-
terials. Viscoelastic materials are characterized by having a time dependent relationship
between stress and strain (Lakes, 2009).

Linear viscoelasticity describes materials in which there is a linear relation between
stress and strain. Thus, if the applied stress is doubled, the resulting strain is also dou-
bled. In this thesis, we only deal with small deformations of the materials and thus the
material behaviour can be assumed linear viscoelastic.

The difference between an elastic and a viscoelastic material is sketched on figure 13.2.
If a constant rate of strain is applied to an elastic material and subsequently released, a
linear relationship with a slope proportional to the elastic modulus E is seen (Lakes, 2009).
Furthermore, the material path is the same in both directions. For a viscoelastic material,
on the other hand, the stress-strain curve is curved and will not take the exact same path
back when the applied strain is removed. The difference in paths result in an energy loss,
referred to as hysteresis loss (Lakes, 2009). This is a frequency-dependent loss, meaning
that it depends on the specific loading frequency.

The behaviour of a viscoelastic material can be described by a combination of springs
and dampers.

13.2.1 Relaxation function

The time dependent stress-strain relationship in viscoelastic materials is described through
their relaxation function E(t).

Imagine that a strain ε0 is applied to a viscoelastic material at time t = 0, and hold
constant such that ε(t) = ε0 (fig. 13.3a). The resulting time-depending stress can then be
calculated using the relaxation function E(t),

σ(t) = ε0E(t) (13.4)
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FIGURE 13.2: Stress-strain behaviour of an elastic and viscoelastic material
subject to a constant rate of strain. The plot on the left shows the behaviour
of an elastic material and the plot on the right for a viscoelastic material.

Inspired by figure 1.2 in Lakes (2009)

Since the material is linear viscoelastic, the stress response to an arbitrary strain ε(t)
can be found using the rule of linear superposition. Imagine an additional stress is applied
to the material at a later time t = t′, denoted ∆ε (fig. 13.3b). This results in an additional
stress, given by

∆σ = ∆ε(t′)E(t− t′). (13.5)

Now assume an applied strain which starts at t=0 with an initial strain ε0, followed by
a sequence of infinitesimal step functions of width δt and height δε. The resulting stress
is then a sum of the individual stress responses caused by δε. In the limit δt → 0, the
sequence of infinitesimal step functions converges to the function ε(t) and the resulting
stress function σ(t) can be written as the convolution

σ(t) = ε0E(t) +
∫ t

0
E(t− t′)

dε(t′)
dt′

dt′ (13.6)

Using integration by parts, equation (13.6) can be rewritten to contain E(t = 0) = E0 in
the first part,

σ(t) = E0ε(t)−
∫ t

0

dE(t− t′)
dt′

ε(t′)dt′. (13.7)
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FIGURE 13.3: Sketch of an strain procedure applied to a viscoelastic mate-
rial (top) and the resulting stress (bottom).

13.2.2 Characterising the viscoelastic behaviour through the complex modulus

Characterisation of the viscoelastic behaviour of a material can be done in the frequency
domain as well, where it is described through its complex modulus E∗(ω).

Equation (13.7) can be rewritten to include all times in the past t < 0, as the responses
here are zero. Thus, we get the expression

σ(t) =
∫ t

−∞
E(t− t′)

dε(t′)
dt′

dt′ (13.8)

We now introduce a new variable τ = t− t′. Consequently, t′ = t− τ and dt′ = −dτ.
If this change in variable is introduced in (13.8), we get

σ(t) =
∫ t−t

t−(−∞)
E(τ)

dε(t− τ)

d(t− τ)
(−dτ) (13.9)

=
∫ ∞

0
E(τ)

dε(t− τ)

d(t− τ)
(dτ) (13.10)

Assume that we control the input strain and this is given by a harmonic oscillating
function, written on the complex form

ε(t) = ε̃0eiωt = ε0eiφε eiωt. (13.11)
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If we include equation (13.11) in (13.10), we get

σ(t) =
∫ ∞

0
E(τ)iωε0eiφε eiω(t−τ) dτ (13.12)

= iωε0eiφε eiωt
∫ ∞

0
E(τ)e−iωτ dτ (13.13)

If we introduce a new function

f ∗(τ) =

{
0, if τ < 0
E(τ)e−iωτ, if τ ≥ 0

(13.14)

equation 13.13 becomes

σ(t) = iωε0eiφε eiωt
∫ ∞

−∞
f ∗(τ) dτ. (13.15)

The last term corresponds to the Fourier transform of E(τ), F{E(τ)}, as this is defined
by

F{ f (t)} = F̃(ω) =
∫ ∞

−∞
f (t)e−iωt dt, (13.16)

where ω is the transformation variable. Denoting the Fourier transform by Ẽ(ω) and
equation (13.15) becomes,

σ(t) = iωε0eiφε eiωtẼ(ω) (13.17)

Since we have a linear response, the resulting stress can likewise be expressed through
a harmonic complex function,

σ(t) = σ0eiφσ eiωt. (13.18)

Hence we have the relation that

σ0eiφσ eiωt = iωε0eiφε eiωtẼ(ω) (13.19)
m (13.20)

σ0

ε0
ei(φσ−φε) = iωẼ(ω) (13.21)

φε − φσ is the phase difference between the stain and stress (fig. 13.5). Thus for an
elastic material where no phase lag is present, φε = φσ.

The term E∗(ω) = iωẼ(ω) is called the complex modulus, and this describes the rela-
tion between stress and strain in the frequency domain. A consequence of equation (13.19)
is that the relationship between the Fourier transformed stress (σ̂(ω)) and the Fourier
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FIGURE 13.4: Sketch of a typical behaviour of E∗(ω) for a viscoelastic ma-
terial. The real part (E′) is called the storage modulus as it accounts for the
energy preserved in the material and the imaginary part (E′′) is called the

loss modulus as it accounts for the dissipated energy in the material.

transformed strain (ε̂(ω)) is given by the complex modulus,

σ̂(ω) = E∗(ω)ε̂(ω) (13.22)

On figure 13.4, a sketch of a typical behaviour of E∗(ω) for a viscoelastic material is
seen. As this is a complex function, it consists of both a real (E′) and imaginary (E′′) part.

E∗(ω) = E′ + iE′′ (13.23)

The real part is called the storage modulus as it accounts for the energy preserved in the
material, thus the elastic characteristics of the material. The imaginary part is called the
loss modulus as it accounts for the dissipated energy in the material, thus the viscous
characteristics of the material (Cheneler, 2016). The loss modulus has a characteristic bell
shape, an as a result the function has two two elastic plateaus (with no viscous damping),
at low and high ω respectively. At low frequencies, E′ is a low value which results in a
soft material behaviour. In a similar fashion, E′ is large at high frequencies, resulting in a
stiff behaviour in the material.

Complex modulus tests

Within pavement design, it can be valuable to have information about the viscoelastic
behaviour of the asphalt layer, as this gives insight into temperature and frequency effects
on the pavement response. Furthermore, comparison of E∗ curves for the same asphalt
taken at different times can reveal how damaged the pavement is and if maintenance is
needed (Zhao and Kim, 2003; Mazurek and Iwański, 2017). The most common way to
characterise the viscoelastic properties of the asphalt is to perform a complex modulus test.
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FIGURE 13.5: Sketch of a strain response (red curve) to an applied sinu-
soidal loading (blue curve). Due to the viscous effects in the material there

is a time lag between stress and strain given by φε−φσ
ω .

A complex modulus test is made in a laboratory upon a small sample of the asphalt
concrete. The testing principle is to apply a sinusoidal loading upon an asphalt concrete
mix and then measure the resulting strain response (Xu and Solaimanian, 2009). An ex-
ample of such an applied sinusoidal stress and the resulting strain is seen on figure 13.5.

From the experiment the amplitude of the stress and strain, σ0 and ε0, as well as the
phase shift between the signals is measured. Based on these the behaviour of the complex
modulus can be studied.

In practice, the dynamic modulus |E∗|, is often used to report laboratory results as this
is simply the stress amplitude over the strain amplitude.

|E∗| =
√
(E′)2 + (E′′)2 =

σ0

ε0

In order to properly describe the viscous behaviour of a material, information about
the complex modulus over a wide range of frequencies is needed. However, it is not
possible to measure over wide enough range of frequencies. Instead the time-temperature
superposition principle is used to create a master curve over a wide range of frequencies
from measurements at different temperatures.

Master curves and time-temperature superposition

The Time-Temperature superposition (TTS) principle states that a change in temperature
is equivalent to a shift in timescale with an shift factor aT with respect to some reference
temperature T0. This means, that instead of measuring E∗(ω) over a wide range of fre-
quencies, it can be measured at a small range, but under different temperatures. The
measured E∗(ω) values is then shifted with respect to some reference temperature and
thereby covers a larger frequency range. This is illustrated on figure 13.6.
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FIGURE 13.6: Illustration of the shift produced when applying the time-
temperature superposition principle. A set of measurements is made
within a small range of frequencies but over several temperatures (left fig-
ure). The measured values is then shifted with some shift factor αT such
that they form a master curve over a wide rang of frequencies (right fig-

ure).

In the time domain this can be written using the relaxation function,

E(t, T) = E(aTt, T0). (13.24)

A fundamental assumption behind the TTS principle is that the shape of the relax-
ation function do not depend on temperature. Thus, it can be written as the product of a
temperature dependent amplitude E0(T) and the functional form given by f (aTt),

E(t, T) = E0(T) f (aTt). (13.25)

Correspondingly, TTS can be performed in the the frequency domain by use of the
complex modulus,

E′(ω, T) = E′′(αTω, T0) , E′′(ω, T) = E′′(αTω, T0). (13.26)

Each individual set of measurements at a specific temperature has a specific scale fac-
tor. When shifting with respect to the reference temperature T0, it holds that for

if T < T0 , αT > 1, (13.27)
if T0 < T , αT < 1. (13.28)
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TTS is used to create master cures of asphalt materials and study there viscous be-
haviour. This is often done based on complex modulus tests performed in the labora-
tory (Mazurek and Iwański, 2017; Aidara et al., 2015; ?; Xu and Solaimanian, 2009; Nils-
son et al., 2002). However, some studies have constructed master curves based on back-
calculated mechanical parameter values from Falling Weight Deflectometer tests (Solatifar
et al., 2019; Gopalakrishnam et al., 2014; Solatifar et al., 2017).

In section 21.2, we perform a pilot study showing how it is possible to create master
curves based on TSD data. The use of TSD measurements has the advantage that it uses a
non-destructive measuring method and data collection is easy.

13.3 Response models

From experiments like complex modulus tests, information about the viscous behaviour
of bitumen mixes is obtained. Different mathematical models of the complex modulus can
be fitted to the empirical results in order to describe the viscoelastic behaviour completely.

There are two approaches when modelling the viscous behaviour; empirical mathe-
matical models and mechanistic models (Mazurek and Iwański, 2017). In the following
section, the most common models within the two kind of categories will be presented.

13.3.1 Empirical response models

Empirical models are purely based on mathematical expressions which has proven suit-
able for describing the characteristic trends in data, and thus has no physical foundation.
They are often used to describe the viscoelastic behaviour in the time-domain, and is suit-
able for use in backcalculating procedures of Falling Weight Deflectometer data (Zaabar
et al., 2014).

An example is the viscoelastic time-domain solution Viscowave, developed at Michi-
gan State University and used previously in this thesis (see appendix B) (Lee, 2014). In
this, the viscoelastic behaviour of the asphalt layer is described through the relaxation
function E(t), given by a sigmoidal function in equation (13.29).

log(E(t)) = c1 +
c2

1 + exp(−c3 − c4log(tR))
, (13.29)

log(tR) = log(t)− log(aT(T)), (13.30)

log(aT(T)) = a1(T2 − T2
re f ) + a2(T − Tre f ), (13.31)

where c1 − c4 are the sigmoid coefficients, tR is reduced time, aT(T) is the shift factor for
the master curve and a1 and a2 is shift factor coefficients.
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13.3.2 Mechanical models

A mechanistic model uses the physical elements springs and dashpots to describe the vis-
cous behaviour of a material (Xu and Solaimanian, 2009). Each combination of elements
results in a unique model with specific physical properties and behaviour, and in theory
an infinite number of constructions could be made. Based on these models, an analytical
expression for E∗(ω) can be derived. Consequently, these kinds of models have a strong
physical ground, in contrast to the empirical models presented above.

In table 13.1, a schematic representation and the associated complex modulus is pre-
sented for the two simplest mechanistic models; the Maxwell and Kelvin-Voigt model and
subsequently some of the most used models in the literature.

The two simple models, the Kelvin-Voigt model and the Maxwell model, both con-
sist of a spring and a dahspot. These are placed in parallel or series respectively, and
thus the expression for E∗(ω) in both models contains two parameters. Nevertheless, the
behaviour of their complex modulus is quite different. In the Kelvin-Voigt model, the
storage modulus (E′) has a constant value and the loss modulus (E′′) is linearly increas-
ing with frequency. This do not correspond with the behaviour of bitumen mixes, and
thus this is not a good model for describing the viscoelastic behaviour of asphalt. It is
though often used to describe damping effects of soil in simple pavement response mod-
els (Froio et al., 2018). The Maxwell model on the other hand, has a sigmoidal shaped
E’ and a bell curved E”. Thus, it is considered the simplest mechanistic model with the
qualitatively correct behaviour of the complex modulus. It is, however, found to be to sim-
ple to describe the complex behaviour of asphalt mixed accurately (Xu and Solaimanian,
2009). Studies by Xu and Solaimanian (2009) and Pham et al. (2015) have investigated
the mechanical properties of bitumen mixes and their complex modulus. They have pro-
posed that models consistent of several spring, dashpot and parabolic dashpot elements
are needed in order to reasonable describe the viscoelastic behaviour of bituminous mixes.

Generelized Maxwell models, which consist of n Maxwell models in parallel, can char-
acterise the viscoelastic behaviour over a wide rang of frequencies, but require a lot of free
parameters to do so (Xu and Solaimanian, 2009). As a result, these are not used in this the-
sis as we are interested in simpler models.

Three models which are often considered good candidates to describe the viscous be-
haviour is the Burger model, the Huet-Sayegh model and the 2S2D1P model. The Burger
model consist of a spring and dashpot in series followed by a set in parallel, and thus
contains four free parameters (tabel 13.1).

The Huet-Sayegh model consists of two parallel branches, one with a spring and the
other with a spring and two parabolic dashpots in series. In a parabolic dashpot, the
relation between stress and strain is given by

σ̂(ω) =
η

τ
(iωτ)α ε̂(ω), (13.32)
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TABLE 13.1: Table over mechanistic models to describing the viscoelastic
behaviour of bituminous mixes. The number of parameters in the Huet-
Sayegh and 2S2P1D model depends whether τ, δ and β is seen as indepen-

dent parameters or not.

Schematic representation Complex modulus number of
parameters

Maxwell model

E η

E∗(ω) =
ηiω

1 + η
E iω

= E
τiω

1 + τiω
, 2

where τ =
η

E
Kelvin-Voigt

E

η

E∗(ω) = E + ηiω 2

Burger’s model

E

E

1 1

2

2

η

η

E∗(ω) =

(
1
E1

(1 +
1

iωτ1
) +

1
E2

1
(1 + iωτ2)

)−1

, 4

τi =
ηi
Ei

Huet-Sayegh model
E

E2

1

k h

E∗(ω) = E1 +
E2

1 + δ(iωτ)−k + (iωτ)−h

ln(τ) = a + bT + cT2 , δ =
E2τ

η1
6 (9)

2S2P1D model
EE

E2

1

k h η

E∗(ω) = E1 +
E2

1 + δ(iωτ)−k + (iωτ)−h + (iωβτ)−1

ln(τ) = a + bT + cT2, 7 (10)

δ =
E2τ

ηparabolic
, β = η

E2τ

Generalized Maxwell model

E η

E η

E η

E0

1 1

2 2

n n

E∗(ω) = E0 +
n

∑
k=1

Ekω2η2
k + iE2

k ωηk

E2
k + ω2η2

k
1 + 2n
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where ω is the angular frequency, η is the viscosity, 0 < α < 1 is the parabolic dashpot
variable and τ is the retardation time given by τ = ea+bT+cT2

in which a, b, c are constants
and T is temperature (Pronk, 2006). The original Huet-Sayegh model has two time con-
stants τ1 and τ2, one for each parabolic dashpot. However, in order to simplify the model
the number of independent variable was reduced such that the model only contains one
time decay constant τ = τ1 = τ2 (Pronk, 2006). The Huet-Sayegh model presented here,
and the one used in the majority of the literature, is the simplified one.

The 2S2P1D model consists of two linearly elastic springs, two parabolic dashpot, and
one linear dashpots, hence the name. The model is an extension of the Huet-Sayegh model
with an extra linear dashpot added to the series of dashpots (Aidara et al., 2015). This im-
proves the models ability to characterise the viscous effects at high temperatures and low
frequencies (Aidara et al., 2015).

In the literature, several studies have compared the different mechanistic models abil-
ity to fit empirical data in order to establish which is best to use for characterising the
viscous behaviour of asphalt (Pouget et al., 2014; Xu and Solaimanian, 2009; Pronk, 2006;
Nilsson et al., 2002; Aidara et al., 2015; ?). Generally, the studies find that models like the
Huet-Sayegh and the 2S2P1D model are good candidates. However, it should be men-
tioned that the more parameters a model contains, the better it will appear to be at fitting
experimental data. In reality, it is a trade-off between the degree of freedom in the mod-
elfit vs. the goodness of the fit obtained. When choosing a proper viscoelastic model, the
intended use of it should be taken into consideration. If the models are used to describe
the behaviour of asphalt as a part of a larger pavement response model, as it is the case
in this thesis, it is not not advantageous to have a lot of unknown parameters and a more
simplified model is favourable.

The Burger model is often found to be the simplest model witch is capable of charac-
terizing the viscoelastic properties of asphalt correct (Xu and Solaimanian, 2009). How-
ever, it only do so within a limited range of frequencies and temperatures (Nilsson et al.,
2002). As a consequence, most studies conclude that the Huet-Sayegh model is found
to be the most suitable model for characterising the mechanical behaviour as it is rather
"simple" (compared to e.g. generalized Maxwell modes) and can characterize the material
behaviour over a wide range of frequencies and temperatures (Xu and Solaimanian, 2009;
Pronk, 2006; Nilsson et al., 2002).
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Chapter 14

Beam theory

In this chapter, the most fundamental theory about Euler-Bernoulli beams will be pre-
sented. Furthermore, we will derive the governing equation for vertical deflection of
an elastic and viscoelastic Euler-Bernoulli beam. As the use of viscoelastic beams is not
widespread, a thorough description of the theory leading to the derivation of the govern-
ing equation for deflection of a viscoelastic beam is given.

14.1 Elastic beam theory

Beams are a widely used structure within engineering. The behaviour of elastic beams
is govern by the theory of elastostatics. This describes the state of stress, strain and dis-
placement of an elastic body (Gould and Feng, 2018). Geometrical speaking, a beam is
a structure with one dimension being much longer than the two others (Bauchau and
Craig, 2019). In the following, it will always be assumed that the beam is made of a ho-
mogeneous and isotropic material, which can have either elastic or viscoelastic properties.

The basic elements needed to describe the behaviour of a beam are; the equilibrium
conditions, the kinematic relation and the constitutive equations. These relations will be
described below.

Before deriving the governing equations, lets state the coordinate systems used. We
operate with an inner and outer coordinate system. For the inner coordinate system, the
long dimension of the beam is placed along the x-axis, as illustrated in figure 14.1a. An
inner coordinate system is defined for each element on the neutral axis, and the x-axis is
always aligned with the center of the beam, called the neutral axis. The z-axis is defined
to be perpendicular to the neutral axis, pointing downwards. A cross-section at every x
can be made in the y-z direction and this is denoted A, illustrated on figure 14.1b. The
cross-section can have any shape, but are assumed to be constant over x. The origin of the
coordinate system is placed in the area centroid of the cross section A.

An outer coordinate system is also defined, with x̄ aligned with the neutral axis of the
straight beam and w(x̄) denoting the vertical displacement of the neutral axis compared
to the straight beam. Thus w(x̄) = 0 for a straight beam and w(x̄) > 0 when the beam
bends downwards.
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FIGURE 14.1

When describing the characteristics of the cross section, we use the second moment of
area I around the x-axis. This is defined as the integral of z2 over the cross section area

Ix =
∫

A
z2dA. (14.1)

Ix depends on the shape of the cross sections and a physical interpretation of it is that the
higher an I value a structure has, the harder is it to bend. In the following Ix = I, as this
is the only area moment used.

14.1.1 The Euler-Bernoulli assumptions

The Euler-Bernoulli beam theory was formulated in the 1700s and is the most common
used beam theory as it is simple and provides reasonable approximations for many engi-
neering problems (Han et al., 1999). The main assumptions for an Euler-Bernoulli beam
is listed below (Bauchau and Craig, 2019).

1 The cross section of the beam in the y-z plane do not deform, but maintain its origi-
nal shape when the beam is deformed.

2 After deformation of the beam, the cross section will remain planar. This means
that if we look at a cross section before bending and it is flat, then it is also flat after
bending. Thus, it do not curve out of its own plane.

3 The cross sections is always normal to the deformed axis. This is illustrated on
figure 14.2, where every cross section is perpendicular to the neutral axis in that
point. Recall that the x-axis is aligned with the neutral axis for every element on the
x-axis.
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FIGURE 14.2: An underlying assumption for Euler-Bernoulli beams is that
the cross sections is always normal to the deformed axis (in this case the

x-axis). This is illustrated here for a straight and bent beam.

14.1.2 Kinematic relation

We will now write up the kinematic relation for an Euler-Bernoulli beam which relates
strain and displacement of the beam. When deriving the kinematic equation, pure bending
of the beam is assumed. This means that the bending moments and physical properties
like stress and strain are constant along the beam. As a result, the beam bends into the
shape of a perfect circle, shown with a extracted example in figure 14.3. This is an ide-
alised situation and in practice this does not apply for a bend beam. However, if we look
at a small subset of the beam (as illustrated with gray on fig 14.3) this idealised situation
can be assumed.

Assuming pure bending, the bent beam take the shape of a circle with radius R (mea-
sured from the neutral axis (fig. 14.3). R is called the radius of curvature, and is connected
to the curvature of the beam κ with

κ =
1
R

. (14.2)

If we assume shear-free bending, the beam can be considered to consist of a bunch of
elastic strings that are either stretched or compressed, but which do no interact with each
other. The center axis (at z=0) is fixed such that it does not change length when the beam
is bent, while strings at positive z is stretched and at negative z is compressed (Lautrup,
2011). This is illustrated on figure 14.3.

If we consider a small piece of the beam with length l = ∆x (fig. 14.4), this will bend
into a beam section where the top surface has length lt and the bottom has length lb but
the center axis has the same length l. The length of the center axis can be expressed by the
radius of curvature R by

l = Rθ (14.3)

where θ is the angle giving the beam section of the beam circle. This is illustrated on figure
14.4. The radius of curvature for the top of the beam is given by R− δr, where δr denotes
half of the thickness of the beam (see fig. 14.4). As a consequence, the length of the beam
section top is written lt = (R− δr)θ.



118 Chapter 14. Beam theory
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FIGURE 14.3: Sketched of an Euler-Bernoulli beam subject to pure bending.
In the idealized case of pure bending, the bending moments and physical
properties like stress and strain are constant along the beam. As a result, the
beam bends into the shape of a perfect circle with radius of curvature R. The
center axis at z = 0 remains the same length during bending, while beam
elements positioned at negative z is compressed and elements at positive z
is stretched. In practise, this idealized situation of pure bending can no be
applied to the entire beam. However if we consider a small subset of the
beam, as illustrated with gray on the figure, the assumption can be applied
and used to derive the kinematic relation between strain and displacement.

Thus, the strain at the top of the beam can be found by

εtop =
∆l
l

=
lt − l

l
=

(R− δr)θ − Rθ

Rθ
=

δr
R

(14.4)

If this is generalized by taking z instead of δr, the strain throughout the beam is found,

ε =
z
R

. (14.5)

For small deformation, the curvature of the neutral axis of the beam can be written by
the second-order derivative of the deflection, κ = − ∂2w(x)

∂x2 . Using this, we can derive
the important equation for relation between strain and displacement, called the kinetic
relation.

Kinetic relation ε(x, z) = −z
∂2w(x)

∂x2 . (14.6)

The relation does not depends on which type of material the beam is made of, and thus it
is true for both elastic and viscoelastic materials (Flügge, 1975).

14.1.3 Mechanical equilibrium

The beams used in this study are all assumed to be in a mechanical equilibrium, meaning
that the total force acting on the body is equal to zero.

∑ F = 0, (14.7)



14.1. Elastic beam theory 119

R
�

x x+�x

}�r

FIGURE 14.4: Zoom in on the a small beam piece of the beam with length
∆x subject to pure bending. The length of the center axis l is expressed

through the radius of curvature R by l = Rθ.

where F = (Fx, Fy, Fz). In such situation, all forces acting on the body are counterbalanced
and thus the body is standing still.

For a body in mechanical equilibrium Cauchy’s equilibrium equation (14.8) is true,

fi + ∑
j
∇jσij = f ∗i = 0. (14.8)

Here i and j are the x,y and z direction, f is the long-ranged forces, ∇ is the gradient, σ is
the stress and f ∗ is called the effective force density. The effective force density describes
the forces acting on a local particle. Equation (14.8) states that for a local material particle
the long-ranged forces (e.g. gravity) are equal all the short-range contact forces acting on
its surface.

In the world of continuum physics, one can consider a body as a collection of material
particles. The total moment of force M around any arbitrary point O in a body with a
volume V can be written as

MO =
∫

V
x× ( f ∗dV), (14.9)

where x = (x, y, z) is the spacial coordinates.
The moment of force around some axis, e.g. the x axis is called Mx and is a measure of

how much the body is turning around this axis due to external forces. A moment occurs
if a force is applied that do not go through the centroid and is not counterbalanced. In this
case, the body starts to rotate. In mechanical equilibrium, we have that f ∗ = 0 and thus
MO = 0, meaning that the body do not rotate.

Imagine that we have a beam subject to a distributed load qz(x) [N/m]. The external
load gives rise to internal resultant forces; shear forces and normal forces. The shear forces
act tangent to the cross section area, thus in the y or z direction (see fig. 14.5ai). These are
denoted Tz(x) and Ty(x) [N]. As no external load is acting in the y direction, and we are
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(A) When the beam is subject to external forces
internal resultant forces occurs: shear forces
(Tz(x)) and normal forces (FN(x)). The stress
profile through the beam section creates a

bending moment M(x).

(B) Sign convention for the direction of positive
internal resultant shear force and bending mo-
ment when a small beam segment is evaluated.

FIGURE 14.5

in mechanical equilibrium, Ty(x) = 0. The resultant shear force in the z direction can be
found from the shear strain τz [ N

m2 ] over the cross section ,

Tz(x) =
∫

A
τzdA. (14.10)

The normal forces FN(x) are acting normal to the cross section area A, thus in the di-
rection of the beam (see figure 14.5aii) (Craig Jr., 2000). As for the shear force, the resultant
normal force is given as the normal stress (σx) over the cross-section area A,

FN(x) =
∫

A
σxdA (14.11)

As mentioned before, when the beam is deformed the elements above the neutral axis
is compressed and the elements below the neutral axis is stretched. Thus, the normal
stresses over A is not constant, but have some stress profile (fig. 14.5aiii). This creates a
bending moment around the y axis M(x),

M(x) =
∫

A
zσxdA. (14.12)

In order to evaluate the internal forces and moments in the beam subject to an external
load, we look at a small segment of the beam with length ∆x and draw a free-body diagram.

When drawing the free-body diagram, it is important to keep in mind the sign con-
vention for the internal stress resultants, which determines which way is "positive" (Craig
Jr., 2000). The sign convention states that for a cross section with the beam to the left, as in
figure 14.5b left, the positive direction for the shear force is downwards and the positive
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FIGURE 14.6: Free-body diagram of a small beam segment with length ∆x.
The arrows denote the direction of positive force and momentum.

direction for momentum is counterclockwise. The opposite is true for a cross section with
the beam to the right, as seen on figure 14.5b right. Since we are looking at a segment in
the middle of the beam, there will be internal shear forces and moments on both sides of
the segment.

On figure 14.6, the positive direction for resultant forces and moments have been
drawn for the points x and x + ∆x, as well as the the distributed load q(x).

Since we are in a static equilibrium we now that the sum of forces in the z direction
should be zero.

∑ Fz = 0 (14.13)

This means that the internal forces in the z and -z direction should be equal. In the -z
direction, we have the shear forces, which in x is T(x) and in x+∆x it is -T(x+∆x). In the z
direction, we have the net resultant force due to the distributed load.

The force due to external distributed load can be found by integrating qz(x) over the
beam segment,

∫ ∆x

0
qz(x)dx̂. (14.14)

Here x̂ gives the distance from the point x.
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Thereby the force balance in the z direction is

T(x)− T(x + ∆x) =
∫ ∆x

0
qz(x̂)dx̂ (14.15)

m (14.16)

T(x + ∆x)− T(x) = −
∫ ∆x

0
qz(x̂)dx̂ (14.17)

Dividing with ∆x

T(x + ∆x)− T(x)
∆x

= −
∫ ∆x

0 qz(x̂)dx̂
∆x

(14.18)

In order to evaluate the right side of (14.18), we use the mean value theorem (Adams,
1999). From this we know that there must exist a point x̂ = c between 0 and ∆x such that

∆xqz(x̂ = c) =
∫ ∆x

0
qz(x̂)dx̂ ⇔ qz(x̂ = c) =

∫ ∆x
0 qz(x̂)dx̂

∆x
. (14.19)

Thereby equation (14.18) becomes

T(x + ∆x)− T(x)
∆x

= −qz(x̂ = c) (14.20)

If we take the limit when ∆x → 0 and end up with the important result,

Conservation of momentum:
dT(x)

dx
= −qz(x). (14.21)

The limit of the right hand side come from the fact that c is a point on x̂, and when c = 0
then x̂ = x.
Equation (14.21) is a important result within static mechanics and from this the shear
forces can be calculated directly from the external load.

We now move our interest to the internal moments created inside the beam. Again we
look at the body diagram on figure 14.6. We want to evaluate the moments around some
point O (see fig. 14.7).

Due to the fact that we are in a static equilibrium the sum of moments around any
point is zero,

∑ Mo = 0. (14.22)

The total moment is a sum of the clockwise moments and counterclockwise moments. As
seen on figure 14.7 we have three contributions to the clockwise moment; the bending
moment in x M(x), the moment due to shear forces in x + ∆x which gives the moment
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FIGURE 14.7: Beam section with length ∆x. The total sum of moments
around the point o has to be zero due to static equilibrium, and is a sum of

the clockwise (green) and counterclockwise (blue) contributions.

MT = T(x + ∆x)∆x and lastly the moment due to the distributed load. For the counter-
clockwise moment contribution we have the bending moment in x + ∆x, M(x + ∆x).

The moment due to the distributed load is found by looking at a small slice of dis-
tributed load. The force arising from this small area underneath qz(x) corresponds to
qz(x̂)dx̂ = dF. As a result, the moment due to this small area, found by the force times the
distance from O to the slice, is dM = dFx̂. Integrating over all x̂ gives the total moment
due to the distributed load,

Mqz(x) =
∫ ∆x

0
x̂qz(x̂)dx̂. (14.23)

Now we can write up the contributions to the total moment,

∑ M = M(x) + T(x + ∆x)∆x +
∫ ∆x

0
x̂qz(x̂)dx̂−M(x + ∆x) = 0 (14.24)

m

M(x + ∆x)−M(x) = T(x + ∆x)∆x +
∫ ∆x

0
x̂qz(x̂)dx̂. (14.25)

Dividing with ∆x

M(x + ∆x)−M(x)
∆x

= T(x + ∆x) +

∫ ∆x
0 x̂qz(x̂)dx̂

∆x
(14.26)

In order to evaluate the right hand side integral, we again apply the mean value theorem.
This time we first define a function g(x̂) = x̂qz(x̂). The m.v.t states that there exists a point
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c, with 0 ≤ c ≤ ∆x, such that

g(c)∆x =
∫ ∆x

0
g(x̂)dx̂ ⇔ g(c) =

∫ ∆x
0 g(x̂)dx̂

∆x
(14.27)

Thus equation (14.26) becomes

M(x + ∆x)−M(x)
∆x

= T(x + ∆x) + g(c) (14.28)

Taking the limit when ∆x → 0 and we end up with the important result,

moment of momentum:
dM(X)

dx
= T(x) (14.29)

g(c) disappears as x̂ → 0, when ∆x → 0 and g(0) = 0.

Like the kinetic relation, the two important equations; conservation of momentum and
moment of momentum are not dependent on the type of material the body is made of and
thus are true for both elastic and viscoelastic materials.

14.1.4 Static vs. dynamic beams

Above the the three important relations to relate stress, strain and displacement in a static
Euler-Bernoulli beam was derived; the kinematic relation and the equilibrium conditions
(conservation of momentum and moment of momentum).

Static kinetic relation: ε(x, z) = −z
∂2w(x)

∂x2 , (14.30)

Conservation of momentum:
dT(x)

dx
= −qz(x), (14.31)

moment of momentum:
dM(X)

dx
= T(x). (14.32)

As these are derived for a static situation, they are only dependent on the position x.
However, we aimed to describe the pavement response for a moving load on the form
q(x, t), which is a function of both the position x and time t. As this is a dynamic problem,
the above derived equations has to be modified from a static to dynamic situation.

The kinetic equation was derived based on geometrical considerations, which is true
for both the static and dynamic case. Thus, the relation will not change in a dynamic
system with a time dependent strain and beam deflection and we have that the dynamic
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kinetic relation is given by,

Dynamic kinetic relation: ε(x, z, t) = −z
∂2w(x, t)

∂x2 . (14.33)

The equilibrium equations are replaced with the equations of motions (Flügge, 1975).
When deriving the equilibrium equations for the static beam, we used that the sum

of forces is zero. In the dynamic case, the sum of forces are not zero, as we have vertical
acceleration of the beam. The external force on a small beam segment of length dx (as in
fig. 14.6) can be found by use of newtons 2. law,

F = ma = ρA(x)dx
∂2w(x, t)

∂t2 . (14.34)

Here ρ is the density of the beam, A(x) is the cross section and ∂2w(x,t)
∂t2 is the acceleration of

the vertical deflection. The force balance in the dynamic state (corresponding to equation
(14.15) for static state) becomes

T(x, t)− T(x + ∆x, t)−
∫ ∆x

0
qz(x̂, t)dx̂ = ρA(x)dx

∂2w(x, t)
∂t2 . (14.35)

Using the same derivations as previous, we can obtain

∂T(x, t)
∂x

= −qz(x, t) + ρA(x)
∂2w(x, t)

∂t2 . (14.36)

Since we have assumed the beam is uniform and fulfill the Euler-Bernoulli assump-
tion, the cross section will always be constant and A(x) = A.

An underlying assumption with the Euler-Bernoulli beam is that it do not rotate around
the neutral axis. Thereby, there exists no rotational acceleration in neither the static or dy-
namical situation, and as result the moment of momentum can be derived using the same
arguments. Doing so gives the following equation for the momentum,

∂M(x, t)
∂x

= T(x, t). (14.37)

Together equation (14.36) and (14.37) constitute the equations of motion of a dynamic
Euler-Bernouli beam.

14.1.5 Governing equation for the relationship between vertical deflection and
applied load

We are interested in finding a relationship between the applied vertical load qz(x, t) and
the beam deflection w(x, t).
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Consider a cross section normal to the beam axis, thus in the y-z plane (figure 14.1b).
As described above the external load results in internal stresses acting on the cross-section
in the x direction σx. The internal stresses creates a resulting moment M around the plane
x-y plane (illustrated in fig. 14.5a). The resulting moment can be written as

M(x, t) =
∫

A
zσ(x, z, t)dA. (14.38)

Note that the contribution for z=0 is zero as this is directly on the plane (and area cen-
troid), and thus do not create a moment.

In section 13.1.1, we found that for a body made of an elastic material subject to an uniax-
ial stress, the relation between stress and strain can be simplified to

σ(x, z, t) = Eε(x, z, t). (14.39)

Inserting equation (14.39) in (14.38) gives

M(x, t) =
∫

A
zEε(x, z, t) dA = E

∫

A
zε(x, z, t) dA (14.40)

Inserting the dynamic kinematic relation (eq. (14.33),

M(x, t) =
∫

A
zEε(x, z, t) dA = E

∫

A
z(−z

∂2w(x, t)
∂x2 ) dA = IE

∂2w(x, t)
∂x2 (14.41)

Equation (14.41) is called the Euler-Bernouli law and relates the bending moment and
the curvature of of the beam. EI is the flexural rigidity which is a measure of how much
moment that is required to bend the beam with a given curvature. It has the units [Pa m4].

The equations of motion (eq. (14.36) and (14.37)) combined states that

∂2M(x, t)
∂x2 = −qz(x, t) + ρA

∂2w(x, t)
∂t2 . (14.42)

Combining (14.41) and (14.42) gives

∂2

∂x2 (−EI
∂2w(x, t)

∂x2 ) = −qz(x, t) + ρA
∂2w(x, t)

∂t2 (14.43)

m (14.44)

EI
∂4w(x, t)

∂x4 = qz(x, t)− ρA
∂2w(x, t)

∂t2 (14.45)

Equation (14.45) describes the beam deflection w(x, t) of an elastic beam subject to a ver-
tical load qz(x, t) and is true under the condition that EI is constant.
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14.2 Governing equation for deflection of a viscoelastic beam

Above we derived the relationship between beam deflection and applied load for an elas-
tic beam. We now aimed to do the same for a linear viscoelastic beam.

In the case of an elastic beam, the Euler-Bernoulli law was used to get a relation be-
tween curvature of the beam and bending moment. However, this is derived based on
the linear relationship between stress and strain that is valid for elastic beams. For linear
viscoelastic beams, the relationship between stress and strain is time dependent and in
general terms, it is given by equation (14.46).

σ(x, z, t) = ε(x, z, t)E0 −
∫ t

0
ε(x, z, t′)

dE(t− t′)
dt′

dt′ (14.46)

Imagine a small piece of the beam cross section as given on figure 14.1b by δA. The
forces acting on this are given by σδA. This force will give a contribution to the bending
moment in the x direction as given in equation (14.47) (Flügge, 1975).

M(x, t) =
∫

A
zσ(x, z, t) dA. (14.47)

Inserting equation (14.46) into (14.47) gives

M(x, t) =
∫

A

(
ε(x, z, t)E0 −

∫ t

0
ε(x, z, t′)

dE(t− t′)
dt′

dt′
)

z dA. (14.48)

Now applying equation (14.33) gives

M(x, t) =
∫

A

(
(−z

∂2w(x, t)
∂x2 )E0 −

∫ t

0

dE(t− t′)
dt′

(−z
∂2w(x, t′)

∂x2 ) dt′
)

z dA (14.49)

= −
∫

A
z2dA

∂2w(x, t)
∂x2 E0 +

∫

A
z2dA

∫ t

0

dE(t− t′)
dt′

(
∂2w(x, t′)

∂x2 ) dt′ (14.50)

= −I
∂2w(x, t)

∂x2 E0 + I
∫ t

0

dE(t− t′)
dt′

(
∂2w(x, t′)

∂x2 ) dt′. (14.51)

Taking the second-order derivative with respect to x on both sides gives

d2

dx2 M(x, t) =
d2

dx2

(
−∂2w(x, t)

∂x2 IE0 + I
∫ t

0

dE(t− t′)
dt′

∂2w(x, t′)
∂x2 dt′

)
(14.52)

= −∂4w(x, t)
∂x4 IE0 + I

∫ t

0

dE(t− t′)
dt′

∂4w(x, t′)
∂x4 dt′ (14.53)
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Combining the equations of motion and inserting gives us the governing equation for
the deflection of a viscoelastic beam.

ρA
∂2w(x, t)

∂t2 − qz(x, t) = −∂4w(x, t)
∂x4 IE0 + I

∫ t

0

dE(t− t′)
dt′

∂4w(x, t′)
∂x4 dt′ (14.54)

m (14.55)

qz(x, t) = ρ̃
∂2w(x, t)

∂t2 +
∂4w(x, t)

∂x4 IE0 − I
∫ t

0

dE(t− t′)
dt′

∂4w(x, t′)
∂x4 dt′

(14.56)



129

Chapter 15

Viscoelastic beam on a damped
Pasternak foundation

In this chapter, a pavement response model which can be used to fit TSD data is derived.
The model consisted of a viscoelastic beam on top of a damped Pasternak foundation.
The model is also presented in draft 1 in appendix A.3.

The model developed in this chapter is an extended version of the simple elastic
Pasternak model for pavement response under a moving load (Uzzal et al., 2012). The
model is extended by introducing viscous damping in both the beam and foundation.

The final model described the pavement deflection in a moving reference frame. In the
rest of the thesis, we will define x’ as spatial coordinate in a fixed frame and x as spatial
coordinate in a moving frame.

15.1 The simple Winkler model

The simplest beam model consists of an elastic Euler-Bernoulli beam on top of an elastic
foundation. In section 14.1.5, the governing equation for an elastic beam subject to a
vertical load in a fixed frame qz(x′, t) was derived as

EI
∂4w(x′, t)

∂x4 = qz(x′, t) + ρ̃
∂2w(x′, t)

∂t2 . (15.1)

The beam is assumed to extend to infinity, be made from a homogeneous and isotropic
material and is characterised by its elastic modulus E [N

m ] and the second moment of area
pr. unit length, I [m3]. Note that the units of E and I are different from the classical use,
since we are in a one-dimensional situation. The flexural rigidity, EI, of the beam has the
classical units [Nm2].

The beam is resting on a foundation modelled by a set of continuously-distributed
springs with spring constant per unit length k [ N

m2 ]. Assuming a moving point load given
by qz(x′, t) = Fδ(x′ − vt), the deflection of the beam (w(x′, t)) is given by the equation

EI
d4w(x′, t)

dx′4
+ ρ̃

∂2w(x′, t)
∂t2 + kw(x′, t) = Fδ(x′ − vt), (15.2)
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where F is the amplitude of the applied load. A sketch of the simple Winkler model is
seen on figure 15.2a.

Equation (15.2) is within a fixed coordinate system, and this can be changed into a
moving reference frame by assuming a constant driving velocity v and applying the co-
ordinate shift x = x′ − vt. Thereby, the governing equation becomes

EI
d4

dx4 w(x) + ρ̃v2 d2w(x)
dx2 + kw(x) = Fδ(x) (15.3)

The solution to equation (15.3) can be found analytical in the spatial domain. If we
define κ = k1/4

2(EI)1/4 , the the analytical solution to the deflection of a beam in the Winkler
beam model is given by

w(x) =
κ

k
Fe−

√
2|x|κsin

(√
2|x|κ + π/4

)
(15.4)

Equation (15.4) is solved using the Symbolic Math Toolbox in MATLAB, and as a result
the derivation is not presented here. If this was to be done in hand, we would make a
Fourier transform of equation (15.3), solve for the deflection and then make an inverse
Fourier transform.

Equation (15.4) shows that the behaviour of the pavement deflection basin is charac-
terised by the characteristic length κ.

κ =
1
2

(
k

EI

)1/4

Hence, the relative stiffness of the beam compared to the foundation determines the
behaviour of the deflection basin. On figure 15.1, the pavement deflection basin calculated
using (15.4) is plotted for increasing flexural rigidity and constant foundation stiffness.
This corresponds to decreasing the κ value. A decrease in κ, hence an increased stiffness
in the beam compared to the foundation, makes the deflection basin more shallow and
wider. The physical interpretation of this is that the beam takes part in distribution the
point load over several spring elements, and thus broadening the deflection basin.

The foundation can be modelled as a viscoelastic medium instead of an elastic by
adding a set of viscous dampers along the springs. In this case, the governing equation
for the beam deflection in a moving reference frame is given by

EI
d4

dx4 w(x) + ρ̃v2 d2w(x)
dx2 − cv

∂w(x)
∂x

+ kw(x) = Fδ(x)

15.2 The Pasternak foundation

One big limitation with the Winkler foundation model is that it is a series of parallel
springs (and dashpots) which do not influence each other, thus overlooking the cohesive
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FIGURE 15.1: Pavement deflection basin calculated from equation (15.4)
with varying κ. Parameter values used for the plot is F = 49000N, k = 105

and EI = [102, 103, 104]
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FIGURE 15.2: A) Sketch of a Euler-Bernoulli beam on top of an elastic Win-
kler foundation. B) Sketch of an elastic Euler-Bernoulli beam on top of a

damped Pasternak foundation.

bonds between soil particles (Wang et al., 2005; Froio et al., 2018; Yu et al., 2017). As soil is
a granular material, there exists shear interactions between the soil particles and thus this
should be taken into account for a more realistic response.

A way to do so, is to introduce a incompressible shear layer that deforms under trans-
verse shear (Froio et al., 2018). Such a layer is characterised by a parameter G, which is
called the shear coefficient (Yu et al., 2017) or the shear parameter (Uzzal et al., 2012). The
layer is connected with the top of the foundation elements (spring and dashpots) as illus-
trated on figure 15.2b. Physically, the shear layer can be thought of as a set of horizontal
springs in between the soil elements (as illustrated on fig. 15.2b). Beside coping with the
shear interactions, the layer also ensures that the applied load is distributed over multiple
foundation elements, instead of just a few. Thereby, the foundation will act more like a
continuous medium (Froio et al., 2018; Yu et al., 2017).

The govern equation for vertical pavement deflection, w(x′, t), of an elastic Euler-
Bernoulli beam on top of a damped Pasternak foundation in a fixed reference frame is
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given by equation (15.5).

EI
∂4w(x′, t)

∂x′4
+ ρ̃

∂2w(x′, t)
∂t2 − G

∂2w(x′, t)
∂x′2

− c
∂w(x′, t)

∂x
+ kw(x′, t) = q(x′, t) . (15.5)

15.3 Viscoelastic beam on damped Pasternak foundation model

Combining the governing equation for deflection of a viscoelastic beam deduced in sec-
tion 14.2 and the equation for a damped Pasternak foundation in equation (15.5) gives the
following

E0 I
∂4w(x′, t)

∂x′4
− I

∫ t

0

dE(t− t′)
d(t′)

∂4w(x′, t)
∂x′4

dt′...

+ ρ̃
∂2w(x′, t)

∂t2 − G
∂2w(x′, t)

∂x′2
+ c

∂w(x′, t)
∂t

+ kw(x′, t) = q(x′, t) .

(15.6)

Equation 15.6 governs the pavement response to a moving load for a viscoelastic beam
on a damped Pasternak foundation in a fixed reference frame.

A solution for the pavement deflection w(x′, t) can be found using an semi-analytical
approach. Here an analytical solution is found in the wave number domain, and the the
inverse Fast Fourier Algorithm (iFFT) is used to find the pavement deflection in spacial
domain numerically.

Using the convolution theorem, the Fourier transformed of equation (15.6) with re-
spect to time and space is derived (equation (15.7)). We use ω and kx as the transform
variable with respect to time and space respectively.

(E0 − Ẽ(ω)iω)Ik4
xŵ(kx, ω)− ρ̃ω2ŵ(kx, ω) + Gk2

xŵ(kx, ω) + ciωŵ(kx, ω) + kŵ(kx, ω) = q̂(kx, ω)
(15.7)

We then solve for the pavement deflection, ŵ(kx, ω).

ŵ(kx, ω) =
q̂(kx, ω)

IE∗(ω)k4
x − ρ̃ω2 + Gk2

x + ciω + k
(15.8)

E∗(ω) = (E0 − Ẽ(ω)iω) is the complex modulus of the beam. A specific viscoelastic
model to describe the beams behaviour can be inserted as required.

15.3.1 Shift to moving reference frame

Equation (15.6) accounts for the vertical deflection of the pavement in a fixed coordinate.
However, we are interested in the pavement deflection in a moving coordinate system as
we aimed to model the pavement response measured by the TSD. Consequently, equation
(15.6) has to be changed into a moving reference frame. This is done by assuming a steady
state situation, where the driving velocity (v) is constant. In this case, we can make the
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coordinate shift x = x′ − vt, where x is our new time dependent x coordinate. Applying
a coordinate shift in equation (15.6) is not as trivial as in the case of the Winkler model,
since it contains a convolution integral. As a result, the coordinate shift is made in the
frequency domain. This means that we have to find the approriate coordinate shift in the
frequency domain and apply it to equation (15.8).

We start of by showing how this is done for a general system on the form Lw(x′, t) =
q(x′, t), where L is a linear differential operator, and afterwards it is applied to our partic-
ular system (equation (15.6)).

The solution to a system on the form Lw(x′, t) = q(x′, t) can be found using the Green’s
function. The Greens function is the fundamental solution to a partial differential equation
and is given by the solution to a system subject to an impulse load (Sun, 2001). Thus, for
a system on the form Lw(x′, t) = q(x′, t), the Greens function is the solution to

Lwδ(x′, t) = δ(x′)δ(t). (15.9)

The solution to the original system is then given by the convolution w(x′, t) = wδ(x′, t) ∗
q(x′, t). Due to the convolution theorem, transforming the system into the frequency do-
main gives the simple solution ŵ(kx, ω) = ŵδ(kx, ω) · q̂(kx, ω).

Using this relation, we can write up the general expression for the inverse Fourier
transformed pavement deflection in a fixed frame.

w(x′, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵ(kx, ω)eikxx′eiωtdkxdω (15.10)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)q̂(kx, ω)eikxx′eiωtdkxdω (15.11)

Now, lets start by evaluate the loading function term q̂(kx, ω) in equation (15.11). From
the definition of the Fourier transform we have that

q̂(kx, ω) =
∫ ∞

−∞

∫ ∞

−∞
q(x′, t)e−ikxx′e−itωdx′dt (15.12)

For a moving load at constant velocity the loading function can be written on the form

q(x′, t) = Q(x′ − vt). (15.13)

Including this into equation (15.12) gives

q̂(kx, ω) =
∫ ∞

−∞

∫ ∞

−∞
Q(x′ − vt)e−ikxx′e−itωdx′dt (15.14)

Introducing the coordinate shift x = x′ − vt and exploiting that dx
dx′ =

d(x′−vt)
dx′ = 1 gives,
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q̂(kx, ω) =
∫ ∞

−∞

∫ ∞

−∞
Q(x)e−ikx(x+vt)e−itωdxdt (15.15)

=
∫ ∞

−∞
Q(x)e−ikxxdx

∫ ∞

−∞
e−it(vkx+ω)dt. (15.16)

Since the limits is from minus infinity to infinity, changing the coordinate does not af-
fect these. Using that

∫ ∞
−∞ eit(x−a)dt = 2πδ(x − a), we get the expression for the loading

function in a moving reference frame:

q̂(kx, ω) = 2π
∫ ∞

−∞
Q(x)e−ikxx dx δ(vkx + ω) = 2πQ̂(kx)δ(vkx + ω). (15.17)

We now return to the Fourier transform of the pavement deflection in equation (15.11).

w(x′, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)q̂(kx, ω)eikxx′eiωtdkxdω (15.18)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)Q̂(kx)δ(vkx + ω)eikxx′eiωtdkxdω (15.19)

=
1

2π

∫ ∞

−∞
Q̂(kx)eikxx′

∫ ∞

−∞
ŵδ(kx, ω)δ(vkx + ω)eiωt dω dkx (15.20)

In order to solve the integral over ω, we use the fact that a delta function δ(x− a) is zero
all other places than in a. Hence, if we have a function

∫ ∞
−∞ f (t)δ(t− t0)dt = f (t0). Thus

we get

w(x′, t) =
1

2π

∫ ∞

−∞
Q̂(kx)eikxx′ ŵδ(kx,−vkx)e−ivkxt dkx (15.21)

=
1

2π

∫ ∞

−∞
Q̂(kx)ŵδ(kx,−vkx)eikx(x′−vt) dkx (15.22)

=
1

2π

∫ ∞

−∞
Q̂(kx)ŵδ(kx,−vkx)eikxx dkx (15.23)

This shows that making a coordinate shift in the wave number domain corresponds to
the substitution ω = −vkx. Thus, a general expression for the the Fourier transformed
pavement deflection in a moving frame is

ŵ(kx, ω) = ŵδ(kx,−vkx)Q̂(kx). (15.24)

As for the loading function, the pavement deflection can be rewritten in terms of the
new moving reference coordinate

w(x′, t) = W(x− vt) = w(x). (15.25)
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FIGURE 15.3: Sketch of a viscoelastic beam resting on a damped Pasternak-
Winkler foundation. Here E∗(ω) is the complex modulus of the beam, I is
the beams second moment of area, k is the foundation spring constant, c is
the viscous damping constant and G is the shear interaction parameter. The
elastic Winkler-Pasternak model is obtained by setting c = 0 and E∗(ω) =

E.

For the system in equation (15.6), the Fourier transformed Green’s function in a mov-
ing reference frame is

ŵδ(kx,−vkx) =
1

IE∗(−vkx)k4
x − ρ̃v2k2

x + Gk2
x − cikxv + k

Using this, we obtain the expression for the Fourier transformed pavement deflection,

ŵ(kx,−vkx) =
Q̂(kx)

IE∗(−vkx)k4
x − ρ̃v2k2

x + Gk2
x − vcikx + k

. (15.26)

The pavement deflection of the beam, w(x) can then be found using the inverse Fast
Fourier Algorithme (iFFT) for numerical inversion of equation (15.26).

The term ρ̃v2k2
x account for any contributions to the pavement response from the ver-

tical acceleration of the pavement. If we assume that inertial effects in the pavement is
much faster than the movement of the load, this can be neglected (Di Paola et al., 2013).
This simplification is possible as we have a moving load, whereas for a stationary load
the effects of vertical acceleration can no be neglected.

For simplicity, the load is often modelled as a point load (described by the Dirac delta
function) with constant amplitude F [N]. In this case, we have Q(x′ − vt) = Fδ(x′ − vt)
and Q̂(kx) = F. Since we are working with an beam model, where the assumption is that
the beam only deflect and not deform, the beam will contribute to distributing the load
over foundation elements and thus assuming a point load and not a distributed load will
not change the model output much.

15.4 Layer dimensions in a 1D model

The presented model is a one-dimensional simplification of the pavement structure, which
in its nature is 3 dimensional. As a consequence, the model contains no direct notion of
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length, width or layer thicknesses. Through the model parameters, an approximate notion
of width and layer thickness can be given.

The width of the pavement is introduced as an underlying assumption when conect-
ing the spring stiffness k and shear parameter G to the material parameters elastic modu-
lus E and shear modulus G̃ of the soil layer. The shear parameter G is connected with the
shear elastic modulus G̃ of the foundation material through equation (15.27) (Tanahashi,
2004). Here we assume that that the vertical displacement W(x′, z) throughout the layers
can be expressed in form of the surface displacement w(x′) and a shape function φ(z),
where z is the coordinate going down the pavement (see fig. 15.2b).

G = BG̃
∫ H

0
φ(z)2dz, (15.27)

where H is the depth of the soil layer and B is the effective width of beam and soil (as-
sumed to be 1 meter (Tanahashi, 2004)). For shallow layers the shape function can be
approximated as φ(z) = 1− z

H , and thus equation (15.27) becomes

G =
H
3

G̃. (15.28)

Likewise the spring stiffness k is connected to the elastic modulus of the foundation
through

k = E
A
H

, (15.29)

where A is the area over which the force is applied (as k is spring constant per unit length
A = 1 m) (Lautrup, 2011).

The layer thickness of the soil layer is given by H and is introduced when converting
from one-dimensional parameters to the more familiar material parameters E and G̃.

The layer thickness of the top layer is introduced through the second moment of area
per unit length I. If the beam is assumed a rectangle, I is given by

I =
1
12

h2 (15.30)

where h is the beam thickness.

The spring and dashpot elements in the foundation layer are attached to a hard bot-
tom. Thus, we implicit assume the present of a third underlying layer in the form of a
hard rock foundation which is not compressed. One of the reasons behind developing a
simple pavement response model was to fit it to TSD measurements in order to estimate
the pavement deflection slope underneath the load. However, in Denmark (where some
of the TSD measurements are made) there are no underling hard rock foundation and thus
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a more realistic model would be a viscoelastic half-space medium which continues indefi-
nitely in the downwards direction. In an infinite half-space, the wave-propagation created
by the deflection of the surface will continue downwards, whereas it for a hard bottom
will be bounced back and influence the total deflection basin. However, we expected this
inconsistency in the model to affect the output at high wavelengths and thus far away
from the area where our model fitting was happening. Therefore, this was believed not to
influence the accuracy of the model fit preformed in part V.
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Chapter 16

Numerical study of the pavement
response model

By use of inverse FFT algorithm, equation (15.26) can be solved in the spatial domain and
the pavement response to a moving load found. In the rest of this part of the thesis, a
numerically study of the model will be presented. To begin with a viscoelastic model for
the beam and a set of parameter values had to be chosen. This is done in section 16.1 and
16.2, followed by an initial analysis of the resulting pavement deflection basin and slope
in section 16.3.

16.1 Choice of viscoelastic model for the beam

The viscoelastic behaviour of the beam can be described through mathematical or mech-
anistic model. In this study, we considered mechanistically models where physically ele-
ments was used to describe the viscoelastic behaviour. We aimed to develop the simplest
possible model, as it was intended to use this to fit to TSD measurements which contained
merely 9-10 datapoints. Thus, we chose to use the simplest model that had the correct
E∗(ω) behaviour, namely the Maxwell model. The complex modulus for the Maxwell
model can be written in terms of elastic modulus E and characteristic time τ,

E∗(ω) = E
iωτ

1 + iωτ
. (16.1)

16.2 Choice of parameters

In order to perform a numerical study, a set of parameter values is needed. In this section,
a set of default parameter values will be presented and these will be used throughout the
rest of the numerical study, in order for results to be comparable. The default parameter
values are listed in table 16.1 and bellow a short discussion of them is made.
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External parameters

A point load was used unless otherwise is specified. This was given by Q(x′ − vt) =
Fδ(x′ − vt), where F is the magnitude of the load. As default we simulated a truck with a
10 tonnes axle-load, thus 5 tonnes on each tire pair. The driving velocity are set to be 60
km/h.

Foundation parameters

Parameter values for the stiffness (k) and shear parameter (G) for the foundation were
adopted from Mallik et al. (2006). This particular foundation stiffness value is also used
in Elnashar et al. (2019) and Uzzal et al. (2012) and is referred to as a medium stiff soil. As-
suming the foundation is isotropic, the parameters k and G can be converted to a measure
of elastic modulus E and shear modulus G̃ of the soil layer, respectively.

k = E
A
H

, G = BG̃
H
3

, (16.2)

where A is the area over which the force is applied (as k is spring constant per unit length
A = 1 m), H is the height of the soil layer and B is the width of the beam and foundation
layer (Tanahashi, 2004; Lautrup, 2011). Assuming H = 3m gives Esoil = 12MPa, which is
relative low for soil. Thus, we expected the foundation to behave rather soft. Assuming
B=1 m (as done in Tanahashi (2004)), the shear modulus corresponding to G was found
to be G̃ = 0.6MPa. This exact value for G was used in several numerical studies about
the Pasternak foundation and for this reason was adapted here (Elnashar et al., 2019; Sne-
hasagar et al., 2019; Uzzal et al., 2012; Mallik et al., 2006).

The damping in the foundation is characterised by the foundation damping pr. unit
length c. A more conventional way to characterise it, is through the damping ratio, ζ. ζ is
defined from the viscous damping coefficient c and the critical damping cc of the system,

ζ =
actual damping
critical damping

=
c
cc

(16.3)

For a system of springs and dashpots in parallel, the critical damping is given by

cc = 2m
√

k/m, (16.4)

where m is the mass of the system and k the spring constant.
In a 3-dimensional model, k has units [ N

m ], the mass m is found in [kg], and thus cc

has the units [ Ns
m ]. However, in our 1D model k is the spring constant per unit length [ N

m2 ]

and we had to use the mass per unit length [ kg
m ]. Thus the units for cc is [ Ns

m2 ] and this is
called the critical damping coefficient per unit length. It has similar units as the viscous
damping coefficient pr unit length, and thus ζ is dimensionless. We assumed a damping
ratio ζ = 0.3, as we aimed to study a system with significant damping in the foundation.
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Beam parameters

Parameters for the viscoelastic model for the beam (equation (16.1)) was based on rheo-
logical experiments made in Pronk (2006). In this, the Huet-Sayegh model was fitted to
data and the associated parameter values listed. Using this as a reference, we have fitted
equation (16.1) and obtained parameters in table 16.1 (fig. 16.1). As seen on figure 16.1,
the Maxwell model provided a rather bad fit to the Huet-Sayegh model, as a result of its
simplicity. However, this procedure was followed as no studies with Maxwell modelfit to
data where found, and we aimed to ensure realistic values for Evisco and τ.

Beside the parameters for the complex modulus, the beam is also described by its sec-
ond moment of area per unit length, I. The beam was assumed a rectangle and I was given
by I = 1

12 h3. We assumed that the beam was 10 cm thick.

To enable a comparison between elastic and viscoelastic beams, we chose a value for
the elastic module, Eelastic, which gives a similar maximum deflection amplitude for the
elastic and viscoelastic response. Thus, the two solution has the same effective stiffness
and only the amount of damping is different (as seen on figure 16.2a).
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FIGURE 16.1: In Pronk (2006) the Huet-Sayegh model is fitted to theological
data and th best fit found (black line). Using this as a reference, we have
fitted equation (16.1) and obtained the best fit (parameters in table 16.1. As

seen, the Maxwell model provide a rather bad fit due to its simple form.
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TABLE 16.1: Parameter values used for numerical study.

Default simulation parameters

Description symbol value unit based on

Moving load F 49000 N
Vehicle velocity v 16.67 m/s
Foundation
foundation stiffness per unit length k 40.8 · 105 N/m2 Mallik et al. (2006)
shear interaction parameter G 66.7 · 104 N Mallik et al. (2006)
damping ratio ζ 0.3
foundation damping per unit length c 8.5 · 104 Ns

m2

Beam
Elastic modulus per unit length Evisco 1.7 · 1010 N

m Pronk (2006)
Second moment of area per unit length I 8.3·10−5 m3

Characteristic time τ 5.4·10−4 s Pronk (2006)
Elastic modulus per unit length Eelastic 4.2·108 N

m
Temperature T 25 ◦C Pronk (2006)

16.3 Simulated pavement deflection basin and slope

In figure 16.2, a plot of simulated pavement deflection basin and slope is seen for the
model using an elastic beam and a viscoelastic beam. In the pavement deflection basin
(fig. 16.2a), the viscoelastic effects manifested itself by the maximum deflection occurring
behind the load (x=0). Furthermore, we found that the time delay in the pavement made
the deflection basin broader behind the load than in front of it. This effect was bigger
when damping is included in both foundation and beam, as we would expect. Recall that
the parameter values was chosen such that the maximum deflection in the two scenarios
were the same, and thus no change was seen here.

The associated pavement deflection slope curves were characterised by having a min-
imum behind behind the load and a maximum in front of the load. Introducing a vis-
coelastic top layer affected the amplitude of the maximum and minimum as well as the
slope underneath the load (x=0), which became larger. In section 10, the slope underneath
the load was associated with the structural rolling resistance loss and thus, as expected,
we find a bigger loss when damping was present in both layers.

16.4 Influence of asphalt thickness

Through numerical study of the model, we investigated how different components of the
model influenced the pavement response. In this section, we will investigate how chang-
ing the beam thickness influence the resulting pavement deflection. The beam thickness
is a desired physical property to investigate as the asphalt thickness often changes in real
life situations.
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FIGURE 16.2: A) Pavement deflection underneath a moving load for the
model with an elastic and viscoelastic beam. The viscoelastic effects man-
ifest itself in the maximum deflection occurring behind the load (x=0). B)
Associated pavement deflection slope. Introducing a viscoelastic top layer
affects the amplitude of the maximum and minimum as well as the slope
underneath the load (x=0). The simulation is made using default parameter

values listed in table 16.1.
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The beam thickness h was introduced into the model through the second moment of
area per unit length I. Thus, the beam thickness influence the flexural rigidity (EI) of the
beam by,

EI =
1

12
h3E. (16.5)

There are some limitations to the value which h can take as it has to stay within the
models validity domain.

A fundamental assumption for a beam structure is that one dimension has to be much
larger than the other, meaning that the length of the beam has to be much larger than the
height, L >> h. Furthermore, its thickness has to be much smaller than the radius of
curvature. When investigating how h influence the pavement response, this assumption
should always be fulfilled in order to obtain trustworthy results.

Likewise, there are restrictions for the flexural rigidity (EI) of the beam when it is on
top of an Pasternak foundation. EI is a measure of how much moment that is required to
bend the beam with a given curvature. As a result, decreasing h (and thereby EI) will at
some point result in a nonphysical behaviour of the deflection basin. In the limit I → 0,
equation (15.6) will be reduced to a second order linear partial differential equation. The
solution to this is on the form of an exponential function, and thus if we predict the pave-
ment response from this model, we will obtain a deflection basin that is constructed by
two exponential functions approaching each other in the maximum deflection. This is
clearly an nonphysical behaviour and should be avoided.

Provided that we are within the limits of the models validity domain, the influence
of h can be investigated. On figure 16.3, a plot of the pavement response simulated for
different beam thicknesses are seen. The thickness was changed within 5-15 cm, as these
are realistic thicknesses for an asphalt layer. The flexural rigidity is also listed for each
height. We found that when h (and IE) was increased, the maximum deflection was de-
creased and the deflection basin became increasingly broad. Furthermore, the maximum
deflection moved away from the center of the load as increased IE acts as a scaling of the
beam damping.

Evaluating the deflection slope at increased h revealed that it had a different effect
on the minimum and the maximum. Both experience decreasing amplitudes when h is
increased, but only the x-placing of the minimum is affected by moving further away
from the load.
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FIGURE 16.3: Simulated pavement response at different height of the top
layer. We found that when h (and IE) was increased, the maximum deflec-
tion decreased and the deflection basin became increasingly broad. Fur-
thermore, the maximum deflection moved away from the center of the load

as IE actsd as a scaling of the beam damping.
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Chapter 17

How the complex modulus of the
beam influence the pavement
response

The simple pavement response model derived in chapter 15, is given by

ŵ(kx,−vkx) =
Q̂(kx)

IE∗(−vkx)k4
x + Gk2

x − vcikx + k
. (17.1)

For the model presented in equation (17.1) it holds that

lim
kx→0

ŵ(kx,−vkx) =
Q̂(kx)

k
, (17.2)

lim
kx→∞

Ŵ(kx,−vkx) =
Q̂(kx)

IE∗(−vkx)k4
x

. (17.3)

Equation (17.2) states that the behaviour of the pavement response at small wave num-
bers (big wavelengths) is dominated by the elastic behaviour of the foundation. On the
other hand, the behaviour of the pavement response at high wave numbers (low wave-
lengths) is dominated by the viscoelastic beam term (eq. (17.3)). Note that strictly speak-
ing, equation 17.1 will go to zero as kx goes to infinity.

Equation (17.2) and (17.3) implies that the pavement behaviour close to the load is dic-
tated by the beam properties, whereas the behaviour far away from the load is determined
by the foundation parameters. The viscoelastic behaviour of the beam is determined by
the chosen model for the complex modulus. In this study, we have chosen to primarily
use the Maxwell model whose complex modulus in a moving reference frame is

E∗(−vkx) = E
−ivkxτ

1− ivkxτ
. (17.4)

We aimed to study how the the model output, thus the pavement response, was af-
fected by the complex modulus of the beam. A systematic way to do so is by looking at the
sensitivity function. The sensitivity function of a given parameter can be found by looking
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at the partial derivative of the model with respect to that parameter. Thus, the sensitivity
of the pavement response in the wave number domain with respect to E∗(−vkx) can be
found by

∂ŵ(kx,−vkx)

∂E∗(−vkx)
= − FIk4

x
(E∗(−vkx)Ik4

x + Gk2
x − icvkx + k)2 . (17.5)

The sensitivity function ∂ŵ(kx ,−vkx)
∂E∗(−vkx)

is a function of wave number, and provides infor-
mation about for which wave numbers E∗(−vkx) influence the model output. On figure
17.1a, a plot of the sensitivity function using default values in table 16.1 is shown (blue
area curve). As equation (17.5) is a complex function we chose to plot the absolute value.
As seen, the sensitivity function for E∗(−vkx) is bell shaped around some maximum. The
magnitude of the sensitivity function indicated how sensitive the model output was to
E∗(−vkx) at a given wave number. Consequently, we observed that there existed an in-
terval in the wave number domain where ∂ŵ(kx ,−vkx)

∂E∗(−vkx)
> ε, with ε being a small number.

For the rest of the wave number domain, the sensitivity function was approximately zero.
This interval of wave numbers where the sensitivity function was nonzero is called the
sensitivity interval.
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FIGURE 17.1: A) plot of the sensitivity function ∂ŵ(kx ,−vkx)
∂E∗(−vkx)

and the Maxwell
model (eq. (17.4)) using default parameters from table 16.1. B) Maxwell
model and the sensitivity function ∂ŵ(kx ,−vkx)

∂E∗(−vkx)
plotted on normalized axis.

The use of normalized wave numbers κ = −vτkx makes it possible to com-
pare complex modulus curves and the sensitivity function when parameter

values are changed.

On figure 17.1a, the complex modulus using default parameters is also plotted. The
sensitivity interval was found to not cover all of the complex modulus curve but only
some small part of it. As a result, only the behaviour of the storage and loss modulus
within this interval of wave numbers influenced the modelled pavement response.

Changing the value of parameters in the model will shift the the sensitivity interval
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and/or the E∗(−vkx) curve and as a result a different part of storage and loss modulus
was covered by the sensitivity interval. Thus, different amount of damping and stiffness
expressed in the simulated pavement response.

A consequence of being in a moving reference frame is that the complex modulus is
a function of kx, and furthermore has the driving velocity as a parameter. Thus changing
the driving velocity will affect what part of the complex modulus is within the sensitiv-
ity interval, and as a result, affects the pavement response. On figure 17.1b, the complex
modulus is plotted on normalized x and y axis. In addition, a plot of the sensitivity inter-
val using default parameter values (blue) and with increased driving velocity (purple) are
plotted. The use of normalized wave numbers (κ) entails that that the complex modulus
curve is fixed and the sensitivity function will shift up or down when parameter values
are changed. This makes a comparison of different parameter sets possible.

Through this, we found that increasing the driving velocity shifted the sensitivity
function to a higher normalized wave number. This resulted in a pavement response with
a higher degree of viscous damping and a slightly higher stiffness. If v was increased fur-
ther, the sensitivity interval would pass the loss modulus peak and the behaviour would
be like an elastic beam with E∗(∞) as an elastic modulus, thus experience no damping
from the beam.

In conclusion, the pavement response of a viscoelastic pavement subject to a moving
load depended on the given driving velocity. This was opposite to the purely elastic case,
where the deformation is independent on the loading frequency as E∗(−vkx) is constant
over all kx.

The pavement response will also depend on the temperature. Changing the tempera-
ture of the viscoelastic beam correspond to changing the parameter values of τ and E and
thus is effectively a shift of the complex modulus curve. In order to investigate the effect
of temperature on the pavement response, we use the relation between asphalt tempera-
ture and Huet-Sayegh model parameter values found from rheological measurements in
Pronk (2006). From these, associated Maxwell model parameter values can be found and
the sensitivity function calculated.

On figure 17.2 the sensitivity function and E∗(−vkx) on normalized axis for different
temperatures is plotted. Here we see that increasing the temperature of the beam result
in the sensitivity interval being shifted from high to low normalized wave numbers. As a
result, having a low road temperature result in a stiff pavement behaviour and having a
warm road result in a softer behaviour. The amount of damping expressed by the pave-
ment depends on the specific location of the sensitivity interval with respect to the E”
peak.

17.0.1 How choice of E∗(ω) influence the pavement response

A consequence of the existence of the sensitivity interval is that the effect of different
complex modulus models on the pavement response differs depending on where the sen-
sitivity interval is located.



150 Chapter 17. Influence of complex modulus

FIGURE 17.2: Plot of the sensitivity interval and the E∗(−vkx) curve on nor-
malized axis. Changing the temperature of the asphalt layer changes the
parameter values for E and τ, which correspond to shifting the E∗(−vkx)
curve. On normalized axis, this is like moving the sensitivity function

downwards with respect to the E∗(−vkx) curve.

An example with three mechanistic models; Maxwell, Burger’s and Huet-Sayegh (see
section 13.3), is shown on figure 17.3. Overall, the complex modulus curve for the differ-
ent models has the same trends, with a peak in the loss modulus and a elastic regime at
low and high frequencies. If we considered the complex modulus for the models at high
frequencies, we found that they all went towards some plateau value, determined by the
spring constants (eq. (17.6) ). However, if we considered their behaviour at low frequen-
cies (eq. 17.7), the Maxwell and Burger model went to zero whereas the Huet-Sayegh
model went to a nonzero plateau value.

lim
kx→∞

E∗Maxwell = E, lim
kx→∞

E∗Burger = E1, lim
kx→∞

E∗Huet−Sayegh = E2 + E1 (17.6)

lim
kx→0

E∗Maxwell = 0, lim
kx→0

E∗Burger = 0, lim
kx→0

E∗Huet−Sayegh = E1 (17.7)

Consequently, if the sensitivity interval was located at high frequency (scenario 1 fig.
17.3), no difference in the pavement response would occur when changing E∗(−vkx)
model. On the other hand, if the sensitivity interval was located around the loss peaks
(scenario 2 fig. 17.3) a big difference between the different models was seen. Thus, the
validity of using the simple Maxwell model to represent the viscoelastic behaviour of the
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FIGURE 17.3: Complex modulus for the three mechanistic models;
Maxwell, Burger’s and Huet-Sayegh. For details see table ??. The curves

is made using parameters from table 17.1.

beam was higher if the sensitivity interval is located at either high or low wave num-
bers. For the chosen default parameter values, we found that the sensitivity interval was
located at relative low wave numbers (fig. 17.1b) and consequently using the Maxwell
model might be a good enough approximation.
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TABLE 17.1: Parameters used for simulation in figure 17.3. The parameter
values is chosen such that the complex modulus curves is comparable at

normalized frequency.

Simulation parameters for E∗(−vkx) models

Maxwell model Burger’s model Huet-Sayegh model

E 1.7 ·1010 N
m E1 1.7 ·1010 N

m E1 150 ·106 N
m

τ 5.4·10−4 s τ1 5.4·10−4 s τ 1.3·10−5 s
E2 1.7 ·1010 N

m E2 1.8·1010 N
m

τ2 2.7 ·10−4 s k 0.7 -
h 0.2 -
δ 0.08 -
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Chapter 18

Sensitivity analysis of the model

A mathematical model is a tool used in the attempt to explain the world around us. Often
the real world are incredible complex and in order to understand it we seek to simplify it
by a mathematical model. Roughly speaking, a model has an input and an output (these
can be an multi-dimensional). The input can be subject to many sources of uncertainties,
this includes measurement errors, absence of information or poor understanding of the
driving forces of the modeled mechanism (Saltelli et al., 2000). This limits our confidence
in the model output.

Sensitivity analysis is the study of how the output of a model depends on the inputs. It
can be use to evaluate how confident we are in the model and assessing the uncertainties
associated with the model (Saltelli et al., 2000).

A sensitivity analysis can be used for different purposes:

1) to investigate which inputs have the biggest influence on the output. This can help
in designing the experiments and deciding which data are important to obtain in
order to be able to estimate all parameters uniquely.

2) to investigate whether any parts or parameters in the model can be eliminated due
to it being insensitive or correlated with other parameters. This can lead to an re-
duction in the parameter space and might simplify the model. This is also called
model lumping.

There exists many different methods and approaches to analyse the sensitivity of a
model, each with individual strengths and weaknesses. What methods to chose should
be guided by the intended information one wish to obtain.

The model investigated is the pavement response model developed in chapter 15 with
a point load and the Maxwell model as E∗(−vkx) .

ŵ(kx,−vkx) =
F

(IE −vkx iτ
1−vkx iτ )k

4
x + Gk2

x − vcikx + k
. (18.1)

The model has five parameters, Θ = {IE, τ, k, c, G}, each corresponding to a physical
characteristics of the system. The direct output of the model in equation (18.1), is the
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pavement deflection in the frequency domaine ŵ(kx,−vkx). Using numerical inverse Fast
Fourier Algorithm (iFFT) we can obtain the pavement deflection w(x) as a model output.

The aim of this chapter is to investigate how the different physical parameters influ-
ence the models output in the spatial domain, namely the pavement deflection. This can
be either in the form of the deflection basin w(x) or the deflection slope dw(x)

dx .
This was done through a local sensitivity analysis evaluating the individual parame-

ters impact and subsequently a global analysis which evaluates any correlations between
parameters as well as a much larger parameter space. Both types of sensitivity analysis
performed here was numerical, and thus requires some set of starting parameter values
denoted θ0, which was the default values presented in table 16.1.

18.1 Local sensitivity analysis

We started by performing a local sensitivity analysis, where we pertubated one parameter
while all others were hold constant. The resulting change in model output was then mon-
itored in the form of the magnitude and x-position of the maximum deflection and the
maximum and x-position of the maximum and minimum deflection slope. We chose to
look at not only the deflection basin, but also characteristic features of the deflection slope
as this was the output of the TSD and thereby the influence of various physical parameters
on this quantity is interesting.

In the deflection basin, the time delay in the pavement response due to viscous effects
in the pavement was manifested by the maximum deflection occurring behind the load.
The larger a time delay experienced, the further away from the center of the load (x=0) the
maximum deflection occurred. Thus, we expected this quantity to describe the amount of
damping in the pavement. Similarly, the magnitude of the maximum deflection, reflected
how stiff or soft the pavement behaves. The behaviour of the pavement deflection slope
is more complicated to interpret.

Figure 18.1 showed a combined plot of the influence on the characteristic values when
changing the parameter values of k,G, ζ,τ and E, respectively. This yielded information
about how the pavement response is influenced by a particular parameter. Note that all
parameter values were decreased with a factor 0.01 and increased with 1000 times. This
gave some unrealistic parameter values for some parameters, and also resulted in some
unnatural deflection basins. However, these plots can be used to get a general idea about
how each parameter influences the model output and to which parameter the model out-
put is most sensitive. The most important results from figure 18.1 is reviewed below.

On figure 18.1a-b, the behaviour of the amplitude and x-position of the maximum de-
flection is shown. Three interesting features were worth noticing based on the plot. First
of all, we found that the foundation stiffness k had the biggest influence on the ampli-
tude of the maximum deflection among all the parameters. This was particularly evident
when k became small and the foundation became soft, and the result was a deep and
narrow deflection basin.
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FIGURE 18.1: The influence of the physical parameters in the model on
the pavement response. The parameters influence will be evaluated with
respect to their impact on the maximum deflection, and the maximum and
minimum deflection slope. We are looking at both the magnitude and x-

location, as these gives separate information.
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Secondly, a peak in the x-position curves for both the foundation and beam damping
was found. This quantity is often correlated with the amount of damping in the pave-
ment and thus this indicated that there existed a value for both τ and ζ which yielded
a maximum amount of damping. This behaviour was not surprising for τ, as the loss
modulus of the beam has a peak value. A similar behaviour is not seen for the E curve, as
this acts as a scaling in the Maxwell model (eq. (17.4)), and thus just amplified the value
of E”. More surprising was it to see this behaviour for the foundation damping ζ as this
was expected to influence the damping in the model in a linear way. The explanation is
that the values at which the maximum damping behaviour is seen, were so large that the
dash-pot became increasingly difficult to compress and thus begun to act stiff.

The third thing worth noticing about the deflection basin was that increasing founda-
tion stiffness in form of k or G could counteract an increase in foundation damping. Thus,
the "actual damping" experienced by the pavement from the foundation was not just de-
termined by the damping parameter ζ, but a function of all foundation parameters.

On figure 18.1c-f, the parameters influence on the deflection slope was plotted. A
common trend is observed, that for increased parameter values the magnitude of both
the minimum (18.1e) and maximum (18.1c) went towards zero. On the other hand, the
behaviour of the x-position of the two peaks is behaving different with respect to the
different parameters. This made us capable of distinguishing between changes in the dif-
ferent parameter values based on the pavement deflection slope signals. E.i. it is possible
to distinguish between increased (or decreased) stiffness in the top layer and the founda-
tion. Where an increase in k, and in some extend G, made the peaks move closer to x=0,
an increase in η and E moved the peaks away from x=0.

The influence of driving velocity v was also investigated and it was found that for a
big range, it had the same influence on the pavement response at τ. This was due to v
being multiplied on τ in equation (18.1), and thus these were correlated. However, v was
also correlated with the foundation damping ζ, and thus deviated from the behaviour of
the beam parameters when v was large.

The analysis performed above is a local sensitivity analysis, meaning that it takes its
starting point in θ0 and explores the parameter space in the neighbourhood of this. This
method assumes a linear input-output relationship, which in some cases is not enough
to obtain reliable estimates of the output uncertainty in the model (Saltelli et al., 2000).
Furthermore, this approach is highly dependent on the chosen starting point and it gives
only a local interpretation of the parameters influence on the model output.

In order to get a more comprehensive analysis, a global sensitivity analysis should
be made where all parameters are varied simultaneously and the sensitivity is measured
over all input parameters.
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18.2 Global sensitivity analysis

In this section, a global sensitivity analysis was made using the Metropolis Monte-Carlo
(MMC) method. Using this, we can obtain information about the sloppiness and degree
of correlation within the parameters. The Metropolis Monte-Carlo (MMC) method is used
to explore a bigger part of the parameter space. It has the advantage that it is less likely
to get stuck in a local minimum compared to other methods and that it can explore more
than 2 dimensional parameter spaces. In the MMC method, the parameter values θ is
varied in an iterative way and then the given cost function, C(θ), is evaluated. The new
parameter set is then either accepted and saved or rejected based on some criteria. This
procedure is repeated until a certain amount of parameter sets has been accepted. The
method is described in detail in appendix C.

Using the MMC method, we have analysed the model. For this analysis we used the
following cost function

C(θnew) =
m

∑
i=1

(
(w(xi, θ0)− w(xi, θnew))

2
)

, (18.2)

where m is the number of data points and θ0 is original parameter values. The sampling
temperature used is defined as

Ts =
2C(θ0)

N
, (18.3)

where N is the number of parameters in θ (Frederiksen et al., 2004; Tofteskov et al., 2019).
The step size in the algorithm was determined by δθ0, which was chosen such that the
acceptance ratio (number of accepted attempts / number of attempts) was around 0.5
according to recommendation in Tofteskov et al. (2019).

For the analysis, a synthetic set of m data points (w(x, θ0)) was generated using the
model with initial parameter values listed in table 16.1 plus some white noise. This was
done to avoid the algorithm to get stuck in a minimum corresponding to θ0.

The result of the MMC algorithm was an ensemble of parameter value sets, which
are seen represented as histograms on figure 18.2a. The foundation parameters (k, c and
G) was found to be well defined, illustrated by the normal distribution of the parameter
ensemble. On the other hand, the beam parameters IE and τ were found to be sloppy,
indicated by a skewed distribution of their parameter ensemble (fig. 18.2a). The fact that
IE and τ were sloppy, and thus could not well defined as individual parameters, was not
surprising when looking at the analytical expression in equation (18.1) and it meant that
it was not possible to obtain good estimates of these parameters individually based on a
model fit.

The complex modulus of the Maxwell model is given by equation (18.4) where it is
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(A) histogram over parameter ensemble ac-
cepted in the Metropolis Monte-Carlo algo-

rithm.

(B) contour plot over the cost function for the
parameter sets IE-τ and G-k. The original pa-

rameter values are indicated with a red star.

FIGURE 18.2

clear that E and τ are correlated. When kx goes towards small wave numbers the be-
haviour of the complex modulus is dominated by the term −Eivτkx, whereas for large kx
the behaviour is dominated by E. In chapter 17, we found that the sensitivity interval was
located at low wavelengths and thus only some part of the complex modulus curve was
described.

E∗(−vkx) = E
−ivτkx

1− ivkxτ
→
{
−ivτkx, if kx small
E, if kx large

(18.4)

The consequence of having a sensitivity interval that only covers some part of the
complex modulus curve is that we cannot characterise the entire viscoelastic behaviour
of the beam based on one single deflection measurements. As only the part of E’ and E”
within the sensitivity interval affects the pavement response, this is what we can hope to
characterise based on a model fit. As equation (18.4) illustrated, if the sensitivity interval
e.g. is located at high wave numbers, only information anbout E can be obtained.

In order to characterise the entire complex modulus curve, we need several measure-
ments where all but the beam parameters, are hold constant. This could be done by mak-
ing measurements at different known temperatures and assuming that temperature ef-
fects do not affect underlying layers.

Beside IE and τ, the parameters k and G were also found to correlate, with stiff and
sloppy direction indicated on figure 18.2b. Here it was found that increasing G while
simultaneously decreasing k had a little effect on the model output (sloppy direction)
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whereas decreasing (or increasing) G and k simultaneously had a big effect on the model
output. Thus, a reduced stiffness in the foundation can be compensated for by an in-
creased shear interaction and vice versa. But a decrease/increase in both parameters will
affect the pavement response significantly. Furthermore, this was found to be a well de-
fined minimum (closed contour lines).
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Part V

Comparing pavement response
model with TSD data
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Chapter 19

Structural rolling resistance from
model fit

In the previous part, a simple pavement response model was developed for modelling
the pavement response underneath a moving load. In this chapter, results from fitting the
model to TSD data was used to calculate the structural rolling resistance. This was done
using equation (10.12) derived in chapter 10.

On figure 19.1, a plot of Cmodel
SRR is shown for Måløv data measured at 18◦C and 35◦C . A

similar plot was shown in section 10.2 using the linear interpolation method. Overall the
same trends was observed, namely that the structural rolling resistance increased with
temperature. A comparison between Cmodel

SRR and Clinear
SRR across data groups is shown in

table 19.1. In general, calculating SRR using the model fit gives a higher CSRR for all data
groups, with the highest increase in group 1. This supported the main conclusions made
in chapter 10, where it was found that the linear interpolation method to a large extent
underestimated the SRR for data sets with the maximum closer to the load than the sensor
position. However, the relative increase seen in Cmodel

SRR for 35◦C was smaller than for 18◦C,
meaning that linear interpolation method underestimated SRR in data for 18◦C to a higher
degree than for 35◦C .

The difference seen in the accuracy of the SRR values calculated using the linear in-
terpolation method can be explained by the fundamental changed behaviour of the min-
imum peak with increased road temperature. A set of general guidelines for the connec-
tion between the maximum and minimum peak x-position and the accuracy of the linear
interpolation method is given by the following:

• If the left side of the maximum is partly resolved and the right hand side of the
minimum is fully resolved, the linear interpolation method tends to underestimate
the SRR. An example of such a situation is shown in figure 19.2b and was the case
for a majority of the data sets measured at 18◦C .

• If the right hand side of the minimum is not fully resolved, the linear interpolation
overestimates the SRR. An example of such a situation is seen in figure 19.2a.

• In the case where the left side of the maximum and the right hand side of the min-
imum is resolved by the sensors, the linear interpolation method calculates SRR
values similar to the model. An example of such a situation is seen in figure 19.2c.
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FIGURE 19.1: Structural rolling resistance coefficient calculated using the
estimated pavement deflection based on a model fit to data for data series

measured at 18◦C and 35◦C .

In conclusion, in which situations the simple approach provided valid estimates of
SRR could be determined based on the qualitatively behaviour of the maximum and min-
imum deflection slope peaks. It should be stressed, that the two methods provided SRR
values within the same order of magnitude. Consequently, the simple approach could
be used as a fast method for easily calculating the SRR over large amount of TSD data.
If a more accurate estimate is desired, the more sophisticated method using a pavement
response model can be applied.

TABLE 19.1: Average values for CSRR calculated using linear interpolation
(Clinear

SRR ) and simulated pavement deflection (Cmodel
SRR ) divided into groups.

CSRR using CSRR using Cmodel
SRR − Clinear

SRR

Cmodel
SRR

linear interpolation model fit

Road surface temperature 18 ◦C

Group 1 1.8 · 10−4 2.8 · 10−4 36%
Group 2 1.2 · 10−4 1.6 · 10−4 25%
Group 3 0.9 · 10−4 1.0 · 10−4 10%

Road surface temperature 35◦C

Group 1 2.9 · 10−4 3.5 · 10−4 17%
Group 2 1.2 · 10−4 1.4 · 10−4 14%
Group 3 0.6 · 10−4 0.6 · 10−4 0%



Chapter 19. Structural rolling resistance from model fit 165

-1 -0.5 0 0.5 1 1.5 2

distance [m]

-600

-400

-200

0

200

400

600

d
e

fl
e

c
ti
o

n
 s

lo
p

e
 [

 m
/m

]

Data

model

linear int.

(A)

-1 -0.5 0 0.5 1 1.5 2

distance [m]

-600

-400

-200

0

200

400

600

800

d
e

fl
e

c
ti
o

n
 s

lo
p

e
 [

 m
/m

]

Data

model

linear int.

(B)

-1 -0.5 0 0.5 1 1.5 2

distance [m]

-200

-100

0

100

200

300

d
e

fl
e

c
ti
o

n
 s

lo
p

e
 [

 m
/m

]

Data

model

linear int.

(C)

FIGURE 19.2: Exemplary data sets illustrating a deflection slope behaviour
where using the linear interpolation method A) overestimates CSRR , B) un-
derestimates CSRR and C) gives a similar value compared to using the mod-

elled pavement deflection.
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Chapter 20

Analysis of pavement characteristics
based on model fit to TSD data

In this chapter, we studied what may be inferred about the pavement structure and char-
acteristics from the TSD deflection data. This was done by analysing the results from
fitting the simple pavement response model to data measured in Måløv. As the applied
pavement response model is a simplified one-dimensional model, this has some limita-
tions which has to be kept in mind when interpreting the estimated parameter values.
Nonetheless, the results from fitting the model to data provides useful information about
structural changes in the pavement measured on, and how these were expressed through
the deflection slope curves.

Overall, the chapter consists of three different analysis, each providing information
about pavement characteristics. First, the characteristic behaviour in data resulting in data
group division is related to structural properties of the pavement. Secondly, the influence
of different sources of damping is studied through a comparison study of different sim-
plified models. The two initial analysis are made based on measurements made at road
temperature 18◦C . Lastly, the influence of increased road temperature is studied.

20.1 Goodness of fit

The pavement response model used to fit data is the one developed in chapter 15, assum-
ing a point load with an fixed magnitude F of 5 tonnes and a viscoelastic beam modelled
by the simple Maxwell model,

ŵ(kx,−vkx) =
F

IE −ivkxτ
1−ivkxτ k4

x + Gk2
x − vcikx + k

. (20.1)

Here ŵ(kx,−vkx) is the pavement deflection in the wave number domain, E and τ was the
elastic modulus and characteristic time of the Maxwell complex modulus, I is the second
moment of area pr. unit length of the beam, G is the shear interaction parameter of the
foundation and k and c are the spring constant per unit length, and viscous damping
coefficient per unit length respectively. The free parameters to fit are IE, τ, k, c, G. The
driving velocity v is measured during the measurements and thus we used the specific
driving velocity measured for each data set.
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The model was fitted to each data set in the data series, using the fitting algorithm
lsqnonlin in MATLAB. The fitting procedure found the set of parameter values θ, for which
the sum of squared residuals f (x, θ) is minimised,

f (x, θ) =
N

∑
i=1

(Y(xi)− y(xi, θ))2 . (20.2)

Y(xi) is the measured deflection slope value in xi, y(xi, θ) is the simulated deflection slope
in xi using the parameter values θ and N is the number of data points in each data set.
In order to evaluate the model fit, we evaluated the goodness of the fit. This was done
by calculating the R2 value, which yielded a quantitative way to evaluate how good the
model fit is. The R2 value is given by

R2 = 1− f (x, θ)

SStotal
(20.3)

where,

SStotal =
N

∑
i=1

(Y(xi)− µ(Y(x)))2 . (20.4)

Here µ(Y(xi)) is the average of all data points in the data set. The R2 value has the ad-
vantage that it takes into account the variance in data, and thus modelfit to data sets with
large differences in their absolute values can be compared. In the case where the predicted
values y(xi, θ) was the same as the data, F((x, θ) = 0 and thus R2 = 1. For big deviations
from data, R1 becomes small. Note that for bad fits, the value can become negative.

On figure 20.1a, a plot of R2 values calculated for each data set measured at 18◦C is
shown. Overall, the simple pavement response model performed well with R2 values
close to 1. For data sets between 0.5-1 km, we found a decrease in R2, meaning that the
model did not fit data in this area as well as the rest. On figure 20.1b, a plot of measured
TSD data and best fit with the model is shown for the data set at 1.04 km. We found
that the model in this case, in contrast to the majority of data, was not able to capture the
correct shape of the maximum deflection slope.

20.2 Estimated parameter values

The result of the model fitting procedure was a set of estimated parameter values obtained
for each data set. As the measurements were made on a heterogeneous road segment
where the pavement structure and material specific parameters changes, we did not ex-
pect the estimated values to be constant over the measured distance. On figure 20.2, a plot
of the estimated parameter values as a function of the measured distance is shown. The
fitting procedure was made with the constraint that none of the parameters can be neg-
ative. For each parameter value, the 95 % confidence interval is shown in a light shaded
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FIGURE 20.1: A) The goodness of fit is evaluated by calculating R2 for each
data set in the data series. Overall the model perform very well in fitting
data, however around 0.5-1 km. the fit is worse compared to the rest. B)
Example of a data set with lower than average R2 value, R2 = 0.96. The

data set is measured at 1.04 km.

color behind the plot.

The estimated values of k and c were found to be relative constant over the measured
road segment, demonstrated by a narrow normal distribution in the histogram on figure
20.2. With respect to the third foundation parameter G, a drop in the estimated parameter
values was observed around 2.5 km, indicating a shift in the underlying structure of the
road. All three parameter values were found to have narrow 95% confidence intervals
and thus were well defined.

For the parameter values associated with the beam on the other hand, we found a
high spatial variation. Furthermore, they were found to be ill-defined with large confi-
dence intervals, particularly with regard to τ. This indicated that they were sloppy, which
was expected based on results from the sensitivity analysis. Note that τ on figure 20.2 is
plotted as log(τ), as its estimated value spans over several decades.

In figure 20.2, it was observed that the confidence interval of all parameter values
increased for data between 0.5-1 km, meaning that the parameter values were less well-
defined for data sets in this interval. This was consistent with the R2 values being lower
for this particular road section, indicating an overall bad model fit in this area.

20.3 Interpreting data groups based on model results

We will now use the estimated parameter values to characteristic behaviour in data used
for data division into groups. This will enable us to connect these qualitatively obser-
vations about the deflection slope curve with changing structural characteristics in the
pavement.
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FIGURE 20.3: A) Data was divided into groups based on the x-position of
the maximum deflection slope. This is here illustrated for three data sets
belonging to each of the groups. B) By fitting the model to data and using
the estimated parameter values we obtain a more precise estimate of the

location of both the maximum and minimum.

In chapter 9, the TSD measurements was divided into data groups based on two char-
acteristics; the x-position and amplitude of the maximum deflection slope. As this was
done based on the three closest sensors in front of the load, the result was a coarse-grained
division of the data sets (fig. 20.3a). Through the model fitting procedure, a set of best esti-
mated parameter values were found for each data set and using these, the corresponding
deflection slope modelled. Through this, a higher resolution of the maximum and mini-
mum and its characteristic behaviour across groups was found and analysed (fig. 20.3b).

20.3.1 Division based on x-position of the maximum deflection slope

The way a pavement behaves underneath a moving load is highly influenced by the rel-
ative stiffness between the layers. In a simple two layer model like ours, this is given by
the relation between foundation stiffness k and beam flexural rigidity IE. In section 15.1,
this relationship was found for the simple case of an elastic beam on an elastic foundation
and the characteristic length scale found to be given by

κ =
1
2

(
k

EI

)1/4

. (20.5)

Even though this result was derived for an idealized model, the idea that the deflection
basin is characterised through the relative stiffness is still applicable to a more complex
pavement structure. On figure 20.4, the estimated k

IE values and the maximum x-position
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FIGURE 20.4: Logarithmic plot of the relative stiffness k/IE estimated for
each data set as a function of the x-position of the maximum deflection
slope. The different data groups 1, 2 and 3 is indicated with different mark-
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the simulated deflection slope consist of discrete elements, the maximum
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table on a linear axis.

for each data set is shown to correlate on a log-log scale. Consequently, movement of the
x-position of the maximum was highly correlated with a change in the relative stiffness
k

IE between the layers. If we assume that the foundation stiffness is constant, which was
supported by the estimated values of k in figure 20.2, the change in relative stiffness seen
for this road section is due to changing properties of the top layer.

In conclusion, the movement of the x-position observed in data is correlated with
changing properties of the top layer. Two physical explanations of the changing prop-
erties are either a change in the type of asphalt mix used on the measured road segment,
or that the thickness of the asphalt layer varies. In the model, the asphalt thickens (h) is
correlated with the flexural rigidity of the beam as EI = E( 1

12 h3). Consequently, an in-
crease in EI can be due to either an increase in elastic modulus E of the asphalt mix or
the thickness h. Based on the data presented here, we were not able to distinguish further
between the two effects, but only conclude that the changes observed in the x-position of
the maximum slope were caused by changes in the asphalt layers flexural rigidity.

20.3.2 Division based on amplitude of maximum deflection slope

The second way the measurements were divided, was based on the amplitude of the
maximum deflection. Correlations between the amplitude of the maximum deflection
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slope and the estimated parameter values were investigated by both visual inspection
(fig. 20.5a and 20.5b) and computing the correlation matrix (tab. 20.1).

The method used to find the correlation matrix here was the Pearson correlation coef-
ficient, PCC (Kellermann, 2009), which provided a matrix where each element described
the strength of the linear relationship between two variables x and y. It is defined as

PCC =
cov(x, y)

(σ(X)σ(Y))
, (20.6)

cov(x, y) =
1
n

n

∑
i=1

(xi − µ(X)) · (yi − µ(Y)), (20.7)

where n is the number of estimated parameter values, cov(x, y) is the covariance between
x and y, σ(x) is the standard deviation of x and µ(x) is the mean value of x.

A strong negative correlation between the estimated values of shear parameter G and
the amplitude of the maximum deflection slope was found (fig. 20.5a). This meant that
decreasing the value of G resulted in an increase in the amplitude of the maximum (corre-
sponding to going from group A to C). Furthermore, a correlation between IE and the am-
plitude was found (PCC=-0.86) and a weak correlation between G and EI was observed
(PCC=0.72). In our model, the flexural rigidity of the beam and the shear interaction layer
had some of the same functions, as they both facilitated a distribution of the load over sev-
eral foundation elements, resulting in a broadening of the deflection basin. Consequently,
their influence on the pavement deflection is to some degree the same.

When analysing deflection slope data, we found that a significant shift in the ampli-
tude was observed around 2.5 km. This correlated with a drop in the estimated G value, as
shown on figure 20.6. Consequently, we can conclude that a shift in the underlying foun-
dation structure took place around 2.5 km., resulting in a significantly higher maximum
amplitude in data sets located after the shift.
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FIGURE 20.5: Correlation between the amplitude of the maximum deflec-
tion slope and A) shear interaction parameter G and B) all other parameters.
A clear log-log correlation is found between the amplitude and G, while a
correlation to a smaller degree is also seen for IE. k, c and τ is found not
to correlate with the amplitude. The different data groups is indicated by

color.
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TABLE 20.1: Correlation matrix for the estimated parameter values and the
amplitude of the maximum deflection slope. Each element in the matrix
describes the strength of the linear relationship between two variables x and
y, and denotes the Pearson correlation coefficient PCC for the two varables.
PCC= 1 or PCC= -1 means that there are a strong positive or negative linear
correlation between the two parameters, whereas PCC=0 means that no
linear correlation exist. The closer to -1 or 1 the estimated PCC value is, the
stronger a correlation exist. Note that the correlation matrix is symmetric.

amplitude IE tau k c G

amplitude 1.00 -0.86 -0.34 0.21 0.14 -0.92

IE -0.86 1.00 0.11 -0.30 -0.27 0.72

τ -0.34 0.11 1.00 -0.10 0.01 0.27

k 0.21 -0.30 -0.10 1.00 -0.05 -0.40

c 0.14 -0.27 0.01 -0.05 1.00 0.08

G -0.92 0.72 0.27 -0.39 0.08 1.00

20.4 Comparison of different simplified models

The model used to fit data (eq. 20.1) contains two sources of damping; in the foundation
and in the top layer. An analysis of the impact different sources of damping have on the
models ability to fit data was performed by comparing four different variations of the
model, sketched on figure 20.7. This included a full viscoelastic pavement (damping in
top layer and foundation), an elastic beam on a damped foundation, a viscoelastic beam
on an elastic foundation and a purely elastic pavement. As the model variants contains
different amounts of free parameters, the goodness of fit (eq. (20.3)) was calculated using
the weighted sum of squares fw(x, θ). This is given by

fw(x, θ) =
∑N

i=1 (Y(xi)− y(xi, θ))2

N − n
, (20.8)

where N is the number of data points, and n is the number of free parameters in the
model.

Comparison of the goodness of fit for these four models reveal if any damping param-
eters are insignificant with respect to fitting the data, given by no change between fitting
the full model and a reduced one. If this is the case, it implies that this particular source
of damping dis not influence the pavement response and can be neglected.

On figure 20.8, a plot of the weighted R2 values obtained for each variation of the
model are shown. The values of R2 is ordered from highest (best fit) to lowest (worst fit),
such that it is easier to see the difference between the models. This means that we are
not comparing the models with respect to each data set, but for the entire data series as a
whole. A general behaviour for all four models was that a steep decrease in R2 was seen
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in the end. This was due to the area of the road where the model yielded an overall bad fit
and thus a lower R2 value. This indicated that the underlying reasons for the bad model
fit in this area was not connected to the damping parameters, but probably originated
from a more fundamental issue with the model.

As expected, we found that the full model provided the highest weighted R2 values,
even when corrected for degrees of freedom. Comparing the model with no damping in
the foundation (green) and the model with no damping in the beam (red) showed a clear
trend that removing damping in the foundation resulted in a lower R2 value compared to
if we removed damping in the beam. This indicated that for this specific data set, founda-
tion damping was the most important source of damping. Damping in the top layer was,
however, not insignificant as there were a difference between the elastic beam model and
the fully viscoelastic model.

We now consider how beam and foundation damping affect the goodness of fit within
different data groups. On figure 20.9, a plot of the ordered R2 values for the full model
and the two variants with one damping component are shown for data sets belonging to
the different groups. From this plot, a big difference in how removing damping elements
influenced the weighted R2 value across groups was found. Comparing group 1, 2 and 3
revealed that beam damping had an increasing influence when the maximum moved fur-
ther away from the load. This movement corresponded to a decrease in relative stiffness
of the pavement and, as the foundation stiffness is found to be constant, correspondingly,
an increase in flexural rigidity of the beam. Due to the fact that increased stiffness was
accompanied with an increased beam damping, we predicted that the sensitivity interval
with respect to E∗(−vkx) was located at the left side of the loss peak. Consequently, when
the stiffness decreased, so did the damping and an almost elastic beam behaviour was
seen (group 1). A similar behaviour was seen comparing group A, B and C. Group A was
characterised by having a low maximum amplitude and correlated with having a high
shear interaction parameter G.

Lastly, figure 20.9 provided information about under which pavement conditions the
model performed the best. By comparing the weighted R2 values for the full model across
groups, we found that group 3 and A had the lowest values. This indicated that an in-
creased influence of beam damping and a high G value resulted in a deterioration of the
goodness of fit. We speculated, that the choice of the simple Maxwell model for the top
layer complex modulus in these cases was insufficient to properly describe the viscoelastic
behaviour and as a result, the models ability to mimic data declined.

20.5 Effect of increased road temperature

We will now discuss what influence increased road temperatures have on the pavement
deflection behaviour and estimated parameters. This was done by comparing results from
fitting the model to data measured in Måløv at 18◦C and 35◦C . In figure 20.10, an compar-
ison of the goodness of fit was made for the two road temperatures. Overall, the model
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segment.

performs well also under high road temperatures with R2 values well above 0.99. Simi-
lar to the situation at colder road temperature, the area between 0.5-1 km has relatively
low R2 values. Furthermore, for the warm data series an increased amount of data sets
with low R2 was observed, spread out over the measured distance. This suggests that the
overall model fit was slightly poorer for 35◦C compared to 18◦C .

Through visual inspection, a fundamental difference in the deflection slope behaviour
resulting in low R2 values was observed before and after 1 km. For data sets located be-
fore 1 km., the low R2 values arose from the model not being able to mimic the behaviour
in the maximum as illustrated on figure 20.11a. For data sets above 1 km on the other
hand, the low R2 value was due to a change in the minimum deflection slope behaviour is
seen when temperature is increased, resulting in both the maximum and minimum peak
not being captured by the data points (fig. 20.11b). However, it should be stressed that
with R2 values well above 0.9, the model performs well for both 35◦C and 18◦C .

The behaviour observed in 20.11b indicated that the fundamental assumption of a stiff
and incompressible top layer was not valid. In this situation, the top layer will also deform
in addition to the foundation (sketched in fig. 20.12). As a consequence, the top layer does
not behave as an undeformable Euler-Bernoulli beam, but rather like a deformable elastic
medium.

The idealized case where the pavement is described as an purely elastic half-space
subject to a point load is given by the Boussinesq problem (Verruijt, 2010). In this case, the
pavement deformation wB(x) is given by

wB(x) ∼ A
1
|x| , (20.9)
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FIGURE 20.11: A) data set representing the deflection slope behaviour for
data sets before 1 km. This particular data set is measured at 0.77 km and
has R2

35◦C = 0.992 and R2
18◦C = 0.999. B) Data set representing the general

behaviour in data sets located after 1 km. and having a low R2 value. Here
the minimum deflection slope at 35◦C changes shape such that both the
maximum and minimum peak is unresolved. This particular data set is

measured at 8.51 km and ha sR2
35◦C = 0.989 and R2

18◦C = 0.998.

where A is a constant consistent of material constants and the applied load. The Boussi-
nesq solution is an idealized situation and not applicable to realistic modelling of the
overall pavement. However, it provides an explanation for the behaviour seen in the
pavement close to the load. Imagine that the top layer of a pavement is acting as an elas-
tic half-space and as a result, the pavement deflection at small wavelengths, thus close to
the load, is governed by this behaviour. Consequently, an reciprocal behaviour will occur
close to the load.

On figure 20.13, a plot of the function dwB(x)
dx is seen together with a data set at 18◦C

and 35◦C , the best fitted deflection slope curve and the associated deflection basin. This
illustrated how the shift in behaviour seen in data under warm conditions in fact agrees
with a reciprocal behaviour close to the load, and thus implied that in order for the model
to be able to mimic this behaviour in data, a deformable top layer should be considered.

20.5.1 Influence of temperature on estimated parameters

A comparison between estimated parameters from fitting the model to data for 18◦C and
35 ◦C is seen on figure 20.14. In section 9.1.3, the qualitatively effect of temperature on
the measured deflection slope behaviour was evaluated. It was observed that the max-
imum and minimum deflection slopes, in general, were shifted towards the load when
temperature increased, as well as getting an increased amplitude. Based on the analysis
made in section 20.3, this corresponded to an increased relative stiffness of the pavement.
Furthermore, analysis of data at 18◦C indicated that the sensitivity interval for E∗(−vkx)
was located at the left side of the loss peak and as a result, we predicted that increased
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temperature will results in less beam damping.

Based on the model fit, we found that EI varied a lot over the measured distance and
was found to be more ill-defined than in the case of 18◦C , indicated by high confident
intervals. On the other hand, τ was more well-defined with a more narrow confident
interval and was found to decrease compared to 18◦C . This behaviour in τ meant that the
characteristic time of the asphalt mix (given by 1/τ) increased with temperature and, as a
result, the sensitivity interval with respect to E∗(−vkx) moved towards the lower elastic
plateau. This behaviour with increased temperature was consistent with the behaviour
predicted in chapter 17.

Road temperature changes is expected primarily to affect the top layer, and conse-
quently we did not expect the foundation parameters to change between the two mea-
surements. However, a small increase in the estimated value for k was found and further-
more, G was found to be much more ill-defined with large confident intervals compared
to estimates for 18◦C. The sensitivity analysis in chapter 18 showed that the parameters
k and G are correlated such that increasing k and decreasing G simultaneously does not
affect the model output. This might explain the small change observed. With respect to
the foundation damping c, no significant change was seen overall. In some places how-
ever, the estimated value was very low, indicating that the foundation was almost purely
elastic there. These data sets were not found to have a spatial trend and thus it was not
one particular place on the road that behaved like this.

20.6 The models limitations to fit data

From figure 20.1a and 20.10, we found that the model was bad at fitting data sets located
between 0.5-1 km., resulting in lower R2 values compared to rest of the road segment. By
visual inspection of these deflection slope data, we found that they all had a well defined
maximum, meaning that both the right and left hand sides of the maximum was captured
by the sensors (fig. 20.1b). Furthermore, the maximum peak had a pointy shape whose
behaviour could not be mimicked by the model.

By visual inspection of the road, we did not find any obvious visual signs on damaged
asphalt or other external features which explained the changes in R2. Furthermore, data
sets in this area did not stand out compared to surrounding data sets when looking at the
measured slope signals (fig. 9.2). Thus, we expected the bad fit to be due to some under-
lying model assumptions which were invalid for the given road section. Two potential
explanations for the bad model fit was proposed below.

The first potential reason is the choice of viscoelastic model in the beam. All data sets
with low R2 values belonged to group 2 and 3, for which beam damping had an increased
effect compared to the rest of the data. Consequently, the choice of complex modulus
model for the beam had a higher impact on the model fit in this groups. For the given
model used to fit data, a simple Maxwell model was used to describe the viscoelastic
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behaviour of the beam. However, this might be to simple and thus result in a bad model
fit.

Another potential reason for the bad model fit has to do with the underlying assump-
tion behind the use of a beam model. As the asphalt layer was modelled as an Euler-
Bernoulli beam, it was assumed to not deform in the vertical direction. This corresponded
to the assumption that the asphalt layer was so stiff that all deformation of the pavement
was happening in the underlying layers. However, if this assumption does not hold and
the top layer experiences some deformation as well, the model assumption breaks down
and cannot describe the pavement response accurately.

20.7 Summarising discussion

Through analysis of the estimated parameter values obtained from fitting the pavement
response model to data at 18◦C and 35◦C , we have derived information about structural
changes in the pavement measured on. In data, a change in x-position and amplitude of
the maximum deflection slope was used to divide measurements into data groups. The
movement of the x-position was correlated with a change in relative stiffness between the
top layer and the foundation. As the foundation stiffness was found to be constant in the
measured road segment, this indicated that the top layer properties changed. An increase
in top layer stiffness was manifested in the pavement deflection by a broad and shallow
deflection basin. In addition, by analysing the the amplitudes of the maximum deflection
we concluded that a shift in the underlying foundation structure took place around 2.5
km, resulting in a significantly higher maximum amplitude in data sets located after the
shift.

By comparing different simplified versions of the model, we found that, overall, foun-
dation damping was the most dominating source of damping in the road section mea-
sured on. In some data groups, we found that the beam damping had an increasing effect
on the model fit. This was found in data sets characterised by a relatively high flexural
rigidity of the beam as well as a high G value. For data sets belonging to these data groups,
the choice of complex modulus has to be reconsidered as the Maxwell model might be to
simple to properly describe the viscoelastic behaviour.

Finally, the effect of increased road temperature on the pavement response was stud-
ied. It was found to affect the top layer, making it behave more soft and elastic which was
shown in the deflection slope curve with the maximum and minimum moving close to
the load. In the most extreme cases, the model failed to mimic the behaviour and a bad fit
is obtained. We hypothesise that the validity of assuming a stiff in-compressible top layer
breaks down in these cases, and propose that a deformable top layer should be considered
in order to fit these data sets better. However, it should be stressed that for both the cold
and warm data series, the model overall performed well with R2 values close to 1.
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Chapter 21

Characterising pavement damping
based on TSD data at different
temperatures and driving velocities

In this chapter, we exploited that we have TSD measurements at different velocity and
temperature configurations (Finland data), which allow us to characterise both the foun-
dation and top layer damping behaviour. As in chapter 20, the developed pavement
response model (eq. (20.1)) was fitted to data and the resulting best estimated parameters
were analysed. Three separate analyses were performed based on the model fit results.
First, the influence of velocity and temperature on the pavement deflection basin was
studied as well as the estimated parameters.

Secondly, the viscoelastic behaviour of the top layer was characterised by creating an
asphalt complex modulus master curve. The creation of these master curves is used in
pavement design and management as a tool to characterise the viscoelastic properties of
the asphalt material (Gopalakrishnam et al., 2014). These master curves are traditionally
made based on laboratory test. However, the process involves a lot of work and thus
is a time consuming task. Furthermore, it requires a sample of the asphalt mix. As a
result, there is an interest in developing procedures for testing the viscous behaviour of
asphalt using nondestructive in-situ measurement techniques. A pilot study presenting a
procedure for developing such curves based on TSD data is presented in section 21.2.

Lastly, the foundation damping was characterised by using the velocity dependence
in data and the used damping model is evaluated in section 21.3.

21.1 How velocity and temperature influence the pavement de-
flection

The data set analysed in this chapter consisted of pavement deflection slope measure-
ments at five different driving velocities and two different temperatures. In section 9.2,
decreased velocity was found to increase the amplitude of both maximum and minimum
deflection slope, as well as move the minimum closer to the load. Using the best estimated
parameter values, the associated deflection basins for measurements at different velocities
were modelled on figure 21.1a. We found that the maximum deflection decreased when
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driving velocity increased. The same behaviour was seen for a decrease in temperature
(fig. 21.1b), where the changes in the deflection basin with temperature was largest for
low driving velocities.

Comparing figure 21.1a and 21.1b showed that while a change in driving velocity only
influenced the deflection behaviour close to the load, a change in temperature influenced
the overall shape of the deflection. A physical interpretation of this was that velocity
mainly influence the top layer, thus affecting the behaviour close to the load, whereas
temperature affected both the top and foundation and thus affected the overall deflection.
In chapter 17, the influence of decreased driving velocity and increased temperature on
the viscoelastic behaviour of the top layer, were predicted to shift the sensitivity interval
to lower frequency, resulting in a softer top layer behaviour. The fact that the maximum
deflection moved closer to the load, indicating a decrease in damping, demonstrated that
the sensitivity interval was located on the left side of the loss peak.

21.1.1 Estimated parameters

Through the model fit, a set of best estimated parameter values were obtained. An overview
of these as a function of velocity is seen on figure 21.2 for location 1 and 2. Here the mea-
surements at daytime (22/24◦C ) is illustrated with red markers and nighttime (14◦C )
with blue markers. As we were measuring on the same location, we expected the foun-
dation parameters to be constant, as these are not expected to be affected by velocity or
temperature. We found that this was true for the parameter k and G, but not for c. This is
discussed in detail in section 21.3. The estimated beam parameters is used in section 21.2
to develop a master curve describing the viscoelastic behaviour of the asphalt layer.
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FIGURE 21.1: Simulated pavement deflection basin based on best estimated
parameter values from the model fit procedure. A) Changing the driving
velocity at fixed road temperature temperature. B) different road temper-
atures shown for two different velocities as a bigger change with tempera-

ture is seen for 20 km/h than for 80 km/h.
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FIGURE 21.2: Estimated parameter values for Finland data at A) location
1 and B) location 2. The foundation parameters G and k is found to be
varying only little and not systematic as a function of velocity, whereas c
changes a factor of 10 between lowest and highest velocity. The unexpected

behaviour of c is discussed in section 21.3.
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21.2 Development of asphalt complex modulus master curves us-
ing TSD measurements

In this section, we present a pilot study which showed how to create an asphalt complex
modulus master curve based on TSD measurements.

The idea behind the creation of a master curve was to measure the storage and loss
modulus of the asphalt at several frequencies and at several temperatures. The time-
temperature superposition principle could then be applied to shift the measured values,
thus covering a larger frequency range (see section 13.2.2 for more details). The study
presented here included five different driving velocities at two different temperatures. As
a result, we did not expect to create a full master curve of the viscoelastic behaviour. We
aimed to explore if it was possible to create such curves based on TSD data and our simple
modeling framework.

When fitting the model to data, we had to chose which model was used for the com-
plex modulus of the beam. The choice might influence the resulting master curve, as the
different models can behave differently within the sensitivity interval. In the following,
we will use two different models; the Maxwell model and the hysteretic damping model
and subsequently compare the resulting master curves.

21.2.1 TTS based on Maxwell fit

Initially, we use the Maxwell model to describe the viscoelastic properties of the beam.
For simplicity, the procedure is shown for location 2 data and later on the resulting master
curve for location 1 is presented as well.

The model was fitted to data (as described above) and a set of parameter values was
obtained. Using the estimated parameter values, we could describe the complex modulus
for every velocity-temperature combination. On figure 21.3a, an example is shown for the
data set at 11 km/h and 23◦C. Since we are in a moving reference frame, the pavement
response was only sensitive to the complex modulus behaviour within some range of fre-
quencies, the sensitivity interval. The sensitivity interval was found as the range of wave
numbers where the sensitivity function is nonzero. In figure 21.3a, this is is illustrated by
the red area curve. Based on the sensitivity function, a characteristic value for the loss
and storage modulus was found. These values were chosen to be at the wave number
where the sensitivity function peaks (ks

x) and was marked with triangles in figure 21.3a.
Furthermore, the wave number at which E’ and E” was selected is saved as the character-
istic wave number for this velocity-temperature combination. This procedure was carried
out for each velocity-temperature combination and on figure 21.3b, the characteristic stor-
age and loss modulus is plotted as a function of driving velocity for all velocities and
temperatures in location 2.

Note that due to the way the model is parameterised, we estimated IE and not E for
the beam and thus the complex modulus was scaled by I. As a result, the found storage
and loss modulus was scaled by a factor I. This has no impact on the behaviour of E’ and
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E”, but should be kept in mind if the obtained master curves were compared with results
in the literature.

We aimed to construct a master curve which required a plot as a function of frequency.
The corresponding frequency ω was found from the driving velocity v and the character-
istic wave number at the maximum sensitivity, ks

x.

ω = −vks
x. (21.1)

Using this provided the values at negative ω values. Taking the complex conjugate of the
complex modulus converts to positive ω.

Using the principle of time-temperature superposition (TTS) introduced in section
13.2.2, we could shift measurements made at some frequency range to a higher or lower
frequency range based on their temperatures. Thus, the measurements E∗(ω, T) was
shifted with respect to some reference temperature T0 by the shift factor aT,

E′(ω, T) = E′(ωaT, T0) and E′′(ω, T) = E′′(ωaT, T0). (21.2)

The appropriate shifting factor was found by eye, such that both the loss and storage
modulus curves is appropriately shifted. On figure 21.4, the best shift for location 2 data
was made using T = 24◦C as a reference temperature.
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21.2.2 Using the hysteretic damping model to estimate E’ and E”

In the analysis above, we used a Maxwell model to describe the viscoelastic properties of
the beam. In order to extract one characteristic value for E’ and E”, we used the value of
E∗(−vkx) at kS

x, thus the wave number corresponding to the maximum of the sensitivity
function. This had to be done for each temperature-velocity combination. If we assume
that the behaviour of E’ and E” do not change significantly within the sensitivity interval,
we can use the hysteretic damping model (Nielsen, 2019) to extract the characteristic E’ and
E” values directly from a model fit. The complex modulus of the hysteretic damping
model is given by

E∗(−vkx) = E f + isign(−vkx)η, (21.3)

where E f is the Young’s modulus of the foundation and η is the viscosity. This model is
not founded in physical elements like the other mechanistic response models otherwise
used in this thesis as it simply has a constant real part determine by E f and a constant
imaginary part at η. As a result, it does not describe the viscoelastic behaviour of asphalt
properly. However, if we assume that the behaviour of E∗(−vkx) within the sensitivity
interval is constant, using the hysteretic model give us the values of the characteristic
value for storage (E’) and loss (E”) modulus directly as

E′ = E (21.4)
E′′ = sign(−vkx)η (21.5)
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FIGURE 21.5: With black is the complex modulus using a Maxwell model
sketched. If we assume that the complex modulus behaves constant within
the sensitivity interval, using a hysteretic damping model will provide the
characteristic storage and loss modulus. The validity of this method rely
on the assumption that E∗(−vkx) is constant within the sensitivity interval

which might not be valid always.

This is illustrated on figure 21.5.

On figure 21.6 left, E’ and E” are plotted for all data as a function of frequency. Note
that for this model, the found loss and storage modulus values will also be multiplied
with the second moment of area I. The values can be plotted as a function of frequency
by using the characteristic wave number, found from the sensitivity function in a similar
fashion as before.

Using TTS, the values were shifted as described before and the resulting master curve
seen on the right-hand side of figure 21.6 right.

21.2.3 Results

A complex modulus master curve was made using two different viscoelastic models, the
Maxwell model and a hysteretic model. The procedure was made on data from two dif-
ferent road locations. The resulting mater curves for the two location are seen on figure
21.7. Common for both model approaches was that data from location 2 were more suited
for development of a master curve than location 1. This was seen as the shifting yielded
a more consistent curve in location 2. For the two methods, the shift was most successful
for the method using the Maxwell model. However, the two methods yielded resulting
master curves within the same range, and at low frequencies they were quite similar.

During the measurements, we observed a change in the asphalt close to the location
where location 1 data is measured. This had no influence on the measured deflection



21.2. Asphalt complex modulus master curves from TSD data 193

0

0.02

0.04

0.06

 I
E

'(
) 

[M
 N

m
2
] 

E' T=24
°
C

E' T=14
°
C

10
1

10
2

  

-0.08

-0.06

-0.04

IE
''(

) 
[M

 N
m

2
] 

E'' T=24
°
C

E'' T=14
°
C

10
2

10
3

 
r
 [1/s]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IE
*(

r) 
[M

 N
m

2
] 

Location 2

TTS

FIGURE 21.6: Characteristic storage (E’) and loss (E”) modulus values
found by using the hysteretic damping model in the beam. Using TTS the

values are shifted using T=24◦C as a reference temperature.

10
1

10
2

10
3

r

2

4

6

8

10

12

IE
* (

r)

10
4 Maxwell model

storage modulus

loss modulus

10
1

10
2

10
3

r

Hystertic model

location 1

(A)

10
1

10
2

10
3

r

2

4

6

8

10

IE
* (

r)

10
4 Maxwell model

storage modulus

loss modulus

10
1

10
2

10
3

r

Hystertic model

location 2

(B)

FIGURE 21.7: Master curve calculated based on Maxwell and hysteretic
model in the beam. A) is for location 1 and B) for location 2. Note the

difference in magnitude on the two locations.



194 Chapter 21. Characterising pavement damping based on TSD data

slopes, but since this particular analysis was highly dependent on the specific properties
of the asphalt layer, it might influence the results here. Consequently, we will not use
results from location 1 to compare with literature.

In table 21.1, the shift factors used for both methods on location 2 data are presented.
The two methods required the same amount of shifting, indicating that they provided
quite similar results. The shift factor can be interpreted as a measure of how much the vis-
cosity was increased when temperature was increased 10◦C (difference between day and
nighttime measurements). Compared with literature values, a shift factor of 9 is found to
be reasonable when having a reference temperature of 24◦C (Xu and Solaimanian, 2009;
Zhao and Kim, 2003). If more temperatures were measured, the individual shift factors
can be used to study how the characteristic time for each temperature is correlated with
the viscosity. However, as we only had two different temperatures, no meaningful infor-
mation can be derived about this correlation.

We aimed to compare the found values with studies from literature in order to eval-
uate if the proposed procedure provided reasonable results. This was done by fitting the
Huet-Sayegh model and compare the obtained parameter values. However, it was not
possible to obtain a decent fit to the complex modulus curve and instead a fit to the dy-
namic modulus |E∗| was made. A plot of the dynamic modulus |E∗|, calculated from
the master curves, and the associated best fit of a Huet-Sayegh model is shown on figure
21.8, with the best estimated parameter values listed in table 21.1. |E∗| is often used to
report results about complex modulus test on asphalt mixes (Xu and Solaimanian, 2009)
and a comparison with literature revealed that the estimated values for E0 was a bit high
whereas the value for E∞ was a bit low (Aidara et al., 2015; Nilsson et al., 2002; Xu and So-
laimanian, 2009). If we evaluate the quantitative placing of |E∗| with respect to the model
fit, this corresponds to the one seen in Xu and Solaimanian (2009). A detailed comparison
of the model fit with literature is not appropriate, as we only had a small range of fre-
quencies to fit the model to and thus the behaviour outside these frequencies had a great
deal of uncertainties.

A main assumption behind the proposed method was that the behaviour of the com-
plex modulus was almost constant within the sensitivity interval and thus can be de-
scribed by a single value of E’ and E”. As seen on figure 21.7, this might be a invalid
assumption, which can create errors in the resulting master curve. However, the fact that
the approaches using the hysteric model and the Maxwell model provided similar master
curves indicated that it was a reasonable procedure.

In conclusion, we have successively created a complex modulus master curve describ-
ing the viscoelastic behaviour of the asphalt layer based on TSD data. The created master
curve had a quantitative behaviour which was comparable to others found in the litera-
ture. However, the limited range of frequencies made a direct comparison unappropri-
ated. Further work should include a study with numerous temperatures in order to cover
a broader range of frequencies.
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TABLE 21.1: Shift factor for the two methods for location 1 and 2 data.
A Huet-Sayegh model was fitted to the dynamic modulus curves for both
methods and locations and the associated best fitted parameters listed here.
As the master curves are scaled by I, so is the dynamic modulus. We have
assumed a asphalt thickness of 10 cm in order to obtain an estimate of E0

and E∞.

Shift factor Estimates prameter values to Huet-Sayegh model
αT E0 E∞ δ τ k h

location 2
Maxwell model 9 3,3·108 9.3·108 0.4 1.1·10−2 0.67 0.67
hysteretic model 9 4.0·108 1.5·109 0.96 1.6·10−2 0.56 0.56
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21.3 Characterising foundation damping

In the estimated parameter values presented on figure 21.2, a clear correlation between the
foundation damping coefficient c and driving velocity v is observed. This contradicted the
assumptions in the Kelvin-Voigt model used to describe the foundation damping, where
the viscous behaviour is described by

σ̂(−vkx) = −cvikx ε̂(−vkx). (21.6)

Hence c, the viscous damping coefficient, does not depend on velocity and should be
constant. Consequently, figure 21.2 indicated that using this simple Kelvin-Voigt model
to describe foundation damping was not appropriate.

If the foundation damping is not described by the simple Kelvin-Voigt model but a
more complicated expression depending on velocity, we were not able to estimate it based
on a typical TSD measurements which was obtained at one particular driving velocity.
This was a situation similar to the one with the viscoelastic beam behaviour, where only
the behaviour within the sensitivity interval can be estimated. As a result, we introduced
the hysteretic damping model to describe damping behaviour in the foundation. This
model was previously shown to be able to estimate the characteristic values of the storage
and loss modulus within the sensitivity interval.

Inserting hysteretic damping in the foundation gave us the following expression for
the deflection due to a point load of a viscoelastic Euler-Bernoulli beam on a hysteretic
damped foundation,

ŵ(kx,−vkx) =
F

IE∗(−vkx)k4
x + Gk2

x + E f + isign(−vkx)η
, (21.7)

where E f is the elastic modulus of the foundation [N/m2] and η is the damping coefficient
[Ns/m2].

A model fit of the new model in equation (21.7) was performed and the resulting best
estimated parameter values for the foundation parameters are shown on figure 21.9. A
higher degree of non systematic behaviour with velocity was found compared to figure
21.2. Consequently, using the hysteretic damping model in the foundation provided a
better estimate of the damping coefficient. As a result, we propose that the hysteretic
damping model should be used to model foundation damping.

21.3.1 Characterising the velocity dependent behaviour

We introduced hysteretic damping into the pavement response model as it, under nor-
mal conditions, was not possible to properly characterise the foundation damping based
on one single TSD measurement. However, through Finland data we had information
about the velocity dependence of the damping coefficient and as a result, the foundation
damping for this particular road section could be characterised.

Instead of a linear dashpot, the viscoelastic foundation damping was modelled by a
parabolic dashpot. The parabolic dashpot was previous used in the Huet-Sayegh model
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FIGURE 21.9: A new model was proposed in equation (21.7) where the
foundation damping was modelled through a hysteretic damping model.
Using this, a model fit to data was performed and a set of best estimated
parameter obtained. Here the values for foundation parameter E f , η and
G was shown as a function of velocity for A) location 1 and B) location 2.

Overall a higher degree of velocity independence is found.
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velocity. A good linear relation was found for both locations. The plotted
values for c included both estimated values for night and daytime measure-

ments.

(Xu and Solaimanian, 2009; Pronk, 2006) and had the following relation between stress
and strain,

σ̂(ω) =
η

τ
(iωτ)α ε̂(ω), (21.8)

where ω angular frequency, η is the viscosity, 0 < α < 1 is the parabolic dashpot variable.
In a moving reference frame this becomes

σ̂(−vkx) =
η

τ
(−ivkxτ)α ε̂(−vkx). (21.9)

In the special case of α = 1, it behaved as the simple linear dashpot.
Taking the logarithm of the complex modulus of equation 21.9 yielded a linear relation

between velocity and the complex modulus on a double logarithmic scale.

log(E∗(−vkx)) = log(
η

τ
) + αlog(−ikxτ) + αlog(v) (21.10)

On figure 21.10, a plot of estimated parameter value c and velocity on logarithmic scales
is shown, and we found a good linear relation between the two. This indicated that it was
possible to use a parabolic dashpot to characterise the foundation damping. However, if
the linear dashpot is replaced with an parabolic dashpot in the model, we introduce two
additional parameters. Furthermore, some of the parameters depended on velocity and
thus the foundation damping cannot be fully characterised based on a single measure-
ment, but requires measurements at several driving velocities. As a consequence, using a
parabolic dashpot was not recommended for the foundation.
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Chapter 22

Manifestation of viscoelastic effects
through the pavement deflection
slope

A correlation between the amplitudes of the maximum and minimum deflection slope
and the location of damping within the pavement layers, was observed while working
with different kinds of pavement response models and data. It appeared that damping
originating from the top layer and damping originating from underlying layers affected
the deflection slope curve in different ways. As a result, the origin of damping was re-
flected in the relative difference between the amplitudes of the maximum and minimum
deflection slope. The phenomenon is examined in this chapter, first by a theoretical model
study and afterwards through data.

22.1 Formulation of hypothesis

Using the pavement response model developed in chapter 15, three scenarios were con-
sidered:

1) the response of a purely elastic pavement,

2) the response of a viscoelastic beam on an elastic foundation,

3) the response of an elastic beam on a viscoelastic foundation.

A plot of the pavement deflection basin and slope using the theoretical default parameters
from section 16.2 is seen in figure 22.1.

For the purely elastic pavement (scenario 1), the deflection basin was symmetric around
the load (x=0). As a result, the deflection slope was anti-symmetric around the y-axis and
hence the amplitude of the maximum and minimum was equal. On the other hand, for the
deflection slope curves with damping included in either the beam or foundation, an asym-
metric behaviour was observed. When damping was included in the beam, the maximum
and minimum peaks were shifted downwards compared to the elastic case. Conversely,
when damping was included in the foundation they were shifted upwards.
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FIGURE 22.1: Simulated pavement response in three different scenarios;
1) purely elastic pavement, 2) a viscoelastic beam on an elastic foundation
and 3) an elastic beam on a viscoelastic foundation. A) shows the pave-
ment deflection basin and B) the associated pavement deflection slope. The
simulations are made using default parameter values listed in section 16.2.

The asymmetry in the deflection slope curve can be quantified by looking at the ratio
between the minimum and maximum peak amplitude. This ratio will be denoted Ω in
the following section.

Ω =

∣∣∣∣∣
max( dw(x)

dx )

min( dw(x)
dx )

∣∣∣∣∣ . (22.1)

In table 22.1, the values of Ω for the three scenarios in figure 22.1 are listed. We found
that in the case of a viscoelastic beam Ω < 1, and in the case of a viscoelastic foundation
Ω > 1. Based on this observation, we formed the following hypothesis about the relation

TABLE 22.1: Maximum and minimum deflection slope value for the three
scenarios. The ratio between the maximum and minimum peak amplitude
is denoted Ω and we hypothesize that this reveals information about the

location of damping in the pavement.

max( dw(x)
dx ) [mm/m] min( dw(x)

dx ) [mm/m] Ω

Scenario 1 6.3 -6.3 1.0000
Scenario 2 5.7 -7.8 0.7262
Scenario 3 7.4 -4.6 1.6148
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between viscoelastic effects in different pavement layers and the value of Ω .

Viscoelastic effects in the pavement affect the pavement deflection slope differently
depending on where they originate. By evaluating Ω , the location of the most
dominating form of damping can be found. For Ω > 1, the most dominating vis-
coelastic effects are affiliated with the foundation. Conversely, for Ω < 1 the most
dominating viscoelastic effects are affiliated with the top layer. The special case
of Ω = 1 occurs for either a perfectly elastic pavement, or when the viscoelastic
contributions from the different layers are equal.

In section 22.2, the difference in behaviour between scenario 2 and 3 and how the
location of damping affect the deflection slope curve was investigated using our simple
one-dimensional pavement response model. The advantage of this was that we could
study the analytical expression in the frequency domain. In section 22.3, the phenomenon
was studied by a more complex two-dimensional model as this mimics the real pavement
dynamics better. However, due to the complexity of the model, only a numerical study
was made in this case.

22.2 Investigation through pavement model study

The hypothesis stated above was, initially, investigated through a model study. For this
purpose, we used the two layered pavement response model developed in section 15. The
simple nature of the model with only two layers simplified the analysis.

The analysis of the phenomenon begins by using Fourier analysis to separate the dif-
ferent contributions to the deflection slope curve. Using this, we found that the asymme-
try in the deflection slope curve was caused by the real part of the Fourier transformed
deflection slope. As a result, the analytical expression for this and how it affects Ω were in-
vestigated. This was initially done using the simple Kelvin-Voigt model and subsequently
using the more complex Huet-Sayegh model for the complex modulus of the beam.

Using the definition of Fourier transformation , the pavement deflection w(x) can be
written as followed:

w(x) =
1

2π

∫ ∞

−∞
ŵ(kx,−vkx)eixkx dkx. (22.2)

w(x) is a measure of how much the beam deflect compared to a straight beam. As result,
w(x) is a positive value when the beam is deflected. In order to get a depiction of the
deflection basin (as on figure 22.1), we had to plot −w(x). This meant that the pavement
deflection slope we were interested in investigating was in fact d(−w(x))

dx , as this was com-
parable with the signal measured by the TSD.
Using the Fourier transform definition, we introduced the function Ŝ(kx,−vkx),
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d(−w(x))
dx

=
1

2π

∫ ∞

−∞
−ikxŵ(kx,−vkx)eixkx dkx =

1
2π

∫ ∞

−∞
Ŝ(kx,−vkx)eixkx dkx. (22.3)

Ŝ(kx,−vkx) was a complex valued function, and as a result it could be divided into a
real (S′) and imaginary (S′′) part,

Ŝ(kx,−vkx) = S′(kx,−vkx) + iS′′(kx,−vkx). (22.4)

For simplicity, we refer to these just as S′ and S′′. Including this in equation (22.3) yields

d(−w(x))
dx

=
1

2π

∫ ∞

−∞
(S′ + iS′′)eixkx dkx (22.5)

Equation (22.5) can be rewritten.

d(−w(x))
dx

=
1

2π

∫ ∞

−∞
(S′ + iS′′)eixkx dkx (22.6)

=
1

2π

∫ ∞

−∞
S′cos(xkx)− S′′sin(xkx)dkx + i

1
2π

∫ ∞

−∞
S′sin(xkx) + S′′cos(xkx)dkx

(22.7)

=
1

2π

∫ ∞

−∞
S′cos(xkx)− S′′sin(xkx)dkx (22.8)

The last equality is due to the fact that the imaginary part of a Fourier transform of a
real function, F{ f (x)} = f̂ (kx), must be zero when inverse transformed, as the resulting
function F−1{ f̂ (kx)} = f (x) is real. In equation (22.7) this means that

F(x, kx) = i
1

2π

∫ ∞

−∞
S′sin(xkx) + S′′cos(xkx)dkx = 0. (22.9)

The step is proven in more detail below.

The function Ŝ(kx,−vkx) can be rewritten by use of the definition of Fourier transform

Ŝ(kx,−vkx) =
∫ ∞

−∞

d(−w(x))
dx

e−ikxxdx (22.10)

=
∫ ∞

−∞

d(−w(x))
dx

cos(xkx)dx + i
∫ ∞

−∞
−d(−w(x))

dx
sin(xkx)dx (22.11)

= S′ + iS′′ (22.12)

If we include the expression for S’ and S” found in (22.12) into (22.9), we get that
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F(x, kx) =i
1

2π

∫ ∞

−∞

[(∫ ∞

−∞

d(−w(x′))
dx′

cos(x′kx)dx′
)

sin(xkx) + ...
(∫ ∞

−∞
−d(−w(x′))

dx′
sin(x′kx)dx′

)
cos(xkx)

]
dkx

(22.13)

=i
1

2π

∫ ∞

−∞

[∫ ∞

−∞

d(−w(x′))
dx′

cos(x′kx)sin(xkx)dx′ + ...
∫ ∞

−∞
−d(−w(x′))

dx′
sin(x′kx)cos(xkx)dx′

]
dkx

(22.14)

=i
1

2π

∫ ∞

−∞

[∫ ∞

−∞

d(−w(x′))
dx′

(
cos(x′kx)sin(xkx)− sin(x′kx)cos(xkx)

)
dx′
]

dkx.

(22.15)

Since both integrals are from −∞ to ∞, we can change the order of integrations such
that

F(x, kx) =i
1

2π

∫ ∞

−∞

[∫ ∞

−∞

d(−w(x′))
dx′

(
cos(x′kx)sin(xkx)− sin(x′kx)cos(xkx)

)
dkx

]
dx′.

(22.16)

Using that sin(x− y) = sin(x) cos(y)− sin(y) cos(x),

F(x, kx) = i
1

2π

∫ ∞

−∞

[∫ ∞

−∞

d(−w(x′))
dx′

sin(xkx − x′kx)dkx

]
dx′ (22.17)

= i
1

2π

∫ ∞

−∞

d(−w(x′))
dx′

[∫ ∞

−∞
sin(kx(x− x′))dkx

]
dx′. (22.18)

The inner integral in equation (22.18) is over the function sin(kx(x− x′)) which is an
odd function. The integral of an odd function f (x) over an interval symmetric about zero
is zero (Adams, 1999, p. 318),

∫ +M

−M
f (x)dx = 0. (22.19)

Strictly speaking the integral of
∫ ∞
−∞ sin(kx(x− x′))dkx do not converge. However, since in

practice, the kx integration is between large but finite limits, we can use the result (22.19).
Consequently,

F(x, kx) = i
1

2π

∫ ∞

−∞

d(−w(x′))
dx′

[0] dx′ = 0. (22.20)

Thereby, we have proven the steps from (22.7) to (22.8) to be true.
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We return to the expression for the pavement deflection slope, which as a consequence
can be written as followed

d(−w(x))
dx

=
1

2π

∫ ∞

−∞
S′cos(xkx) dkx +

1
2π

∫ ∞

−∞
−S′′sin(xkx) dkx. (22.21)

Define the functions G(x) and H(x) as

G(x) =
1

2π

∫ ∞

−∞
S′cos(xkx) dkx,= F−1{S′} (22.22)

H(x) =
1

2π

∫ ∞

−∞
−S′′sin(xkx) dkx = F−1{iS′′} (22.23)

G(x) corresponds to taking the inverse Fourier transform of S’, and H(x) corresponds
to taking the inverse Fourier transform of iS”. On figure 22.2, a plot of G(x), H(x) and
the inverse Fourier transform of Ŝ is shown. H(x) represents the elastic contribution to
the total deflection slope curve and is an even function, thus anti-symmetric around the
y-axis. G(x), on the other hand, is an odd function, and contributes to the asymmetric
behaviour in the total deflection slope. The maximum of H(x) is indicated to be at x = x1.
As H(x) is anti-symmetric, the minimum is located at x = −x1.

In the case of a perfectly elastic pavement, d(−w(x))
dx = H(x). For small perturbations

to the elastic solutions (|G(x)| � 1), the maximum and minimum of d(−w(x))
dx is assumed

to be located in the same place as maximum and minimum of H(x). This assumption does
not hold in case of substantial amount of damping where the viscoelastic effects will shift
the d(−w(x))

dx signal to the left, thus affecting the x-position of the maximum and minimum.
As we were interested in understanding the fundamental characteristics of the problem,
we conducted the analysis in the simple framework of a small perturbation and studied
the behaviour of H(x) and G(x) both in x = x1.

For the two layered pavement response model derived in chapter 15, the Fourier trans-
formed pavement deflection slope (using a point load) is given by

Ŝ(kx,−vkx) =
−Fikx

IE∗(−vkx)k4
x + Gk2

x + k− civkx
. (22.24)

Here F is the magnitude of the load, I is the second moment of area pr. unit length,
E∗(−vkx) is a general expression for the complex modulus of the asphalt layer and k, c
and G is the foundation spring constant per unit length, viscous damping coefficient per
unit length and shear interaction parameter of the foundation, respectively.
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E∗(−vkx) can be divided into real and imaginary parts: E∗(−vkx) = E′ + iE′′. Intro-
ducing this into equation (22.24) gives

Ŝ(kx,−vkx) =
−Fikx

I(E′(−vkx) + iE′′(−vkx))k4
x + Gk2

x + k− civkx
(22.25)

=
−Fikx

IE′k4
x + Gk2

x + k + i(IE′′k4
x − cvkx)

(22.26)

Ŝ(kx,−vkx) is then rewritten in terms of imaginary and real parts by multiplying the de-
nominator and numerator with the complex conjugated value of Ŝ(kx,−vkx).

Ŝ(kx,−vkx) =
−Fikx

IE′k4
x + Gk2

x + k + i(IE′′k4
x − cvkx)

(IE′k4
x + Gk2

x + k)− i(IE′′k4
x − cvkx)

(IE′k4
x + Gk2

x + k)− i(IE′′k4
x − cvkx)

(22.27)

=
−Fkx(IE′′k4

x − cvkx)

(IE′k4
x + Gk2

x + k)2 + (IE′′k4
x − cvkx)2 + i

−Fkx(IE′k4
x + Gk2

x + k)
(IE′k4

x + Gk2
x + k)2 + (IE′′k4

x − cvkx)2

(22.28)

Consequently, we found that for the two layered pavement response model S′ and S′′

is given by the following

S′ =
−Fkx(IE′′k4

x − cvkx)

(IE′k4
x + Gk2

x + k)2 + (IE′′k4
x − cvkx)2 , (22.29)

S′′ =
−Fkx(IE′k4

x + Gk2
x + k)

(IE′k4
x + Gk2

x + k)2 + (IE′′k4
x − cvkx)2 . (22.30)

From relations (22.29) and (22.30), it is clear that in the case of a perfectly elastic pave-
ment (E′′ = 0 and c = 0), S′ = 0. This means that the pavement response, in this case, is
determined by the imaginary part iS′′ of Ŝ(kx,−vkx) and consequently, the black and blue
curve on figure 22.2 will collapse. Therefore, in order to understand the asymmetry seen
in the deflection slope, we had to investigate the real part of Ŝ(kx,−vkx) given by G(x).

Kelvin-Voigt model for E∗(−vkx)

In order to understand the fundamental characteristics of the problem, we started by
using the highly simple Kelvin-Voigt model for beam behaviour. This model may not
describe the complete asphalt behaviour completely correctly, but was used due to its
simplicity and linear relationship between stiffness (E0) and damping (η).

E∗(−vkx) = E0 − ivkxη (22.31)

As mentioned, we were interested in the behaviour of G(x) and how this influenced
the behaviour of Ω . Thus, we started by looking at the value of G(x1) and subsequently
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FIGURE 22.3: Value of G(x1) (right y-axis) and Ω (left y-axis) for increased
beam and foundation damping respectively. A) viscoelastic beam on a elas-
tic foundation and B) elastic beam on viscoelastic foundation. Both plot use
the Kelvin-Voigt model to describe the beam behaviour. A high correlation

between G(x1) and Ω was found.

its analytical expression.

The value of G(x1) provided an insight into how the curve deviated from the elastic
solution. If G(x1) > 0, the d(−w(x))

dx curve will be shifted upwards compared to H(x) in
both x1 and −x1. On the other hand if G(x2) is negative, the curve is shifted downwards.
The relationship between G(x1) and Ω was investigated on figure 22.3 in the two simple
cases where either beam or foundation damping was present. A clear correlation between
the behaviour of G(x1) and Ω was found. In order to understand the behaviour of G(x1),
we had to understand the behaviour of its components.

G(x1) is given by the integral over the function S′ cos(x1kx). In figure 22.4, a plot of S′,
cos(x1kx) and S′ cos(x1kx) is seen for different values of η with constant c=0. The value
of η affected both the behaviour of S′ and cos(x1kx), and thus these were shown on nor-
malized axis in figure 22.4a. From this, it is found that increasing η shifted the S’ curve
to higher wave number, resulting in the product curve in 22.4b being increasingly more
negative. As a consequence, G(x1) decreases. This explains the trend seen in figure 22.3a.

We will now examine which parameters influenced the behaviour of S’ by looking at
the analytical expression. Recall that S’ is given by

S′ =
−Fkx(IE′′k4

x − cvkx)

(IE′k4
x + Gk2

x + k)2 + (IE′′k4
x − cvkx)2 . (22.32)

In the case, where all elastic parameters were fixed and thus only pavement damping is
changed, the shape of S′ was determined by the term (IE′′k4

x − cvkx), which was present
in both numerator and denominator. If we use a Kelvin-Voigt model to describe beam
damping and has the simple case of an elastic foundation (c=0) the term becomes,

(IE′′k4
x − cvkx) = −Ivηk5

x. (22.33)
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On the other hand, in the case of an elastic beam (η = 0) and viscoelastic foundation the
term becomes,

(IE′′k4
x − cvkx) = −cvkx. (22.34)

Thus the main difference on the two types of damping was the power in which kx was
raised in S’. This affected at which kx the peak in S′ was placed with respect to cos(x1kx),
and as a result, whether G(x1) ended up being positive or negative.

In the case where damping was present in both the beam and foundation, the situation
became more complicated as both terms in (IE′′k4

x − cvkx) was present.
In figure 22.5, the value of Ω was shown in the form of a contour plot, with beam

and foundation damping on the axis. We found that increasing beam damping always
resulted in a decrease in Ω and vice versa for foundation damping, which always resulted
in an increase of Ω . The plot of Ω on figure 22.3 corresponded to the simple cases along
the y-axis (η = 0) and the x-axis (c = 0), respectively. Notice that a line with Ω = 1 went
through the contour plot, indicating the tipping point where the dominating damping
went from the beam to the foundation and vice versa.

As mentioned, the behaviour of S′, in the case where two types of damping was
present simultaneously, was dictated by the term (−Ivηk5

x − cvkx). An illustration of
the behaviour of S′ for different combinations of damping is shown in figure 22.6. When
both types of damping was present, the relative size of η and c determined what was the
dominating power of kx in (IE′′k4

x− cvkx). From figure 22.6, we concluded that increasing
c moved the peak to lower kx, and thus shifts the value of G(x1) in a positive direction.
The opposite was seen for increased η which moved the peak to higher kx, resulting in
G(x1) going towards a negative value.

In conclusion, there exists a correlation between the the dominating power of kx in
the term (IE′′k4

x − cvkx), which was present in both numerator and denominator, and
the pavement response observed through Ω . This explained why increased beam and
foundation damping had different influences on the pavement response.

Huet-Sayegh model for E∗(−vkx)

The above analysis was made with the simple Kelvin-Voight model representing the beam
behaviour. We will now do the same, but with a more realistic complex modulus model
(for more information, see the discussion in section 13.3). In the literature, the Huet-
Sayegh model is often mentioned as a good model for the asphalt behaviour over a wide
range of frequencies, and thus this will be used in the following analysis (Pronk, 2006;
Nilsson et al., 2002; Xu and Solaimanian, 2009).

The complex modulus for the Huet-Sayegh model is given by:

E∗(−vkx) = E0 +
E∞ − E0

1 + δ(−ivkxτ)−k + (−ivkxτ)−h (22.35)
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nations of beam and foundation damping. On the x axis is damping in
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The parameter values used are η = 8 · 108 Ns
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In the Huet-Sayegh model, and similar models, there is a nonlinear relationship be-
tween stiffness and damping parameters. In particular when equation (22.35) is divided
into storage (E′) and loss (E′′) modulus, these will contain both stiffness and damping
related parameters. In addition, they are both functions of kx. This is fundamentally dif-
ferent from the Kelvin-Model, where E′ was constant, and it complicates the behaviour of
S′ even more.

In figure 22.7, a plot of the complex modulus for the Huet-Sayegh model using the
parameter values from section 16.2 is seen. As discussed in chapter 17, due to the moving
load we had a frequency dependent pavement response. Only the behaviour of E∗(−vkx)
within a certain range of frequencies has an influence on the pavement response, the sen-
sitivity interval. Consequently, the parts of E′ and E′′ which had an influence on the
behaviour of S′ and G(x1) is the part within the sensitivity interval.

This gave rise to the question of how to control the beam damping. The damping ex-
pressed by the beam was given by the value of the storage and loss modulus within the
sensitivity interval which depended on various parameters. We chose to change the beam
damping by changing the value of τ. Increasing τ shifted the complex modulus curve
to lower wave numbers and as a result, the sensitivity interval covered different parts of
the E∗(−vkx) curve. On a normalized x-axis, this corresponded to shifting the sensitivity
interval and thereby covering different parts of the complex modulus, resulting in dif-
ferent amount of beam damping. This is illustrated on figure 22.7 with three different τ
values. Note that due to the shape of E”, there existed a value of τ at which the beam
expressed a maximum amount of damping. As a result, damping could be increasing by
either increasing τ from the elastic plateau at low frequency (increasing "from the left") or
decreasing τ from the elastic plateau at high frequency (increasing "from the right"). Since
E” was not symmetric the two approaches did not give the same results.

In figure 22.8, a contour plot of Ω as a function of beam and foundation damping is
shown. On the y-axis we have the amount of foundation damping and on the x-axis is
the value of τ. Below the x-axis, the values of E∗(−vkx) within the sensitivity interval at
a given τ value is plotted. Overall figure 22.8 showed that any given value for τ, if the
foundation damping c was increased, Ω would increase. Likewise, it showed that if we
begun at any foundation damping c and increased the beam damping, either from the left
or the right, Ω was decreased. The increase/decrease rate of Ω depended on the specific
combination of parameters, and we found that there in fact was a different in Ω whether
we were at high or low τ.

The blue line indicates Ω =1. This provides the limits of a closed area in which Ω < 1.
Within this area the beam damping was the "dominating" damping and thus Ω < 1.
Likewise outside of the Ω = 1 line, we had an area where the foundation damping is
dominating and thus Ω > 1.

As previously, there was a correlation between G(x1) and Ω. On figure 22.9, G(x1)
and Ω for the simple case with c = 0 an increased τ was observed. As before, we found
that G(x1) always was below or equal to zero. In the extremes for high or low τ, we have
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FIGURE 22.7: The complex modulus using the Huet-Sayegh model on nor-
malized axis is showed in black. Due to the moving load, the pavement re-
sponse is frequency dependent and thus only a particular range of frequen-
cies influence the pavement response. This range can be found by evaluat-
ing where the sensitivity function is nonzero. The sensitivity function for
different τ values is marked with area curves, illustrating how changing τ
results in different parts of E′ and E” being covered by the sensitivity inter-
val. Consequently the beam will exhibit different amount of damping and

stiffness.
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increases the Ω value.
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an elastic case and G(x1) = 0. In-between, G(x1) had a negative slope for τ < 1 · 106 and
a positive slope for τ > 1 · 106. A similar behaviour was seen for Ω .

An explanation for this change was to be found in the behaviour of E′′ within the
sensitivity interval for different τ. In figure 22.7, we could see how the behaviour of E′′

within the three plotted sensitivity intervals was quite different. The behaviour of E” had
the form E′′ ∼ kn

x, where n was a real number controlling how steep the slope was. If the
sensitivity interval was located to the left of E′′max, E” had a positive slope and thus 0 < n.
If the sensitivity interval on the other hand, was located on the right had side of E′′max,
n < 0 and thus the slope was negative.

As seen previously, the behaviour of S′ was influenced by the term (IE′′k4
x − cvkx). In

the simple case with c=0, we have that

(IE′′k4
x − cvkx) = IE′′k4

x (22.36)

As a result, due to the changing behaviour of E” the total power to which the wave
number was raised will be less than 4 when the sensitivity interval was on the right hand
side of the loss modulus peak. This meant that S′ was moved to lower kx and that G(x1)
likewise would be moved in a positive direction. A behaviour we connected previously
with foundation damping. The power of n would determine at which kx the peak in S′

was placed, and thus the value of G(x1). In the simulation in figure 22.8, E′′ was rather
flat on the right side corresponding to a low n. As a result, G(x1) ≤ 0 when there was no
foundation damping present and therefore Ω ≤ 1.

In the case of both beam and foundation damping, the behaviour of S′ became increas-
ingly complicated to understand as both kinds of damping contributed to (IE′′k4

x − cvkx).
However, in figure 22.8 we found that the area with Ω < 1 was a connected area and that
this area was shaped after the imaginary part of E∗(−vkx) . Thus, the hypothesis that the
origin of the most dominating source of damping could be found by evaluating Ω was
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true in this case.

Exceptions from general trend

As discussed above, the slope of E′′ within the sensitivity interval determines the be-
haviour of S′ which affects G(x1) and in the end Ω. The slope on the right hand side of
E′′max is on the form E′′ ∼ kn

x with n < 0. This result in S′ being moved to lower kx and as
a result, G(x1) shifts towards a positive value. The higher the value of |n|, the lower total
power of the wave numbers in IE′′k4

x. For the situation above, |n| was small enough such
that G(x1) ≤ 0. However, there exist some limit where the total power of the wave num-
bers in IE′′k4

x gets so small that the resulting G(x1) > 0, and thus Ω > 1. This is the case
even though there is no foundation damping present, which contradict our hypothesis.

In figure 22.10a, a plot of Ω for the case of an elastic foundation is shown for two
parametersets. The first was the default parameters which had the parabolic dashpot
coefficient h = 0.22. Here the value of Ω was always below 1, in agreement with the
hypothesis. The second plot showed a parameterset where h was changed to h = 0.5 and
as a result, there existed an area where Ω >1, even through no foundation damping was
present. Thus the pavement response simulated with this particular parameterset did not
obey the hypothesis.

The behaviour of the right hand side of E” for the Huet-Sayegh model was determined
by some combination of the parabolic coefficients h and k. In figure 22.10b, a double log-
arithmic plot of E” was shown, illustrating a clear difference in n for the two cases in
figure 22.10a. Through numerical analysis the value of n in the limit where the hypoth-
esis stopped being true, was found to be nlim = −0.37 (illustrated in figure 22.10b using
h=0.37). This meant that for |n| < |nlim| the hypothesis held and for |n| > |nlim| the hy-
pothesis did not hold. It must be emphasized that the particular value of nlim depended
on the given choice of parameter values and thus was not a general value. Nonetheless,
this showed that there existed some limit for which the behaviour of E” on the right hand
side of the loss peak became so steep that the resulting behaviour of S’, and thus G(x1),
influenced the pavement response in a similar way as foundation damping did. Thus, if
we were within this range of parameter values, it was not possible to estimate the origin
of dominating damping based on the value of Ω .

It is worth noting that for the simple Maxwell model often used in this thesis, n=-1
(fig. 22.10b). Thus, pavement simulations using this, will have an range of τ values where
the hypothesis is not valid.

22.2.1 Conclusion on model study

By use of a model study, we have showed how the pavement deflection slope can be
divided into a symmetric (H(x)) and non-symmetric (G(x)) contribution. Viscoelastic
effects from both the beam and foundation was included in the non-symmetric term, but
in different ways. Consequently, they influenced the pavement response differently. G(x)
was evaluated in the point x = x1, which is the location of the maximum and minimum
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the default values listed in section 16.2.

of H(x). For small perturbations in the symmetric solution (G(x1) � 1), a correlation
between Ω and G(x1) was found where G(x1) > 0⇒ Ω > 1 and G(x1) < 0⇒ Ω < 1.

The different types of damping was found to affect G(x1) thorough S′,

S′ =
−Fkx(IE′′k4

x − cvkx)

(IE′k4
x + Gk2

x + k)2 + (IE′′k4
x − cvkx)2 . (22.37)

It was found that the crucial factor that distinguish the two types of damping was the
power to which kx was raised in the term (IE′′k4

x − cvkx). This determined whether G(x1)
was positive or negative, and thus if Ω was above or below 1. In general, we found that
increasing foundation damping resulted in an increasing Ω , whereas increasing beam
damping resulted in a decrease in Ω . Thus validating the hypothesis. However, it was
found that there existed situations where the behaviour of E′′ made G(x1) > 0, even
though only beam damping was present, and in these cases the hypothesis was not true.
Such situations arose when E′′ within the sensitivity interval had a negative slope which
was "to steep", resulting in the overall power of kx in IE′′k4

x being below some threshold.
The exact limit for how low the power of kx can get before the hypothesis breaks down
depended on the used parameter values and was not investigated here. However, we
found that E′′ described by the Maxwell model would always have this feature.

Reported empirical values in the literature for the loss modulus showed that the Maxwell
model was a bad fit for the E′′ behaviour (Xu and Solaimanian, 2009). One reason was its
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simple nature resulting in a steep a slope of E” both in front and behind the loss peak. In
general, the slope on the right hand side of the loss modulus for real asphalt mixes was
often reported to have a low slope and thus not believed to be within the parameter value
range where the hypothesis did not hold.

22.3 Study of hypothesis using Viscowave II-M

The model used in the analysis above was a fairly simple one-dimensional foundation
model. We now aimed to investigate if the overall conclusions made above (increased
viscoelastic behaviour in the asphalt layer resulted in a decrease in Ω ) could be repro-
duced using a more complex pavement response model. For this purpose, the pavement
response to a moving load of three different pavements were simulated using the time-
domain based viscoelastic solver ViscoWave II-M, developed at Michigan State University
(Lee, 2013; Balzarini et al., 2017b). This program was previous used and described in sec-
tion 10.4.1 and is explained in more detail in appendix B.

For the following analysis, two different pavements were simulated. Both pavements
consisted of three layers, representing an asphalt layer, a base layer, and a subgrade layer.
The parameters for the structure (height, elastic moduli, Poisson’s ratio and density) were
chosen to be typical values for these kinds of pavement layers, and they are listed in
table 22.2 (Nielsen et al., 2020b). The base and subgrade was assumed semi-elastic as
some damping was needed in order to stabilise the numerical solution. The asphalt layer
was assumed viscoelastic and its viscoelastic properties were described by the relaxation
modulus E(t).

We chose to simulate pavements with the same mechanical characteristics in the base
and subgrade layer, and different viscoelastic properties of the asphalt layer. The vis-
coelastic properties were described through E(t), given by

log(E(t)) = c1 +
c2

1 + e(−c3−c4 log(tR))
, (22.38)

log(tR) = log(t)− log(aT) , (22.39)

where c1, . . . , c4 are the sigmoid coefficients, tR is the reduced time and aT is the shift factor
(Balzarini et al., 2019).

In order to ensure realistic E(t) curves, the parameters for the relaxation modulus were
taken from back-calculated falling weight deflectometer tests on road segments located in
California (Balzarini et al., 2019). On figure 22.11, a plot of E(t) for the two asphalt layers
used in this analysis is seen (parameter values listed in table 22.3). These were chosen as
they had approximately the same E∞ value, but different E0 and thus also a different slope
within the two plateaus. In general, the value of E0 was an indication on the stiffness of
the asphalt layer. Thus we expected PAV2 to behave stiffer than PAV1. Likewise, will
the slope of the curve provides an indication on the viscous behaviour of the asphalt
layer. The smaller a difference between E0 and E∞ (hence a small slope), the more elastic
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TABLE 22.2: Mechanical characteristics for the simulated pavement. All
pavement structures are made of three layers, each characterized by their
Poisson’s ratio (ν), mass density (ρ), average thickness (h) and the relax-
ation modulus (E). The relaxation modulus for the asphalt layer is given by

equation (22.38).

Asphalt
E(t)
ν = 0.35
ρ = 2322.7 kg

m3

h = 0.15 m
Base

E2 = 124.3 MPa
ν = 0.35
ρ = 2082.4 kg

m3

h = 0.3 m
Subgrade

E3 = 65.4 MPa
ν = 0.45
ρ = 1762 kg

m3

h = ∞

a behaviour is seen in the pavement. Based on these criteria, we would expect PAV1 to
have a more soft and elastic behaviour than PAV2.

In figure 22.12, a plot of the deflection basin and slope is shown for the simulated
pavements. As expected, we found that PAV2 had a stiffer behaviour than PAV1, seen
by the magnitude of the maximum deflection. Furthermore, the maximum deflection
for PAV2 (x = −0.12m) was located further away from the load (x=0) than for PAV1
(x = −0.07m). This, combined with having maximum and minimum deflection slope
located far from the load, indicated increased asphalt damping.

As a consequence, if the hypothesis about increased asphalt damping being expressed
in the Ω value was true, then

ΩPAV2 < ΩPAV1. (22.40)

In table 22.3, the calculated values of Ω are listed, and the relation above was found to
hold.

It should be emphasized that for this kind of multi-layered models where the viscous
behaviour of the asphalt layer were controlled by E(t), it was not trivial to only increase
damping of the asphalt layer and hold all other parameters fixed. As the top layer stiff-
ness was correlated with the damping and controlled by E(t) as well, the relative stiffness
between the layers would change when damping changed and consequently affect the
pavement response. Nonetheless, the analysis above illustrated that using the ratio be-
tween maximum and minimum pavement deflection slope (Ω ) as an indicator of the
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FIGURE 22.11: Relaxation modulus E(t) for the two pavements PAV1 and
PAV2. The parameters for the relaxation moduli are chosen among back-
calculated falling weight deflectometer tests on road segments located in
California (Balzarini et al., 2019). They are chosen such that E∞ is approxi-
mately the same, but E0 varies resulting in different behaviour with respect

to stiffness and elasticity.

origin of damping was valid also for a complex layered halfspace model, and thus was
not just an artifact of the simple two layered beam model.

It is worth noticing that Ω for the simulated pavement structures here was always
above 1. The same was true when evaluating TSD data, as seen in the following section.
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FIGURE 22.12: Pavement response to a moving load for the three simulated
pavement structures. Parameter values for the structures are listed in table
22.2 and 22.3. The maximum deflection was located at x = −0.07m for

PAV1 and x = −0.12m for PAV2.

TABLE 22.3: Sigmoidal parameter values used in E(t) to simulate the four
different pavement structures. In addition, characteristic for the different

simulated pavements responses in figure 22.12 and the calculated Ω .

Pavements

PAV1 PAV2

Sigmoid coefficients
c1 1.033 0.978
c2 3.327 3.8
c3 0.311 0.521
c4 -0.54 -0.519
Shift factor log(aT) 0.09 0.12
E(t) characteristics
E0 [Mpa] 22,906 59,970
E0 − E∞ [Mpa] 22,895 59,960

Pavement response characteristics
Asphalt stiffness −−−−−→

Amount of asphalt damping −−−−−→

Amplitude ratio Ω 1.14 1.12
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22.4 Ω in TSD data

It was shown that evaluating Ω could be used as a qualitative method to examine from
which layer the dominating damping was coming. We here use this result on the TSD
data presented in section 9.

In section 20, the TSD data measured in Måløv at 18◦C was analysed by use of the
two layered pavement response model. One of the conclusions from the analysis was that
damping from the foundation was the most significant source of damping for this partic-
ular road segment. Accordingly, we would expect Ω > 1 for this data set.

On figure 22.13, a plot of Ω calculated based on the model fit was shown for all mea-
surements at 18◦C. A clear trend in Ω was seen with a mean value of Ω =1.4. The area
between 0.5-1 km. had a significantly different behaviour than the rest of the road segment
as Ω dropped to around 1. Earlier investigations of this area (section 20.6) had shown that
the top layer parameters were more dominating here which was reflected in the value of
Ω.

The effect of temperature was also studied as Ω was calculated based on the model
fit to data measured at 35◦C . Overall, we found that the average value of Ω decreased,
thus damping in the top layer became increasingly dominant. When temperature of the
asphalt layer increased, it causes a shift in the sensitivity interval to lower frequencies.
Whether this result in more or less damping expressed in the top layer, depended on the
exact location of the sensitivity interval with respect to the loss modulus peak. Analy-
sis in section 20 indicated that the sensitivity interval was located on the left side of the
loss peak, and consequently, we would expect an increase in the amount of damping ex-
pressed by the top layer. However, when fitting the model to data at 35◦C , we found a
large decrease in the estimated value of the foundation damping. Thus the results in fig-
ure 22.13 indicated that the foundation damping was decreased more than the top layer
damping when temperature increased, and as a result Ω decreased.

Common for both data series was that the value of Ω does not change a lot during the
10 km road segment measured on. This was consistent with the theory that the founda-
tion damping was controlling the value of Ω , as this was estimated to be almost constant
over the road segment.

In conclusion, analysing the value of Ω agreed with results obtained through other
analyses made previously on the same data set. This supported the conclusion that evalu-
ating Ω can be used as a qualitatively measure of where the origin of the most dominating
pavement damping was located. Using the method with Ω had the advantage that it was
a fairly easy method compared to the comprehensive analyses made in section 20.

When evaluating Ω above, we used a model to fit to data. Ideally, Ω could be eval-
uated without any modelling involved, as this would remove any underlying modelling
assumptions. However, as the minimum and maximum deflection slopes often were not
fully captured in data, calculating Ω based on the data-points could result in incorrectly
values. This might result in a wrong conclusion about the origin of damping. An example
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FIGURE 22.13: Calculated Ω values based on model fit to all Måløv data
at 18◦C and 35◦C . The mean value for each data series is indicated with
dotted lines. An overall decrease in Ω is found when the road surface tem-
perature increases, indicating that the dominating viscoelastic effects is af-

filiated with the top layer.

where this was the case is shown in figure 22.14. Here the maximum was fully captured
by the sensors, but the minimum was not. As a result, the calculated Ω based on data and
model fit was very different. Ωdata > 1 and hence we would conclude that the damping
originated from the foundation, whereas Ωmodel < 1 indicated that the dominating damp-
ing in fact originated from the asphalt layer. Consequently, some modelling of data was
recommended in most cases if the consistent Ω value was to be obtained.
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Part VI

Summary
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Chapter 23

Summarising discussion and outlook

23.1 Measuring total and structural rolling resistance

The starting point of this PhD project, was to develop a method for measuring the total
and structural rolling resistance simultaneously. Based on this, we aimed to evaluate, not
just the total rolling resistance of a given pavement section, but also how big a contribu-
tion arises from the structural rolling resistance.

The theoretical principle behind measuring the total rolling resistance of a heavy ve-
hicle was based on the relationship between longitudinal deformation of the rear-end tire
axle and the rolling resistance loss. In practice, deformation of the tire-axle in the longi-
tudinal direction was measured using a circuit of strain gauges mounted on the rear-end
axle, near the tires. Using the developed measurement setup, a set of preliminary experi-
ments were conducted with the purpose of evaluating the reproducibility of the method.
Analysis of data revealed a systematic error in the measurements caused by tempera-
ture effects in the tire axle. A simple temperature compensation of the calibration proce-
dure was developed and tested. However, this was insufficient to compensate, to a high
enough degree, for temperature effects.

We speculated that a temperature gradient within the axle was present and thus a
setup including multiple temperature sensors should be developed to study the problem.
Consequently, we concluded that a proper understanding of temperature effects in the
axle should be obtained before reliable and reproducible measurements can be made. As
a result, no useful measurements of the total rolling resistance was obtained.

Concurrent while working on the method for measuring the total rolling resistance, a
simple method for measuring the structural rolling resistance (SRR) was developed. This
method was based on the relation between SRR and the slope of the deflection basin un-
der a moving load. For measuring the pavement deflection underneath a moving tire,
we used the Traffic Speed Deflectometer (TSD) technology, which provided high resolu-
tion measurements of the pavement deflection slope. The method was proven to obtain
highly reproducible measurements of SRR (standard deviations from three repeated mea-
surements of 4-10%) with a high spatial resolution. Using a simple pavement response
model to estimate the pavement deflection slope underneath the load, the method was
tested on an approximately 10 km long road segment. The same section was measured
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with road surface temperature 18◦C and 35◦C . The measured structural rolling resistance
coefficient (CSRR) varied considerably over the traveled distance, with average values in
the range 0.01% − 0.03% of the load for 18◦C and 0.01% − 0.05% of the load for 35◦C.
However, these variations were found to be highly reproducible with low standard devi-
ations, even in regions where the CSRR changed rapidly with distance. This demonstrated
that the method was robust and could measure the CSRR values of the road precisely, with
high spatial resolution even under changing pavement conditions.

The influence of temperature on SRR was studied both in Måløv data with an increase
in road surface temperature from 18◦C to 35◦C , and in Finland data with an increase
from 14◦C to 22◦C . For both studies, an increase in SRR was seen when temperature in-
creased. For Måløv data, the increase was on average 59%, with a few places showing a
400% increase. Based on findings in literature, an increase in SRR with temperature was
expected (Sandberg et al., 2012). However, evaluating the individual data sets revealed a
large difference in how SRR increased with temperature. We found that structural charac-
teristics for the given pavement section determined how big an increase with temperature
was seen. In the Måløv data, a section of the road was found to have a stiffer foundation
behaviour than the rest, and here temperature had less of an effect on the measured SRR.

The effect of driving velocity on SRR was studied by analysing Finland data. Through
this, velocity was found to have significant influence on the measured CSRR . This was an
unexpected result, as asphalt is a viscoelastic material and thus the driving velocity was
expected to affect the stiffness expressed by the top layer. A potential explanation for the
observed behaviour was that the sensitivity interval with respect to the complex modulus
curve was located at the lower elastic plateau. Consequently, a change in velocity had
little effect on the resulting storage and loss modulus. However, when fitting the model
to Finland data, we did indeed find a change in both storage and loss modulus. Another
potential explanation, was that the structural rolling resistance was primarily determined
by the foundation damping, and if this was independent of driving velocity, so was SRR.
Having the foundation damping as the primary source of damping was established for
the Måløv data, and thus could be a possible explanation. Either way, we concluded that
even with large driving velocity changes from 5 to80 km/h the calculated SRR remained
unaffected.

The effect of velocity on the overall pavement deflection was found to be localized
around the load, where an increased velocity reduced the magnitude of the measured
slopes. A consequence of this was that if the influence of velocity on the pavement de-
flection was evaluated by looking at a single point far away from the load, e.g. sensor
7 located 450mm away from the load, no changes was seen. In contrast, a change with
velocity was observed if evaluated close to the load.

The found values of SRR had a magnitude which indicated a small contribution to
the overall rolling resistance. As we were not able to obtain reproducible results of the
total rolling resistance, a direct comparison could not be made. However, using values
found by Sandberg et al. (2011b), the average rolling resistance of a truck is estimated to
be 3.8% of the load. If this value is used, the found SRR values were 0.3%-1.3% of the total
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rolling resistance. Even though this only provided a rough estimate of a realistic value,
it indicated that the contribution from structural effects is very small. For future work,
measurements of SRR on several different road sections are desired. Using these, a more
general conclusion about the magnitude of SRR and structural effects contribution to the
overall rolling resistance could be determined.

Comparison of the measured values of SRR with values found in literature was dif-
ficult, as no direct measurements of SRR had been conducted before. Investigations of
the structural effects on the driving resistance have been conducted by comparing fuel
consumption measurements on flexible (asphalt) and rigid (concrete) pavements. Results
from these kind of studies spans between finding no significant effect and finding up to
4% increase in fuel consumption (Bienvenu et al., 2013; Balzarini et al., 2018; Zaabar and
Chatti, 2014; Akbarian et al., 2012). All in all, in agreement with our findings of a small
effect.

The structural rolling resistance was also investigated through simulation studies in
the literature. However, a direct comparison with our work was not suitable as SRR was
highly dependent of the structural characteristics of the simulated pavement.

23.1.1 Discussion of the simple approach

A key principle behind the our approach to calculating SRR was that it should be easy to
apply with TSD data. As a result, the first simple approach presented included no model
fit to data. Instead, the deflection slope underneath the tire was assumed linear and, as
a result, could be found by a linear interpolation between the sensor points closes to the
load. The strength of this method was that it required no knowledge about the structure
or mechanical properties of the pavement measured on. Furthermore, the use of the TSD
vehicle made data collection both fast and very precise. However, assuming that the de-
flection slope underneath the load was linear was not always valid, and as a consequence,
the calculated SRR values were not always accurate.

The validity of using a linear interpolation was investigated first through a numerical
study using the sophisticated three layered pavement response model Viscowave II-M.
From this, we concluded that using a linear interpolation in some cases underestimates
the structural rolling resistance by as much as 50%. Subsequently, the use of linear in-
terpolation was investigated by fitting the developed simple one-dimensional pavement
response model to data and comparing the calculated CSRR. Based on this, we developed
a set of general guidelines, describing when the linear interpolation method was valid.
These were based on the qualitative behaviour of the maximum and minimum deflec-
tion slope. In general, we found that when the minimum was closer to the load than the
nearest sensor point behind the load, the method tended to overestimate the SRR. The
opposite was seen in the case where the maximum was closer to the load than the nearest
data point, and the minimum simultaneously was well resolved in the data points behind
the load. In this case, the simple approach tended to underestimate SRR. Lastly, in the
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case where both the maximum and minimum were located far away from the load (com-
pared to the sensor location), and thus were fully resolved in the data points, the linear
interpolation method provided a good estimate of the SRR. For the data series presented
in this thesis, most of the data sets belonged to the second case, and as a result the simple
approach provided a lower limit of the SRR.

By analysing the result of fitting the simple pavement response model to data, a cor-
relation between the x-location of the maximum and the relative stiffness between the
asphalt layer and the foundation was found. Consequently, data sets where the maxi-
mum deflection was located far away from the load corresponded to having a relatively
stiff top layer compared to the foundation. In these situations, the corresponding deflec-
tion basin was broad and shallow, and using linear interpolation to estimate the deflection
slope underneath the tire was valid. In a similar fashion, when the deflection basin be-
came narrow and deep, the method was found to give increasingly inaccurate estimates
of SRR.

In conclusion, we showed that using linear interpolation to estimate the deflection
slope underneath the tire was valid when the asphalt layer behaved stiff compared to
the underlying foundation. The softer a behaviour in the top layer, the more inaccurate
estimates the simple approach gave. In these situations, we recommended using a simple
pavement response model to obtain the pavement deflection slope underneath the load.
However, it should be noted that SRR values obtained using a model fit provided values
within the same order of magnitude as results obtained using the linear interpolation
method. Consequently, the simple approach could be used as a fast method for easily
calculating the SRR for large quantities of TSD data. If more accurate results was desired
the more sophisticated method using a pavement response model should be used.

23.2 Characterising structural properties based on model fit to
TSD data

The developed pavement response model was based on physical elements and, as a conse-
quence, it could be used to analyse the measured pavement deflection slopes and provide
information about the structural characteristic of the pavement. This was done by fitting
the model to data and using the resulting estimated parameter values. Overall, the model
was found to provide a good fit to data, even for warm road temperatures.

We investigated if the division of data based on empirical observations could be re-
lated to structural changes of the pavement. The deflection slope curve was characterised
by having a maximum in front of the load and a minimum behind the load. Based on the
x-position and the amplitude of the maximum deflection, TSD data measured in Måløv
were divided into six data groups. Using the estimated parameter values obtained in the
fitting procedure, a simulated pavement response curve was created for each data set and,
as a result, more detailed information about the maximum and minimum were obtained.
Comparing the characteristics of the maximum and minimum seen across groups, with
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the estimated parameter values showed a correlation between the relative stiffness of the
top and underlying layers ( k

IE ) and the movement of the maximum closer to the load.
From the estimated parameters, the foundation stiffness k was found to be approximately
constant along the measured pavement section, and thus we concluded that the changes
in maximum position observed in data was due to a change in stiffness of the top layer.
An increase in top layer stiffness was manifested in the pavement deflection by a broad
and shallow deflection basin. In addition, by analysing the amplitudes of the maximum
deflection we concluded that there where a shift in the underlying foundation structure
after around 2.5 km, resulting in a significantly higher maximum amplitude in data sets
located after the shift.

For increased road temperature, a similar change in the minimum deflection slope
was also observed, where the x-position are moved closer to the load. When a data set
contains a minimum close to the load (with respect to the sensor location), this was often
accompanied by a maximum close to the load (data group 1). The corresponding pave-
ment deflection basing for this behaviour was characterised by being narrow and steep. A
physical interpretation of this behaviour was that the top layer became increasingly soft
and, as a consequence, deformed underneath the load. We hypothesised that the validity
of assuming a stiff in-compressible top layer broke down in these cases, and proposed
that a deformable top layer should be considered in order to obtain a better fit to data.

23.2.1 Characterising damping based on deflection slope features

An important result about the correlation between the relative amplitudes of the maxi-
mum and minimum deflection slope (Ω) and the origin of damping was derived in chap-
ter 22. The motivation for this analysis arose from observing that adding damping to the
top layer and the foundation in the simple response model affected the resulting pave-
ment deflection slope curve differently. When damping was included in the beam, the
maximum and minimum slope peaks were shifted downwards compared to a purely
elastic case. Conversely, when damping was included in the foundation they were shifted
upwards.

This phenomenon was studied primarily using the simple one-dimensional pavement
response model, as this had an analytical expression in the wave number domain. As
a result, an understanding of the mechanisms behind the different sources of damping,
and how they affected the deflection slope curve, was obtained. Using Fourier analysis,
we found that the asymmetric behaviour in the deflection slope curve was caused by the
real part of the Fourier transformed deflection slope. Analysis of this revealed that the
fundamental difference between the two types of damping are the power to which kx is
raised in the term IE′′k4

x − cvkx. As a result, when foundation damping (represented by c)
was increased, Ω was increased, and vice versa for beam damping.

Results obtained through the simple pavement response model were attempted veri-
fied using the more sophisticated multi-layered model Viscowave II-M. However, using
a more complicated model made it hard to change the different layers specific damping
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without changing other characteristics as well. As a consequence, it was difficult to recre-
ate the extreme cases tested by the simple model. Nonetheless, the underlying correlation
between the origin of damping and Ω was demonstrated, suggesting that this was not
just a feature of the simple model.

The correlation between the source of dominating damping and Ω was an easy quali-
tative way to examine pavement damping behaviour based on TSD data behaviour. How-
ever, it required a simple model fit to data in order to provide information about the min-
imum and maximum peak. Ideally, a measure which required no modelling at all would
be desirable.

The method was tested on Måløv data and showed that the main damping contribu-
tion originated in the foundation. This result was also obtained using a different analysis,
in which different simplified models were fitted to Måløv data and compared. The re-
sult of this analysis showed that foundation damping was the most dominating source
of damping for this particular road segment. In fact, the top layer acted almost elastic
in a majority of data. The results emphasised that foundation damping had a significant
influence on the pavement response and that it should not be neglected when modelling
the pavement response. Furthermore, the results indicated that potential improvement of
the pavement with respect to minimizing the energy dissipation should include the un-
derlying layers, as we hypothesised that improvement of the asphalt layer alone would
not reduce all pavement damping.

The presented results were based on measurement of a single road segment, and for
future work we recommend conducting similar analysis for other road segments in order
to evaluate if this is a general trend.

23.2.2 Creating asphalt master curves based on TSD data

With the Finland data, we had a unique set of deflection slope measurements made at sev-
eral driving velocities and temperatures, enabling us to characterise the top layer damp-
ing. A pilot study was presented in section 21.2 where this specific data was used to create
a complex modulus master curve, characterising the viscoelastic behaviour of the asphalt
layer. Such master curves are traditionally made based on laboratory test, where a sample
of the asphalt mix is required. Consequently, it was advantageous if these could be made
based on TSD measurements, as this is a nondestructive measurement technique easily
applicable to large road segments.

In order to create the master curves, we extracted information about the behaviour of
the storage and loss modulus of the asphalt mix. This was done using the notion of a sen-
sitivity interval developed through the theoretical sensitivity analysis of the model. It was
derived that, due to the model being in a moving reference frame, only the behavior of the
asphalt complex modulus within some range of wave numbers influenced the modelled
pavement response. As a result, we could extract a characteristic value for the loss and
storage modulus for each velocity-temperature configuration. This was done using two
different models; the Maxwell model and the simple nonphysical hysteretic model. The
two approaches provided comparable results, with the Maxwell model proving slightly
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better. The Time-Temperature Superposition principle was applied to the obtained loss
and storage modulus values, using a reference temperature of 24◦C .

Overall, the proposed procedure for creating asphalt complex modulus master curves
based on TSD measurements was successful. However, the method was highly depen-
dent on the behaviour of the complex modulus behaving approximately constant within
the sensitivity interval. If this was not the case, the estimated characteristic values may
not be representable. As this was a pilot study, only a small range of frequencies were
covered. For future work, a more comprehensive master curve should be created using
measurements at several temperatures. This would ensure a better basis for comparison
with literature studies.

23.2.3 Model validity

In this thesis, a simple pavement response model used for fitting the measured TSD data
was developed. The model consisted of a viscoelastic Euler-Bernoulli beam on top of
a damped Pasternak foundation. A fundamental assumption behind an Euler-Bernoulli
beam was that the cross section did not deform when the beam bends. This assump-
tion was complied with by assuming a stiff top layer compared to underlying layers for
the pavements measured. Consequently, we assumed that all deformation took place in
the foundation. However, analysis of the deflection slope data indicated that for some
data sets, increased road temperature resulted in a soft behaviour of the top layer and
consequently, a deformation of this layer. In these situations, the validity of using an
Euler-Bernoulli beam model should be reconsidered.

For further development of the model, we proposed a change in how the top layer is
modelled such that potential deformations of this are included. One approach could be to
consider the top layer as an elastic or viscoelastic half-space. Including this into the model
might increase the ability of the model to mimic the very steep and pointy behaviour of
the maximum and minimum seen in some data sets. Another approach would be to re-
place the simple Euler-Bernoulli beam with an Timoshekno beam, which allows for shear
deformation of the beam (Saito and Terasawa, 1980; Ding et al., 2014). However, the sim-
ple pavement response model used in this thesis overall provided a good fit to data, both
at 18◦C and 35◦C , as indicated by R2 values close to one.

Based on an analysis of the estimated parameter values obtained by fitting the model
to Finland data, an alternative model for modelling foundation damping was proposed.
In the original model, foundation damping was modelled as viscous damping by a set of
uniformly distributed dashpot elements, described by the viscous damping coefficient pr.
unit length c. Fitting the model to data at different driving velocities revealed a clear de-
pendence of velocity in the estimated values of c. This contradicted the assumption that
the damping coefficient should be constant and as a result, indicating that using the sim-
ple Kelvin-Voigt model to describe foundation damping was not appropriate. Instead, a
parabolic dashpot was found to characterise damping well. However, this model required
information about the damping coefficient over a range of different driving velocities, and
thus it was not possible to characterise the viscous behaviour of the parabolic dashpot
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based on a singe measurement. Consequently, implementing this into the pavement re-
sponse model would not make a difference when fitting TSD data sets at a single velocity,
as in the case of Måløv data. In fact it would introduce a set of insensitive parameters. In-
stead the simple nonphysical hysteretic model was proposed, and a fit to data using this
revealed a higher degree of non systematic behaviour with velocity. As a result, we pro-
posed that the hysteretic damping model should be used to model foundation damping
when no detailed information about velocity dependency was available.

23.3 Conclusive remarks

In conclusion, we have demonstrated how measurements of the pavement deflection
slope, obtained with the Traffic speed deflectometer (TSD) technology, can be used to an-
alyze the measured pavement. We have presented a novel way to measure the structural
rolling resistance directly in an easy and fast way. The method can become a vital tool in
the ongoing discussion of the importance of structural effects on the rolling resistance loss.
Furthermore, the use of TSD measurements makes it suitable for evaluating large quan-
tities of pavements. In addition, it was illustrated how structural characteristics about
the measured pavement could be extracted from the TSD data, by evaluating the deflec-
tion slope behaviour. This provided a simple and accessible way to evaluate pavement
properties without using a sophisticated model procedure and consequently, changes in
damping and relative stiffness of the pavement layers could easily be evaluated.
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Abstract
In this paper, a new in situ method for determining the structural rolling resistance (SRR), defined as the dissipated energy
caused by deformation of the pavement when subjected to a moving load, is presented. The method is based on the relation
between SRR and the slope of the deflection basin under a moving load. Using the Traffic Speed Deflectometer, the deflection
slope is measured at several positions behind and in front of the right rear-end tire pair of a full-size truck trailer while driving
under realistic conditions. The deflection slope directly under the tire is estimated from a linear interpolation between the
two nearest sensors. A set of data from a test road segment located in Denmark is analyzed and the SRR coefficients are
found to be in the range 0.005% to 0.05%. The deflection slope measurements have a high reproducibility (repeated measure-
ments agree within standard deviations of 4% to 10%) with high spatial resolution, and the method for calculating SRR from
these measurements has the clear advantage that it requires no knowledge or model of the pavement structure or viscoelas-
tic properties. Numerical simulations of pavement response show that the proposed interpolation method tends to underes-
timate the actual SRR, and better estimates can be obtained by other interpolation schemes.

When driving at constant speed, the fuel consumption
goes into overcoming driving resistance. Many different
factors contribute to the driving resistance in a vehicle;
among the most prominent are uphill driving, air drag,
internal friction, and rolling resistance (1). It is estimated
that for heavy trucks, 15% to 30% of the fossil fuel input
is used to overcome the rolling resistance (2). Rolling
resistance losses arise from two main sources: 1) viscoe-
lastic effects in the tires and 2) effects of the pavement,
including unevenness, texture, and viscoelastic deforma-
tion of the pavement (3–5). The focus in this paper is on
the latter.

An elastic or viscoelastic pavement subject to a mov-
ing vehicle will deform underneath the tires. If the pave-
ment is viscoelastic, this deformation will result in energy
dissipating into the pavement structure. The lost energy
has to be compensated through additional work from the
vehicle engine, to maintain a constant driving speed (6).
The amount of additional energy needed depends on the
structure of the pavement and this will be referred to as
structural rolling resistance (SRR) throughout the paper.

The deflection basin under a moving tire (z(x)) is
asymmetric because of the viscoelastic properties of the
pavement causing a time delay in the deflection of a

viscoelastic pavement. This time delay makes the maxi-
mum deflection appear behind the center of the tire, as
seen on Figure 1a. This means that the tire always will
be on an uphill slope (∂z(x= 0)

∂x
.0), (see Figure 1b) and

thus has to do work in order to maintain a constant
driving speed (7). Using this uphill slope notion, the
SRR can be calculated directly from the asymmetric
deflection basin (1, 8, 9). Deflection of a structure subject
to a moving load has been reported in the literature since
the 1960s; for example, in (7), the viscoelastic response of
a Kelvin beam is analyzed, and the viscoelastic effects
reported to manifest themselves through an asymmetric
deflection basin.
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Although SRR has been studied for decades, it has
proven difficult to devise accurate and robust ways of
measuring it (10). As a consequence, little is known
about the absolute magnitude of SRR or its relative con-
tribution to the overall rolling resistance. Indirect mea-
surements of the influence of the dissipative effects in
bituminous layers have been estimated by comparing
fuel consumption measurements on flexible and rigid
pavements. These studies rely on the assumption that
rigid pavements have little or no viscous losses and thus
the difference in fuel consumption between these types of
pavements can be ascribed to the viscous behavior of the
asphalt (8, 11, 12). However, it can be difficult to isolate
the effects that relate to the pavement structure from
other effects caused by, for example, texture or uneven-
ness (9). In addition, unlike texture and unevenness, the
effect from pavement structure is found to be highly
dependent on external parameters such as temperature,
pavement conditions, and so forth (13). It is therefore
difficult to say anything conclusive on SRR influence on
fuel consumption based on these types of experiments.

Direct estimates of SRR typically come from simula-
tions of pavement deflections with pavement parameters
obtained either from backcalculations using falling
weight deflectometer tests or other rheological measure-
ments of the bituminous layer. An often used method is
to simulate the pavement response in a finite pavement
section, as a moving load is passing with constant speed
(14). From the response, one can obtain the displacement
field of the pavement surface and calculate the dissipated
energy in the pavement (3, 10, 12, 15, 16). On the basis
of such calculations, it is believed that the SRR loss is
smaller than the energy loss caused by pavement texture
and unevenness (15), but whether it is negligible or

significant enough that it should be included in pavement
planning is not clear.

Development of methods for reliable measurement of
the pavement’s influence on the vehicle fuel consumption
is thus highly desirable when making lifecycle assessment
studies of pavements and should be included in the devel-
opment of sustainable pavement designs (3, 6).

This paper presents a novel method for determining
the SRR under realistic driving conditions using the
Traffic Speed Deflectometer technology developed by
Greenwood Engineering. The technique measures the
slope of the deflection basin between the right pair of
rear-end tires of a full-size truck trailer, as it moves at
realistic driving speeds. Thus, the uphill slope seen by the
tire, which is caused by the deformation of the pavement,
is directly measured and, from this, the associated SRR
loss can be calculated. The estimated SRR is thus
obtained under conditions directly comparable to what
normal traffic experiences. The method gives spatially
resolved (10-m resolution), reproducible, and robust esti-
mates of SRR, even in road segments where the value
fluctuates considerably, making it a reliable and model-
free method to measure SRR.

Aim

The aim of the paper is to present a new concept for mea-
suring SRR using Traffic Speed Deflectometer (TSD)
technology. The TSD measures the slope of the deflec-
tion basin under the tires of a truck trailer during driv-
ing. The concept and its robustness are demonstrated by
pilot measurements of a test road segment of 9 km, and
the underlying assumptions are discussed in the light of
numerical pavement simulations.

(a) (b)

Figure 1. (a) Simulated deflection basin underneath a moving load for an elastic (solid line) and viscoelastic (dotted line) pavement, and
(b) associated deflection slope for the elastic and viscoelastic pavement. The basin is obtained using a numerical simulation explained at a
later point in this paper.
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The TSD Concept

The TSD is conventionally used for continuous bearing
capacity measurements by evaluating the slope of the
pavement deflection basin. It has the advantage that it
makes continuous measurements of the deflection slope
and that the TSD trailer is a normal truck trailer and
thus can measure under normal driving speed and load
as well as measuring directly in the wheel path. In this
study a full axle load of 10 tonnes was used.

The TSD device measures the deflection velocity of
the pavement as it is subjected to a moving load. This is
done by use of Doppler lasers that measure the vertical
velocity of the pavement (see Figure 2b). The TSD truck
is equipped with nine Doppler lasers (sensors): three sen-
sors located behind and six in front of the rear-end axle,
as shown in Figure 2a. Their exact positions relative to
the center of the axle (in meters) are

Sensor position= ½�0:366, � 0:269, � 0:167,

0:163, 0:260, 0:362, 0:662, 0:964, 1:559� :
ð1Þ

The measured pavement velocity is adjusted such that
effects caused by vertical movements of the truck are sub-
tracted. This is done by using a reference laser mounted
3.1m from the rear-end axle, where the deflection of the
pavement is assumed zero (red sensor on Figure 2a). The
technique is explained in more detail in (17–20).

Figure 2b shows how the vertical pavement velocity
(vd) is measured in a given point using a Doppler laser.
The deflection slope at that point ( ∂z

∂x
) corresponds to the

slope of the tangent going through the point (gray dotted
line) and can be found by dividing vd by the horizontal
driving speed (v),

∂z

∂x
=

∂z
∂t
∂x
∂t

=
vd

v
ð2Þ

The driving speed, v, is measured using an odometer
located behind the right rear-end tire pair.

Deflection Slope Data

For this study, three repeated measurements were made
with the TSD, on a 9.7-km road section near
Copenhagen, Denmark. The measurements were con-
ducted in the spring of 2018 with almost constant air
temperature (;148C) and road temperature (;188C)
throughout all three measurements. The driving speed
was between 50 km/h and 60 km/h; the exact driving
speed was recorded continuously during all measure-
ments. The measured deflection slopes for each sensor
were collected at a sampling frequency of 1,000 samples
per second and subsequently averaged over 10m. A plot
of the mean value for the three subsequent measurements
of each sensor as a function of the driven distance is seen
on Figure 3. The measured deflection slope for each sen-
sor varies significantly throughout the measured dis-
tance. This variation is however highly reproducible,
with average standard deviations between 12 mm=m and
26 mm=m (corresponding to 4-10%) between the three
measurement runs.

The inset in Figure 3 shows the measured deflection
slope as a function of the sensor position measured at
4.5 km (marked in gray in the main image). The center of
the axle in this plot is at x= 0, indicated with a black
dotted line. As mentioned in the introduction, the deflec-
tion slope curve is characterized by the minimum deflec-
tion slope occurring behind and the maximum deflection
slope in front of the tire. The asymmetry in minimum
and maximum peak magnitudes is believed to be caused
by damping in the pavement. Thus, the location and
magnitude of the maximum and minimum carries infor-
mation about the viscoelastic properties of the pavement.

For analysis of the data, it is necessary to estimate the
deflection slope at the axle location, that is, around

(a)

(b)

Figure 2. (a) Top view sketch of the Traffic Speed Deflectometer.
Nine Doppler lasers are located in between the right rear-end tire
pair, as indicated with blue dots. Note that the drawing is not to
scale, and the tires in the tire-pair are only separated by 64 mm. (b)
Vertical pavement velocity (vd) at a given point measured using a
Doppler laser. See text for further details.
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x= 0, where a measurement cannot be taken because
of the presence of the axle. Instead, the slope must be
inferred from the measured locations in front of and
behind the center position. This task is easier when the
features of the deflection slope are fully captured by
the sensors, which is not the case for all traces.
Accordingly, the measurements were partitioned into
three groups based on the behavior of the signal in
Sensors 4, 5, and 6 (Table 1), which gives an indication
of where the maximum is located: Group 1 was used
for measurements for which the maximum was not
captured by the sensors and therefore had to be
located closer to the center of the axle than Sensor 4;
Group 2 was used for measurements for which the
maximum was partly captured by the sensors; and
Group 3 was used for measurements for which the
maximum was fully captured by the sensors (see Table
1). Examples of measurements from each group are
shown in Figure 4a. Here the symbols are the average
values of the three repeated measurements and the
errorbars represent the standard deviations, showing a
high degree of reproducibility. Within Groups 1 and 2,
a big variation was found in the magnitude of the

maximum and the minimum, whereas for measure-
ments belonging to Group 3 this variation was not
observed.

Calculating the SRR

This section shows how the SRR loss can be calculated
directly from the measured deflection slope data. In the
following it is assumed that the applied load is a point
load at the center of the tire, corresponding to x= 0 and
with the magnitude FL. The dissipated power caused by
SRR, PSRR, can be found from the applied load and the
pavement velocity at this point,

PSRR =FLvd(x= 0)=FLv
∂z

∂x
(x= 0) ð3Þ

where the last equality sign comes from Equation 2.
In the case of a perfectly elastic pavement, the maxi-

mum deflection will occur directly under the load, mak-
ing the deflection slope at this point zero and thus
PSRR= 0. For a viscoelastic pavement, however, the
maximum deflection occurs behind the load and there is
an uphill slope underneath the load, thus PSRR.0, as

Figure 3. Measured deflection slope for each sensor as a function of the distance, with inset showing a plot of the deflection slopes
measured at 4.5 km as a function of sensor location.

Table 1. Partitioning of the Traffic Speed Deflectometer Measurements into Groups

Group Behavior of signal in Sensors 4, 5, and 6 Location of maximum

Group 1 Monotonic decrease Closer to center of axle than Sensor 4
Group 2 Increasing or equal from Sensors 4 to 5 and then decreasing in Sensor 6 Partly captured by Sensors 4 and 5
Group 3 Monotonic increase Fully captured by the sensors

Note: The division is made based on the behavior of the measured deflection slope in Sensors 4, 5, and 6. In total this gives three groups, illustrated in

Figure 4a.
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already illustrated in Figure 1. Note that, the deflection
maximum occurs behind the center of the load, whether
a point load or a finite contact area is considered. Thus,
the tire also experiences an uphill slope if considered a
finite contact area, and thereby has PSRR.0 whenever
there is damping in the pavement.

To estimate the deflection slope directly under the tire,
a linear interpolation is used between the measured
deflection slope in the two sensors located closest to the
center (Sensors 3 and 4), located at x= � 0:167 m and
x= 0:163 m respectively, as shown in Figure 4b.
Therefore the dissipated energy can be written as

PSRR=FLvb ð4Þ

where b is the intersection of the linear interpolation
∂z
∂x
(x)= ax+ b with the z -axis, ∂z

∂x
(x= 0). From the dissi-

pated power, the rolling resistance force can be defined
as FSRR= Psrr

v
=FLb. Using the standard definition of

rolling resistance coefficient as the ratio between rolling
resistance force and load, this leads to the following sim-
ple relation between deflection slope at x= 0 and the
SRR coefficient:

CSRR=
FSRR

FL

= b ð5Þ

Using these relations on the data trace presented in
Figure 4b, we find an SRR power of 49 W6 6 W, an
SRR force of 6:8 N6 0:8 N, and CSRR= 1:4 � 10�4 6

1:6 � 10�5 or 0:014%6 0:0016%.
The CSRR values for all measurement sets were found

following this procedure, and the results are presented in
Figure 5. Here, the different groups are marked with

different colors, the symbols represent the mean values
of the three repeated measurements, and the error bars
are found as the standard deviation of the three measure-
ments. We see that the CSRR value varies considerably
over the traveled distance, from 0.005% to 0.05%, with
most data points in the region from 0.01% to 0.02%.
The method shows a good reproducibility with low stan-
dard deviations, even in regions where the CSRR changes
rapidly with distance. This demonstrates that the method
is robust and can measure the CSRR values of the road
precisely, with high spatial resolution even under chang-
ing pavement conditions.

The different data groups are indicated with red,
green, and blue on Figure 5. Average values of PSRR,
FSRR and CSRR for each group are shown in Table 2.
The groups were divided based on the location of the
maximum, captured by Sensors 4, 5, and 6, and it is pos-
sible to see a clear difference in the SRR values within
the different groups. Furthermore, the variations in
CSRR, with distance seen in Figure 5 follow the trends
seen in the measured deflection slopes in Figure 3. This
is because a large deflection slope signal in the sensors
closest to the axle (Sensors 3 and 4) generally results in a
high intersection value with the y� axis, and thus a high
calculated CSRR (Equation 5).

The magnitude and the location of the peaks in the
deflection slope curves are determined by the shape of
the deflection basin, which mainly is controlled by the
relative stiffness of the top asphalt layer compared with
the lower layers. For situations with a relatively stiff
top layer, the deflection basin will be broad and have a
small amplitude, resulting in curves like those of Group
3 and a small SRR. A relatively soft top layer, on the

(a) (b)

Figure 4. (a) Representative examples of deflection slope plotted as a function of sensor location for the different measurement groups
(see Table 1), and (b) linear interpolation between the measured values in the two sensors closest to the axle for data measured at 4.5 km
belonging to Group 2.
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other hand, will give a deep and narrow basin, giving
deflection curves like those of Group 1 and a higher
SRR. This is consistent with what is visible in the
measurements.

Impact of a Finite Contact Surface

For the calculations of the dissipated power and CSRR

above, it is assumed that the interaction between tire and
road can be described as a point load. This is a simplifica-
tion of the real interaction between the tire and the pave-
ment where the contact surface has a finite area. To
investigate whether this approximation has a significant
influence on the calculated SRR loss, an expression is
adopted for the power dissipation derived by (9). The
expression is based on a moving reference frame with
constant velocity, which is consistent with the TSD setup.
Furthermore, it is assumed that the tire is elastic and
therefore does not dissipate energy and that the tire pro-
vides a uniform applied stress to the surface,

Pcontact area
SRR = pv

ð
S

∂z(X , y, z)

∂X
dS ð6Þ

where
p is the tire pressure,
v is the driving speed,
Z is the vertical component of the displacement field

of the pavement surface, and
∂z(X , y, z)

∂X
is the deflection slope.

The integral is taken over the contact surface, S, which is
the area where the tire is in contact with the pavement.
Plugging in a linearly varying deflection slope and assum-
ing a circular contact area obtains

Pcontact area
SRR = pv

ð
S

∂z(X , y, z)

∂X
dS

= pv

ðr

�r

ð ffiffiffiffiffiffiffiffiffiffir2�X 2
p

�
ffiffiffiffiffiffiffiffiffiffi
r2�X 2
p (aX + b) dy dX

= pvbpr2 =Fvb=Ppoint load
srr

ð7Þ

Figure 5. Calculated CSRR values plotted versus distance, with insets showing a steady and a varying section with standard deviations
illustrated by error bars. The different colors represent the three different Groups (see Table 1).
Note: CSRR = structural rolling resistance coefficient.

Table 2. Average CSRR, FSRR, and PSRR for the Three Groups of Traffic Speed Deflectometer Data

Group CSRR [–] PSRR (W) FSRR (N) # in group

Group 1 1:7 � 10�4 6 6 � 10�5 124:2 6 57 8:6 6 3:0 506
Group 2 1:2 � 10�4 6 4 � 10�5 84:9 6 30 5:9 6 1:8 272
Group 3 0:9 � 10�4 6 3 � 10�5 61:7 6 21 4:2 6 1:3 159

Note: It can be seen that SRR for data in Group 1 is largest, followed by Group 2, and then Group 3. The number of measurements within the dataset

belonging to each group is listed in the last column. CSRR = SRR coefficient; FSRR = rolling resistance force; PSRR = dissipated power due to SRR; SRR =

structural rolling resistance.

6 Transportation Research Record 00(0)



Thus, for a linearly varying deflection slope the power
dissipated over a finite contact area is equal to the power
dissipated at a point load.

Model Calculation of Pavement Response

So far, it has been assumed that the deflection slope
underneath the tire is linear and can be found by interpo-
lation between the two sensors nearest to the axle. The
validity of this assumption will now be investigated by
use of simulated deflection slopes. The purpose of this is
solely to generate curves with similar behaviors to those
observed in the measurements, and to investigate how
well the assumption of a linear deflection slope performs
for the simulated curves. In particular, this is not an
attempt to model the exact pavement response measured,
but rather a theoretical exploration of the interpolation
approach.

For simulating the pavement response, the investiga-
tion uses the time-domain based viscoelastic solver
ViscoWave II-M, developed at Michigan State
University (21, 22). ViscoWave II-M employs the so-
called spectral element method to solve the wave propa-
gation problem in the pavement structure and calculate
the pavement response to an arbitrary loading. The
model can simulate the time-dependent responses and
allows each pavement layer to be either elastic or viscoe-
lastic (23).

The program was modified slightly for this study such
that the simulated conditions are similar to the TSD
setup and therefore can be used for comparison. The
original solver calculates the pavement deflection under
the tire in a steady reference frame. The modified version
calculates the response between the two tires in the tire
reference frame, that is, a moving reference frame. From
the simulated deflection curve the corresponding slope is
calculated and filtered to remove numerical noise.

The pavement structure used for the simulation con-
sists of three layers, representing an asphalt layer, a base
layer, and a subgrade layer. Four different pavement
models with identical construction are simulated, only
changing viscoelastic parameters for the asphalt (top)
layer. The parameters for the structure (height, elastic
moduli, Poisson’s ratio and density) are chosen to be
typical values for these kinds of pavement layers and
they are listed in Table 3. The viscoelastic properties of
the asphalt layer are described by the relaxation modulus
E(t), given by

log (E(t))= c1 +
c2

1+ e(�c3�c4 log (tR))
ð8Þ

log (tR)= log (t)� log (aT ) ð9Þ

where

c1, . . . , c4 are the sigmoid coefficients,
tR is the reduced time, and
aT is the shift factor (16).
The parameters for the relaxation moduli are taken

from backcalculated falling weight deflectometer tests on
road segments located in California, to have realistic E(t)
curves (16). The characteristics of these moduli range
from very stiff with high damping to very soft with little
damping (see Table 4). These sets of parameters generated
deflection slope curves with a similar variation to that
seen in the data groups as shown in Figure 6a. In the
simulated deflection curves, the stiff pavement with large
damping (PAV4) shows a small deflection and deflection
slope peaks far apart, whereas the soft pavement with lit-
tle damping (PAV1) has the opposite behavior. Probably,
other choices of pavement parameters could result in simi-
lar deflection basins. However, for the present purpose
the detailed input parameters of the model are not so
important, as long as they are reasonably realistic.

In Figure 6b a zoom of the contact region for each of
the simulated deflection slope curves is shown. The con-
tact area between the tire and pavement is assumed circu-
lar with radius (r) and the interval [-r; r] is marked with
gray color. The idea is to determine how much the actual
SRR in the simulated deflection slope curve deviates from

Table 3. Mechanical Characteristics for the Simulated Pavement

Asphalt Base Subgrade

E(t) E2 = 124.3 MPa E3 = 65.4 MPa
n = 0.35 n = 0.35 n = 0.45

r = 2,322.7
kg

m3
r = 2,082.4

kg

m3
r = 1,762

kg

m3

h= 0.15 m h = 0.3 m h = N

Note: All pavement structures are made of three layers, each characterized

by their Poisson’s Ratio (n), mass density (r), average thickness (h) and the

relaxation modulus (E). The relaxation modulus for the asphalt layer is

given by Equation 8.

Table 4. Properties of the Four Different E(t) Used for the Study

Properties

Pavements

PAV1 PAV2 PAV3 PAV4

Sigmoid coefficients
c1 1.4 1.054 0.978 1.67
c2 2.04 2.986 3.8 3.39
c3 0.944 0.335 0.521 0.981
c4 –0.417 –0.436 –0.519 –0.767
Shift factor log (aT) 0.37 0.32 0.49 0.34
E(t) characteristics
E0 [MPa] 2,753 10,956 59,970 114,820
E0 � E‘ [MPa] 2,728 10,945 59,960 114,770
Stiffness ����������������������������!
Amount of damping ����������������������������!
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the SRR obtained by assuming a linear interpolation
between coordinates of the two sensors closest to the axle
in the measurement. The linear interpolation is marked
on Figure 6b by a black line and the SRR is found as the
intersection of this linear interpolation with the z -axis.

Calculating the SRR for the simulations involves inte-
grating the deflection slope over the contact area as
described above in Equation 6, again assuming a circular
contact area with origin in x= 0 and radius r. A value of
r= 14:5 cm, found from the tire pressure and axle load
of the TSD, is used.

In addition to the linear interpolation, a cubic spline
interpolation was also created. In this, a 3rd order poly-
nomial is used to find the values in between the two inter-
polation points instead of a linear function, thus giving a
smoother interpolation curve. As this method has more
unknown parameters to fit than the linear, nine simula-
tion points are used, corresponding with the coordinates
of the TSD sensors, to make the interpolation. The spline
interpolation is marked on Figure 6b with a dotted line.
The spline interpolation is included in an attempt to
approximate the actual deflection slope in the contact
area better.

The relative difference between the interpolations and
the simulation curves is found by the relative difference
in the dissipated energy over the contact area,

DPint:

P
=

Ð
S
∂zsim

∂x
dS �

Ð
S
∂zint:

∂x
dSÐ

S
∂zsim

∂x
dS

ð10Þ

The calculated PSRR values for the different deflection
slope curves and the two interpolated curves are listed in
Table 5 along with their relative differences.

The analysis shows that the difference between the
simulated deflection slope and the linear interpolation is
small for PAV4, DPlinear

P
= 9%, where the deflection maxi-

mum and minimum are far apart. With decreasing stiff-
ness, and thus smaller distance between maximum and
minimum, the error increases, with the largest deviation
found in PAV1, where DPlinear

P
= 49%.

The spline interpolation shows the same trend, but it
gives a better estimate of SRR. Thus, for the PAV1 the
difference is only DPspline

P
= 23%, whereas for PAV4 it

gives practically the same value as the model curve.
It can be concluded that the linear assumption is valid

when the deflection slope peaks are far apart, whereas it

(a) (b)

Figure 6. (a) Simulated deflection and deflection slope curves for four pavements with different E(t) of the asphalt layer, and (b) close up
of the simulated deflection slope curves with a linear and a cubic spline interpolation. The contact area interval is marked with gray color.

Table 5. Calculated Change in PSRR of the Simulated Deflection
Slope and the Linear and Cubic Spline Interpolations for Different
Pavements, Also Showing Values for the Calculated PSRR of Both
the Simulation and the Interpolations for Each Pavement

Pavement PAV1 PAV2 PAV3 PAV4

Psim
srr 335 W 356 W 170 W 59 W

Plinear
srr 172 W 220 W 134 W 54 W

Pspline
srr 257 W 297 W 159 W 58 W

DPlinear

P
49% 38% 17% 9%

DPspline

P 23% 17% 6% 2%
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underestimates SRR when the peaks are too close to the
origin to be resolved. The spline interpolation in all cases
gives a slightly better estimate of SRR, especially for
pavements for which the peaks are close together.

Lastly, the numerical calculations were employed to esti-
mate the difference in the deflection slope obtained under-
neath the tires and at the location of the TSD sensors. In
the TSD setup, the sensors are located between the tire pair
(see Figure 2a) and therefore the deflection slopes reported
in this paper are measured in between the tire pair. This
deviates from the analysis assumptions about the contact
area in Equation 6, where it is assumed to be circular with
origin in x = 0. By simulating the pavement deflection for
pavement PAV1 directly underneath the tires and in
between the tire pair, respectively, it was found that the dif-
ference in PSRR is 3.6%. Consequently, this does not have
a significant impact on the final SRR results.

Summary and Outlook

This paper has presented a model-free way to estimate
SRR from pavement deflection slope measurements
obtained with the TSD. In the simplest approach, it was
assumed that the contact between tire and road is point-
like (i.e., a ‘‘moving point load’’). In that case, the SRR
coefficient, CSRR, is simply given as the value of the
deflection slope curve at the position of the point load.
Because it is not possible to measure exactly at that posi-
tion because of the presence of the axle, the deflection
slope was estimated from a linear interpolation of nearby
measurement points behind and in front of that location.
The point load assumption is shown to be equivalent to
calculations based on a finite contact area, if the deflec-
tion slope varies linearly within the contact region.

A set of data from a test road was investigated and
the values of CSRR found by this method span from
0:005 % to 0:05 %, which are modest values compared
with typical tire rolling resistance coefficients that are in
the range 0.5% to 1%. The values are slightly lower than
those found in empirical and numerical studies on the
subject (9–11, 15). The data were divided into three
groups based on how much of the deflection slope maxi-
mum was resolved by the TSD sensors. This was based
on the hypothesis that this criterion is critical for the lin-
ear interpolation to be a good estimate of the deflection
slope under the tire. It was found that for measurements
in Group 1 with maximum located closest to the load,
the SRR was highest, and for Group 3 with maximum
located the furthest away, the SRR was lowest. Through
simulated deflection slope curves obtained using the pro-
gram ViscoWave II-M the linear interpolation was found
to underestimate the actual SRR by up to ; 50% in the
worst case. Using a cubic spline interpolation between
nine positions corresponding to the TSD sensor positions
improved the SRR estimate considerably, confirming

that the resolution of the maximum is critical for the lin-
ear interpolation approach to give accurate results.
Further development of the interpolation method will
improve the method and improve the accuracy of the
estimated SRR values. By use of numerical studies the
authors aim to develop a simple functional expression
that will allow the deflection slope values underneath the
axle to be estimated with greater accuracy.

The strength of the method is that it requires no
knowledge about the pavement structure or pavement
properties. Furthermore, the use of the TSD vehicle
makes data collection relatively fast and easy and the
deflection slope measurements are very precise. This
leads to reproducible values of CSRR determined with
low standard deviation, even in areas of the road where
the values vary considerably.

The measurements included in this study were made
on a test road with the purpose of illustrating the new
method and this was chosen for purely practical reasons.
They were carried out in relatively cold conditions (pave-
ment temp. ;188C) and a future study with higher pave-
ment and air temperature is expected to provide higher
SRR values. In the study, it was found that the magni-
tude and location of the maximum deflection slope is
correlated with the SRR. It is expected that these quanti-
ties are mainly dependent on the relative stiffness of the
top layer compared with the underlying layers and that
the location of the maximum deflection depends on the
amount of damping in the pavement (damping in top
layer, foundation, or a combination). The relationship
between these pavement characteristics and the behavior
of the deflection slope curve should be explored further
by use of simple physical models.

Through this new, easy method for measuring SRR, it
will be feasible to conduct a series of tests on roads with
different pavement structures and thus investigate the
relationship between pavement structure and SRR.
Furthermore, the impact of road temperature or driving
speed could also be investigated. Such large-scale sys-
tematic surveys could provide much needed clarity in the
study of SRR, and establish under which circumstances
SRR is important for overall fuel consumption as well as
how it is affected by various parameters.
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1 INTRODUCTION  

When a pavement is subject to a moving load, it will 
deform underneath it.  If the pavement is viscoelastic, 
the time delay in the deflection makes the maximum 
deflection appear behind the load. This results in an 
asymmetric deflection basin, as illustrated on Figure 
1a. Consequently, the load experiences an uphill de-
flection slop (Fig. 1b) and has to do work in order to 
maintain a constant speed (Flügge, 1975). The excess 
energy consumption due to deflection of the pave-
ment is dependent on the pavement structure, and we 
will refer to it as structural rolling resistance (SRR). 
SRR can be calculated directly from the asymmetric 
deflection basin (Balzarini et al. 2018, Chupin et al. 
2013).  

Figure 1. Pavement deflection (a) and associated deflection 

slope (b) of an elastic and viscoelastic pavement. Viscous prop-

erties make the deflection basin asymmetric, which results in a 

positive deflection slope underneath the load (x=0).  

 
Estimates of SRR are often derived by simulating the 
pavement response to a moving load with constant 
speed. The pavement parameters used in these simu-
lations are obtained from either back-calculated fall-
ing weight deflectometer measurements or laboratory 
measurements on the pavement materials (Pouget et 
al. 2012, Akbarian et al. 2012 ,Balzarini et al. 2017). 
Moreover, indirect measurements of SRR have been 
conducted (Zaabar & Chatti 2014). However, it has 
been proven difficult to develop accurate and robust 
methods for measuring SRR directly.  

In Nielsen et al. (accepted) we presented a new 
method for direct measurements of SRR, using the 
Traffic Speed Deflectometer (TSD) technology. The 
method is based on the relation between SRR and the 
slope of the deflection basin underneath a moving 
load. Using the TSD has the advantage that it mimics 
a full-size trailer and thus it measures the pavement 
deflection slope under realistic driving conditions. 
The method proved to be robust and measure SRR 
with high accuracy when repeated measurements 
where compared. Furthermore, it has the clear ad-
vantage that it does not require a model or prior 
knowledge about the pavement in order to calculate 
SRR.  
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The influence of temperature on SRR has been in-
vestigated in literature, by use of numerical simula-
tions (Pouget et al. 2012, Shakiba et al. 2016). The 
magnitude of the found temperature effect differs be-
tween the studies is dependent on the applied pave-
ment models. To the authors knowledge no direct 
measurements of the temperatures influence on SRR 
for heavy vehicles exist. 

In this paper, we investigate the effect of road tem-
perature on SRR. We expect that a higher road tem-
perature will lead to a softer asphalt layer and an in-
creased pavement response to the moving load. In 
addition, within the investigated temperature range 
we expect the viscoelastic damping of the asphalt to 
increase with increasing temperature (Pouget et al. 
2012, Shakiba et al. 2016). Consequently, we expect 
that an increase in road temperature will lead to a 
higher SRR.  

2 TRAFFIC SPEED DEFLECTOMETER DATA 

2.1 TSD principle 

The Traffic Speed Deflectometer (TSD) continuously 
measures the vertical velocity (vd) of the pavement 
underneath the right rear-end trailer tires, while the 
truck is moving. This is done by means of Doppler 
lasers positioned between the tire set both in front and 
behind the axle. From this, the pavement deflection 
slope (dz(xn)/dx) for each position (xn) is obtained by 
dividing with the driving speed (v), 
 
𝑑𝑧(𝑥𝑛)

𝑑𝑥
=

𝑣𝑑(𝑥𝑛)

𝑣
.               (1) 

The principle is explained in more depth in Nielsen 
(2019).  
Having measurements on both sides of the load ena-
ble us to determine the asymmetry in the deflection 
basin arising from viscoelastic properties in the pave-
ment.  

2.2 Raw data 

For this study, two sets of measurements were made 
at a road section near Copenhagen, Denmark. The 
measurements were made on two days (15 months 
apart), where the pavement temperature was 18°C 
and 35°C respectively. Each set of measurements 
were repeated three times and a good reproducibility 
was seen with median standard deviations of 9% 
(18°C) and 5.5% (35°C). The TSD truck was at max-
imum axle load (10 tonnes) and driving speed was be-
tween 50-60 km/h, with the exact driving speed rec-
orded continuously during the measurement rounds. 

In Figure 2a, a plot of the measured deflection 
slope data in the beginning of the ~10 km measured 
road section is shown. The measured deflection slope 
for each sensor is an average over 10 m.  An example 

of the deflection slopes at 2 km, as a function of dis-
tance from the load, is seen in Figure 2b. The center 
of the axle is at x=0. The deflection slope curve is 
characterized by a minimum located behind the load 
and a maximum in front of the load. The standard de-

viations are illustrated with error bars in Figure 2b. In 
some cases, the error bars are smaller than the mark-
ers and thus not visible.  
Figure 2. Example of raw data at 18°C. (a) Measured deflection 

slope for all sensors in the beginning of the measured road. (b) 

deflection slopes as a function of distance from the load. Stand-

ard deviations are shown with error bars. 

3 SIMPLE METHOD FOR ESTIMATING THE 
STRUCTURAL ROLLING RESISTANCE 

This method was presented for the first time in Niel-
sen et al. (accepted). In the simplest approach, we as-
sume that the applied load is a point load, located at 
the center of the tire (x=0) with magnitude FL. The 
dissipated energy in the pavement (PSRR), can be cal-
culated from the vertical pavement velocity under-
neath the load and the applied load, 

𝑃𝑆𝑅𝑅 = 𝐹𝐿𝑣𝑑(𝑥 = 0) = 𝐹𝐿𝑣 
𝑑𝑧

𝑑𝑥
(𝑥 = 0),     (2) 

where the last expression comes from Equation 1. In 
the case of a perfectly elastic pavement the deflection 
slope under the load is zero, and therefore the dissi-
pated energy is also zero, PSRR = 0. On the other hand, 
if there is some damping in the pavement, the slope 
underneath the load will be larger than zero. In this 
case, energy is dissipated in the pavement i.e. PSRR 
>0. Equation 2 requires knowledge of the deflection 
slope exactly underneath the load (x=0). However, 
due to the presence of the axle, it is not possible to 
measure in that point. Therefore, we have to estimate 
the slope at x=0 based on the surrounding data points. 
The simplest approach is to make a linear interpola-
tion between the two sensor points closest to the load 
(sensor 3 and 4). Doing this we have that  

 

𝑃𝑆𝑅𝑅 = 𝐹𝐿𝑏𝑣,                 (3) 

where b is the intersection at x=0 for the linear inter-
polation. From this, we obtain the expression for the 
structural rolling resistance force, FSRR=PSRR/v. We 
can also derive the structural rolling resistance coef-
ficient, defined as the ratio between the rolling re-
sistance force and the applied load,  



𝐶𝑆𝑅𝑅 =
𝐹𝑆𝑅𝑅

𝐹𝐿
= 𝑏.               (4) 

4 RESULTS 

4.1 The influence of temperature on the structural 
rolling resistance coefficient 

Using two sets of deflection slope data measured at 
the road temperatures 18°C and 35°C, we study the 
influence of road temperature on SRR. The tempera-
tures were measured at the surface using an infrared 
temperature sensor through all measurements. In Fig-
ure 3 CSRR is plotted versus distance on the ~10 km 
measured road segment. In this plot, the mean CSRR 
values after three repeated measurements are shown. 
There is a systematic increase in CSRR as the road tem-
perature increases. The median of the standard devia-
tions in CSRR are 0.13·10-4 (9%) for 18°C and 0.2·10-

4 (5.5%) for 35°C. Thus, the calculated CSRR values 
have a good precision.  

Figure 3. Calculated CSRR at warm (35°C) and cold (18°C) road 

temperature. The median of the standard deviations are  

0.13·10-4 (9%) for 18°C and 0.2·10-4(5.5%) for 35°C. Note that 

the CSRR values are negative in some points at 35°C, which is 

unphysical. This behavior is commented on in section 4.2.  

 

In Figure 4, a histogram of the measured CSRR values 
is shown. Here, we see that the mean CSRR over the 
entire road increases from 1.4·10-4 to 2.3·10-4 when 
the temperature is increased. Furthermore, the distri-
bution of CSRR becomes broader with higher temper-
ature. This means that the calculated CSRR for 35°C 
varies more along the road. The total rolling re-
sistance of a truck is typically on the order of 1% of 
the load. Based on this, the mean CSRR found in this 
study are 1.4% (cold) and 2.3% (warm) of the typical 
total rolling resistance.  

CSRR varies considerably throughout the measured 
distance (from 0.01% of the load to 0.06%). This var-
iation is completely reproducible within the three re-
peated measurement runs, and we see that spatial var-
iations are similar for the two temperatures. A notable 
increase in CSRR is seen around 2.5 km. There is no 
visible change in the asphalt in this area, and thus the 
change is due to a structural change in the underlying 
layers. The varying CSRR values reflect the fact that 
the road measured on is not a homogeneous road, but 

a real road with varying pavement structure. Most 
likely the thickness of the asphalt layer and possibly 
also the type of asphalt differs along the road. As a 
result, SRR and its temperature dependence will also 
differ along the road. The method shows a good abil-
ity to reproducibly capture these changes in CSRR, 
even in areas where CSRR changes dramatically.  

Figure 4. Histogram of measured structural rolling resistance co-

efficients for cold (18°C) and warm (35°C) road conditions. We 

see an increase in the mean (μ) CSRR value, when the road tem-

perature is increased. Furthermore, the distribution of measured 

values is broader under warm conditions (increased σ).  

4.2 Influence of temperature on the deflection slope 
curves 

By looking into some representative sets of deflection 
slopes, we can qualitatively investigate the change 
caused by increased road temperature. Figure 5a il-
lustrates the most commonly encountered influence 
that the increased road temperature has on the deflec-
tion slope curves. Either the maximum deflection 
slope increases, the minimum deflection slope de-
creases or both effects occur at the same time (as seen 
in Figure 5a). An increase in maximum deflection 
slope value means that the deflection basin gets 
steeper in front of the load. This often leads to the de-
flection slope value underneath the load being in-
creased (thus higher PSRR). A decrease in the mini-
mum deflection slope value means that the deflection 
basin becomes steeper behind the load. Furthermore, 
we often see that the minimum deflection slope is 
moved to the left (away from the load) in the warm 
data. This corresponds to the maximum deflection 
moving further behind the load, something which is 
associated with an increased effect of viscous damp-
ing. 

In Figure 3, the calculated CSRR is negative in a few 
places, which is unphysical. In Figure 5b, an example 
of such a deflection slope curve in a place with nega-
tive CSRR is plotted. Here, a plot of the deflection 
slope values at 8.03 km is shown for both tempera-
tures. The relative change in CSRR from cold to warm 



data is -112.9%, as in the warm situation, we calculate 
a negative CSRR when using linear interpolation. Note 
that the shape of the deflection slope curve changes 
dramatically around the minimum, when temperature 
is increased. Furthermore, for the warm data we see 
that the magnitude of the deflection slope is higher 

behind the load than in front of the load. This behav-
ior indicates that using linear interpolation to find the 
deflection slope underneath the load, in some cases is 
too simple to capture the actual slope assess.  
Figure 5. Representative sets of deflection slope curves. The rel-

ative change in CSRR is listed for each plot as ΔCSRR. Standard 

deviations are indicated with error bars (not visible when these 

are smaller than the markers). It should be noted that in between 

the two sets of measurements the sensor locations have been 

changed slightly. We only expect this to have a minor effect on 

the results of the analysis. 

5 SUMMARY AND CONCLUSION 

In this study, we have presented measurements of 
structural rolling resistance of a ~10 km road section, 
measured at two different road temperatures (18°C 
and 35°C). The method shows good reproducibility 
between the repeated measurements, with small 
standard deviations. Furthermore, it was also able to 
capture the spatial changes in CSRR, which occur in 
data at 18◦C and 35◦C.  

The found SRR values have a magnitude which is 
comparable with results found in empirical and nu-
merical studies on the subject (Akbarian et al. 2012, 
Chupin et al. 2013, Zaabar & Chatti 2014, Pouget et 
al. 2012). On average, CSRR increased with 59% over 
the measured distance when temperature increased, in 
some areas even up to 400% increase, showing that 
for warm weather conditions SRR have an effect on 
the overall energy consumption for heavy vehicles.  

An increase in SRR with temperature was expected 
based on studies in the literature and our physical in-
tuition. We observed a difference in the degree of 
which temperature influenced SRR, depending on 
which area of the measured road we looked at. This 
result in a broadening of the distribution of CSRR for 
increasing road conditions.  The general trend is, that 
the magnitude of the deflection slope maximum and 
minimum increases (separately or together) which 
shows that the deflection basin gets steeper and 
deeper. This is consistent with our expectation, that 

the asphalt layer becomes softer at higher tempera-
tures. Furthermore, the maximum deflection moves 
further behind the load, indicating that the role of vis-
cous damping in the pavement becomes greater. 

Some unexpected behavior in the deflection slope 
curves was also observed. In some areas, the magni-
tude of the slope becomes bigger behind the load than 
in front of the load, when the temperature is in-
creased. This odd behavior was fully reproducible 
within the three repeated measurements. We specu-
late that this behavior is due to a situation where the 
asphalt layer becomes much softer than usual. In this 
case, there will be a compression of the top layer in 
addition to the usual bending of the top layer. This 
leads to a non-intuitive behavior of the overall deflec-
tion basin, and thus an odd signal in the deformation 
slope. A better understanding of the temperature in-
fluence on the pavement response requires a model 
study, giving a more detailed insight into road tem-
peratures effect on the structural behavior.  
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A.3 Impact of viscous damping in asphalt and foundation - part
1: Theoretical investigation of a viscoelastic beam on a damped
Pasternak foundation

This paper draft is a part of a series consistent of two papers. Part 1 concerns the theo-
retical derivation of the pavement response model and a numerical analysis of this. Part
2 describes the result from the model fitting procedure to Måløv data (presented in chap-
ter 20). An initial draft for part 2 has been developed, but this was not deemed finished
enough to be included as a draft in the thesis.
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Abstract: ...

1. Introduction

The dynamic response of a pavement subject to a moving load has been studied throughout the last decades.
There exist a variety of different approaches towards simulating a pavement system, going from complex nu-
merical methods to simple models where closed-form solutions can be obtained. Two good reviews in the area
are [1] and [2]. The different modelling approaches all have advantages and disadvantages and is suited for
different purposes. Thus, the end goal of the modelling process should guide the choice of modelling approach
applied. In order to model the entire pavement structure, a multi layered model is needed, often with different
mechanical properties of each layer. However, these types of models easily gets complicated and often contain
insensitive parameters that can not be fitted to any data and thus, are not very useful in practise. Therefore it
is often convenient to use a more simple, but still physical model of the pavement structure [2]. This approach
will be used in this paper.

The simplest kind of pavement response models either consist of an elastic beam on a (damped) foundation,
called a Winkler-foundation, or an elastic half space, a Boussinesq type problem [3, 4]. This types of models
have been studies extensively in the literature [5, 4, 6, 2]. The interest into these simple 1D models are growing,
since they can be used both with respect to the railway industry and the highway industry [5, 7]. The advantage
of a simple model is that the parameters influence on the dynamic response easily can be evaluated. They does,
however, comes with some limitations as they often are used without a damping component, even though soil
is known to posses damping [8]. Furthermore, the Winkler foundation uses an idealization of the soil medium,
and thus does not accurately represent the continuous behaviour of real foundations [7, 9].
The simple beam model can be extended in different ways. E.g. a more realistic 2D situation can be considered
by having a plate on a foundation, the foundation can be extended to multiple layers or one can model the soil
as a three-dimensional continuous medium[10, 2, 1].

Asphalt consists of bituminous materials, which are known to have viscoelastic behaviour that affect the dy-
namic response of the pavement. This is especially true under warm conditions [6]. The viscous effect of the
bituminous material can be investigated experimentally through complex modulus tests and from this, the
linear viscoelastic behaviour can be characterized. The viscoelastic properties of the asphalt can be modelled
using mechanical models containing springs and dashpot elements. In [11], a comparison between the Huet-
Sayegh’s and Burgers’ viscoelastic models and Hooke’s elastic model is presented. Several other studies has
been made in this area, investigating which viscoelastic model that determine the behaviour of asphalt the
best [12, 13, 14, 15, 16]. Generally, models like the Huet-Sayegh, the Burgers and the 2S2P1D model are good
candidates, all containing several spring and dashpot elements (both linear and parabolic) [17, 16].

The viscoelastic properties of asphalt can be incorporated into the simple models by introducing viscoelastic
behaviour in the beam. In [18] they have made a comparison study of a model with viscoelstic effects in the
asphalt layer and a model with elastic top layer. They conclude that a difference in the pavement response can
be seen between the two situations at slow driving conditions and/or high temperatures. And that, in these
cases, the viscoelastic effects of the pavement top layer should not be neglected. In [18] both viscoelastic effects
of the top layer and the foundation is considered. However, this is often not the case as the underlying layers
are assumed elastic and thus the dissipated energy due to viscous effects are only coming from the top layer
[12, 11].



This paper is a part of a two-parted study on the impact of viscous behaviour in asphalt and foundation
on the pavement response. In this paper we will extend the well known Pasternak foundation model to include
viscoelasticity in the beam. Furthermore, the model is shifted to a moving reference frame such that the results
are comparable with pavement deflection slope data measured using a Traffic Speed Deflectometer (TSD). A
theoretical and numerical study of the model and how its physical parameters influence the pavement deflection
is made in this paper. These theoretical considerations are used to analyse TSD data in data paper kilde, where
the model is fitted to data in order to simulate the behaviour of the pavement deflection underneath the load.
Using this, we are able to calculate the dissipated energy due to the pavement deflection (structural rolling
resistance) of a test road segment, using the method presented in [19].
Finally we derive an important correlation between the pavement deflection slope behaviour and the origin of
pavement damping. Using this we are able to deduce if the dominating pavement damping origins from the top
or underlying layers directly by looking at pavement deflection slope measurements.
Since the purpose of this model is to fit to TSD data, the number of model parameters are limited by the
number of data points as overparameterization is to be avoided. In our case this number is 9 data points. Thus
we aim to develop the simplest possible model that still accurately capture the desired pavement characteristics,
such as viscous properties and pavement stiffness, and is founded in physical elements. Newer developed TSD’s
might be equipped with more sensors and thus allow more model parameters.

2. Developing an extended version of the elastic Pasternak model

2.1. Model presentation and introduction of damping

The model developed in this paper is an extended version of the simple elastic Pasternak model for pavement
response under a moving load [7]. The model is extended by introducing viscous damping in both the beam
and foundation.

The elastic Pasternak model is a two layered model, consisting of an elastic Euler-Bernoulli beam resting
on a two parameter foundation model [2]. The beam is assumed to extend to infinity, be made from a homoge-
neous and isotropic material and is characterised by its elastic modulus E [Nm ] and the second moment of area
pr. unit length, I [m3]. Note that the units of E and I is different than the classical use, since we are in a 1D
situation. The flexural rigidity, EI, of the beam is as normal in units [Nm2]. A sketch of the model can be
seen on figure 1. In the model, the soil is represented by a set of continuously-distributed springs with spring
constant per unit length k [ N

m2 ]. In order to take into account the cohesive bonds between the soil particles, a
shear interaction parameter G [N] is included. This accounts for the shear forces in the foundation by connecting
the spring elements at the top with an in-compressible layer [2, 9, 20]. Physically, this can be thought of as
a set of horizontal springs in between the soil elements (as illustrated on figure 1). Beside coping with the
shear interactions, the layer also ensures that the applied load is distributed over multiple foundation elements,
instead of just a few. Thereby the foundation will act more like a continuous medium [9, 20].
The govern equation for vertical pavement deflection, w(x′, t) [m], of the purely elastic Pasternak model is given
by equation (1).

EI
∂4w(x′, t)
∂x′4

+ ρ̃
∂2w(x′, t)

∂t2
−G∂

2w(x′, t)
∂x′2

+ kw(x′, t) = q(x′, t) , (1)

where ρ̃ is the mass per unit length of the beam (found by the density of the beam times the cross section area,
and assumed constant) [kg/m] and q(x′, t) is a distributed load function with units [ Nm ].

Damping is introduced into the model in two ways. Firstly, we introduce damping in the soil by adding a
set of uniformly-distributed dashpots with viscous damping coefficient per unit length c [ Ns

m2 ]. This will ad an

extra term c∂w(x′,t)
∂t to equation (1). Damped Pasternak models like this has been studied in literature before,

see [7, 9, 21, 20].
Secondly, we include viscoelastic effects of the asphalt into the model by considering a viscoelastic beam.

2.1.1. Governing equation for deflection of a viscoelastic beam

Consider an isotropic and homogeneous visco-elastic Euler-Bernoulli beam. For describing the beam we have
an internal and outer coordinate system. The inner coordinate system is defined for each element on the neutral
axis (axis going through the center of mass of the cross section area) with the z coordinate perpendicular to the

2



neutral axis, pointing downwards. The outer coordinate system is defined with x’ aligned with the neutral axis
of the straight beam and w(x′) denoting the vertical displacement of the neutral axis compared to the straight
beam. Thus w(x′) = 0 for a straight beam.
The constitutive equations for a linear viscoelastic material which dictates the relationship between stress and
strain, are not the one of Hook’s law but explained through the relaxation function E(t). As the beam only
experience uni-axial stresses, the constitutive equations is a single relation between stress and strain given by
the general expression in equation (2).

σ(t) = E0ε(t)−
∫ t

0

ε(t′)
dE(t− t′)
d(t′)

dt′, (2)

where E0 is the instantanious elastic modulus and E(t−t′) is the relaxation function convoluted over all previous
strain experienced by the material, starting at t = 0. Equation (2) shows that a viscoelastic material has mem-
ory and that the stress response of an applied strain depends on the strain history experimented by the material.

The relation between the bending moment of the beam M(x′, t), shear forces in the beam T (x′, t) and
vertical load q(x′, t) in an dynamical beam problem is described through the equations of motion.

dynamic conservation of momentum:
∂T (x′, t)
∂x′

= ρ̃
∂2w(x′, t)

∂t2
− q(x′, t), (3)

dynamic moment of momentum:
∂M(x′, t)

∂x′
= T (x′, t), (4)

where ρ̃ is the mass per unit length of the beam [kg/m] and the bending moment is given by

M(x′, t) =

∫

A

zσ(x′, z, t) dA. (5)

Here A is the cross section of the beam which is assumed constant.
Furthermore, we have the kinematic relation which relates the displacement w(x′, t) and the strain ε(x′, z, t)

for small deformations.

Kinematic equation: ε(x′, z, t) = −z ∂
2w(x′, t)
∂x′2

. (6)

The equations of motion and the kinematic equations is true for both elastic and viscoelastic materials, and
thus onty the constitutive equation is different in the two cases.

Inserting equation (6) into equation (2) and then inserting this into equation (5) gives

M(x′, t) = −I ∂
2w(x′, t)
∂x′2

E0 + I

∫ t

0

dE(t− t′)
dt′

(
∂2w(x′, t′)

∂x′2
) dt′. (7)

Taking the second-order derivative with respect to x′ on both sides and then inserting the expression for
M(x′, t), obtained by combining equation (3) and (4), gives the governing equation for the deflection a vis-
coelastic beam subject to a vertical load

ρ̃
∂2w(x′, t)

∂t2
+
∂4w(x′, t)
∂x′4

IE0 − I
∫ t

0

dE(t− t′)
dt′

∂4w(x′, t′)
∂x′4

dt′ = q(x′, t). (8)

Including the two types of damping (damping in the foundation and in the beam) into equation (1), results
in the following equation that govern the pavement response to a moving load for a viscoelastic beam on a
damped Pasternak foundation,

E0I
∂4w(x′, t)
∂x′4

− I
∫ t

0

dE(t− t′)
d(t′)

∂4w(x′, t)
∂x′4

dt′ + ρ̃
∂2w(x′, t)

∂t2
−G∂

2w(x′, t)
∂x′2

+ c
∂w(x′, t)

∂t
+ kw(x′, t) = q(x′, t) .

(9)
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A solution for the pavement deflection w(x′, t) can be found using an semi-analytical approach. Here an
analytical solution is found in the Fourier domain and the the inverse Fast Fourier Algorithm (iFFT) is used to
find the pavement deflection in spacial domain numerically.

Using the convolution theorem, the Fourier transformed of equation (9) with respect to time and space is
derived (equation (10)). We use ω and kx as the transform variable with respect to time and space respectively.

(E0 − Ẽ(ω)iω)Ik4xŵ(kx, ω)− ρ̃ω2ŵ(kx, ω) +Gk2xŵ(kx, ω) + ciωŵ(kx, ω) + kŵ(kx, ω) = q̂(kx, ω) (10)

We then solve for the pavement deflection, ŵ(kx, ω).

ŵ(kx, ω) =
q̂(kx, ω)

IE∗(ω)k4x − ρ̃ω2 +Gk2x + ciω + k
(11)

Here the term E∗(ω) = (E0 − Ẽ(ω)iω) is the complex modulus of the beam. E∗(ω) is a general term, and
specific viscoelastic models to describe the beams behaviour can be inserted as required.

2.2. Change of reference frame to moving coordinate system

Equation (9) account for the vertical deflection of the pavement in a fixed coordinate. However, in this
paper we are interested in the pavement deflection underneath a moving tire and therefore equation (9) has
to be changed into a moving reference frame. This is done by assuming a steady state situation, where the
driving velocity (v) is constant. In this case we can make the coordinate shift x = x′ − vt, where x is our new
time dependent x coordinate. Applying a coordinate shift in equation (9) is not trivial, due to the presence
of a convolution integral, and thus this is done in the Fourier domain. This means that we have to find the
corresponding coordinate shift in the frequency domain and apply it to equation (11).

We start of by showing how this is done for a general system on the form Lw(x′, t) = q(x′, t), where L is a
linear differential operator, and afterwards it is applied to our particular system (equation (9)).

The solution to a system on the form Lw(x′, t) = q(x′, t) can be found using the Green’s function. The
Greens function (wδ(x

′, t)) to a linear differential operator L, is the solution to a system subject to an impulse
load,

Lwδ(x
′, t) = δ(x′)δ(t)

The Green’s function has the property that the solution to a system Lw(x′, t) = q(x′, t) can be found using
the convolution w(x′, t) = wδ(x

′, t) ∗ q(x′, t). A property that in the Fourier domain becomes ŵ(kx, ω) =
ŵδ(kx, ω) · q̂(kx, ω).

Using this relation, we can write up the general expression for the inverse Fourier transformed pavement
deflection in a fixed frame.

w(x′, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵ(kx, ω)eikxx

′
eiωtdkxdω (12)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)q̂(kx, ω)eikxx

′
eiωtdkxdω (13)

We start by evaluating the loading function term q̂(kx, ω) in equation (13). From the definition of the Fourier
transform we have that

q̂(kx, ω) =

∫ ∞

−∞

∫ ∞

−∞
q(x′, t)e−ikxx

′
e−itωdx′dt (14)

A moving load is described by a impulse load in the time domain and thus the loading function can be
rewritten

q(x′, t) = Q(x′ − vt). (15)

Including this into equation (14) gives

q̂(kx, ω) =

∫ ∞

−∞

∫ ∞

−∞
Q(x′ − vt)e−ikxx′e−itωdx′dt (16)
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Now we include the coordinate shift x = x′ − vt and that dx
dx′ = d(x′−vt)

dx′ = 1. Since the limits is from minus
infinity to infinity, changing the coordinate do not affect these.

q̂(kx, ω) =

∫ ∞

−∞

∫ ∞

−∞
Q(x)e−ikx(x+vt)e−itωdxdt (17)

=

∫ ∞

−∞
Q(x)e−ikxxdx

∫ ∞

−∞
e−it(vkx+ω)dt (18)

Using that
∫∞
−∞ eit(x−a)dt = 2πδ(x− a) we get the expression for the loading function in a moving reference

frame:

q̂(kx, ω) = 2π

∫ ∞

−∞
Q(x)e−ikxx dx δ(vkx + ω) = 2πQ̂(kx)δ(vkx + ω). (19)

We now return to the Fourier transform of the pavement deflection in equation (13).

w(x′, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)q̂(kx, ω)eikxx

′
eiωtdkxdω (20)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
ŵδ(kx, ω)Q̂(kx)δ(vkx + ω)eikxx

′
eiωtdkxdω (21)

=
1

2π

∫ ∞

−∞
Q̂(kx)eikxx

′
∫ ∞

−∞
ŵδ(kx, ω)δ(vkx + ω)eiωt dω dkx (22)

In order to solve the integral over ω we use the fact that a delta function δ(x− a) is zero all other places than
in a. Hence if we have a function

∫∞
−∞ f(t)δ(t− t0)dt = f(t0). Thus we get

w(x′, t) =
1

2π

∫ ∞

−∞
Q̂(kx)eikxx

′
ŵδ(kx,−vkx)e−ivkxt dkx (23)

=
1

2π

∫ ∞

−∞
Q̂(kx)ŵδ(kx,−vkx)eikx(x

′−vt) dkx (24)

=
1

2π

∫ ∞

−∞
Q̂(kx)ŵδ(kx,−vkx)e+ikxx dkx (25)

This shows that making a coordinate shift in the Fourier domain correspond to the substitution ω = −vkx.
Thus a general expression for the the Fourier transformed pavement deflection in a moving frame is

ŵ(kx,−vkx) = ŵδ(kx,−vkx)Q̂(kx). (26)

As for the loading function, the pavement deflection can be rewritten in terms of the new moving reference
coordinate

w(x′, t) = W (x− vt) = w(x). (27)

For the system in equation (9), the Fourier transformed Green’s function in a moving reference frame is

ŵδ(kx,−vkx) =
1

IE∗(−vkx)k4x − ρ̃v2k2x +Gk2x − cikxv + k

We will in this paper assume a point load (described by the Dirac delta function) with constant amplitude F
[N]. Thus we have Q(x′ − vt) = Fδ(x′ − vt) and Q̂(kx) = F . Since we are working with an beam model, where
the assumption is that the beam only deflect and not deform this will contribute to distributing the load and
thus assuming a point load and not a distributed load is reasonable assumption.
Using this, we obtain the expression for the Fourier transformed pavement deflection, ŵ(kx,−vkx). The pave-
ment deflection of the beam, w(x) can then be found using the inverse Fast Fourier Algorithme (iFFT) for
numerical inversion of equation (28).

ŵ(kx,−vkx) =
F

IE∗(−vkx)k4x − ρ̃v2k2x +Gk2x − vcikx + k
(28)
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Figure 1: Sketch of a viscoelastic beam resting on a damped Pasternak-Winkler foundation. Here E∗(ω) is the
complex modulus of the beam, I is the beams second moment of area, k is the foundation spring constant, c is
the viscous damping constant and G is the shear interaction parameter. The elastic Winkler-Pasternak model
is obtained by setting c = 0 and E∗(ω) = E.

Equation (28) contains a general expression for the complex modulus of the beam where different viscoelastic
models for the beam can be inserted. If we assume that q(x′, t) varies slowly with time, the vertical acceleration

term ρ̃∂
2w(x′,t)
∂t2 in of (9) can be neglected for simplicity [22].

3. Choice of viscoelastic model for the beam

There exist two different ways to model the complex modulus: empirical models or mechanistic models
where a mechanical analog of the viscous response of the material is made from spring and dashpot elements
[13]. In this study we will consider mechanistically models where physically elements is used to describe the
viscoelastic behaviour. Studies like [13] and [17] have investigated the mechanical properties of bitumen mixes
and their complex modulus. They have proposed that models consistent of several springs, dashpots and
parabolic dashpot elements is needed in order to reasonable describe the viscoelastic behaviour of bituminous
mixes.
In table 1, three mechanistic models are listed; the Maxwell model, the Burgers model and the Huet-Sayegh
model. The last two is often mentioned as models that satisfactorily describes the viscoelastic behaviour over
a wide range of temperatures and frequencies, where the simple Maxwell model is the simplest mechanistic
model with the qualitatively correct behaviour of the complex modulus curve (an sigmoidal real part and a bell
curved imaginary part) [15]. As seen, the number of parameters needed to describe the complex modulus curves
increase from 2 in the simple case to 9 for the Huet-Saygeh model. Later in this paper we investigate how the
different models influence the model output, but in the following we will go with the simplest model that has
the correct E∗(ω) behaviour, namely the Maxwell model. The complex modulus for the Maxwell model can be
written in terms of elastic modulus E and characteristic time τ ,

E∗(ω) = E
iωτ

1 + iωτ
(29)
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Table 1: Tabel over mechanistic models to describing the viscoelastic behaviour of bituminous mixes.

Model name Schematic representation Complex modulus Numbers of parameters

E

η

E∗(ω) = E + ηiω 2
Kelvin-Voigt model

E η

E∗(ω) = E τiω
1+τiω , τ = η

E 2

Maxwell model

E

E

1 1

2

2

η

η

Burger’s model E∗ = 1
1
E1

(1+ 1
iωτ1

)+ 1
E2

1
(1+iωτ2)

, τi = ηi
Ei

4

E

E2

1

k h

E∗(ω) = E1 + E2

1+δ(iωτ)−k+(iωτ)−h

Huet-Sayegh model
ln(τ) = a+ bT + cT 2 , δ = E2τ

η1
9

4. Numerical analysis of the model

By use of inverse FFT algorithm, equation (28) can be solved. From this we can make a numerically study
of the pavement deflection.

To do the numerical study we use the parameter values listed in table 2. Parameter values for the stiffness
(k) and shear parameter (G) for the foundation are adopted from [23]. The foundation stiffness value is also
used in [21, 7] and is referred to as a medium stiff soil. Assuming the foundation is isotropic, the parameters k
and G can be converted to a measure of elastic modulus E and shear modulus G̃ of the soil layer respectively.

k = E
A

H
, G = B

EH

6(1 + ν)
= BG̃

H

3
, (30)

where A is the area over which the force is applied (as k is spring constant per unit length A = 1 m), H is the
height of the soil layer, B is the width of the beam and foundation layer and ν is the Poisson’s ratio of the soil
[24, 25]. Assuming H = 3m gives Esoil = 12MPa, which is relative low for soil. Thus we expect the foundation
to behave rather soft.Assuming B=1 m (as done in [24]), the shear modulus corresponding to G is found as
G̃ = 0.6MPa. this exact value for G is used in a lot of numerical studies about the Pasternak foundation and
thus we choose to use this here [21, 18, 7, 23].

The foundations damping (c) is determined based on the damping ratio, ζ. We assume a damping ratio
ζ = 0.3, as we aim to study a system with significant damping in the foundation.

Parameters for the viscoelastic model for the beam (equation (29)) is based on rheological experiments made
in [14]. Here the Huet-Sayegh model is fitted to data and parameter values listed. Using this as a reference, we
have fitted equation (29) and obtained parameters in table 2. Compared with studies of bituminous mix found
in the literature, the chosen value of E is in the lower end wheres the characteristic time τ is in the middle
[15, 18, 16] Beside the parameters from the complex modulus, the beam is also described by its second moment
of area per unit length, I. The beam is assumed a rectangle and I is given by I = 1

12h
3. We assume that the

beam is 10 cm thick.
To enable a comparison between elastic and viscoelastic beams, we chose an value for the elastic module, Eelastic,
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which gives a similar maximum deflection for the elastic repose as the viscoelastic case. Thus the two solution
has the same effective stiffness and only the amount of damping is different (as seen on figure 2a).

Table 2: Parameter values used for numerical study.

Simulation parameters

Description symbol value unit based on

Moving load F 49000 N
Vehicle velocity v 16.67 m/s
Foundation
foundation stiffness per unit length k 40.8 · 105 N/m2 [23]
shear interaction parameter G 66.7 · 104 N [23]
damping ratio ζ 0.3
foundation damping per unit length c 8.5 · 104 Ns

m2

Beam
Elastic modulus per unit length Evisco 1.7 · 1010 N

m [14]
Second moment of area per unit length I 8.3·10−5 m3

Characteristic time τ 5.4·10−4 s [14]
Elastic modulus per unit length Eelastic 4.2·108 N

m
Temperature T 25 ◦C [14]

Using the parameters in table 2, a plot of the pavement deflection underneath the load and the corresponding
pavement deflection slope is obtained for the model with various degrees of viscoelasticity (fig. 2).

On figure 2a, the deflection basing is plotted with the center of the load at x = 0. The model is plotted for a
full viscoelastic pavement, an elastic beam on viscoelastic foundation (using E∗(−vkx) = Eelastic), a viscoelastic
beam on an elastic foundation ( using c=0) and a purely elastic pavement.
The pavement deflection basin for the viscoelastic models is characterised by having the maximum deflection
located behind the load. This is due to the viscoelastic effects of the pavement causing a time delay in the
pavement repose as it is subject to a moving load. For the elastic model on the other hand, the maximum
deflection occur directly underneath the load. It is seen that the different viscoelastic solutions gives different
amount of time lag in the maximum deflection. This can be seen in the x-position of the maximum in figure 2a
and in the intersection with the x-axis in figure 2b.
For the viscoelastic beam on a elastic foundation, an uplift behind the load is seen, where the deflection is
positive. The phenomenon is also seen in [23] and [7].

On figure 2b, a plot of the pavement deflection slopes is seen. The deflection slope curves are characterised
by having a minimum behind behind the load and a maximum in front of the load. For the elastic beam case
these two peaks behave anti-symmetric around (0,0). For the viscoelastic solutions however, there are a change
in both the x-location and amplitude resulting in a highly non-symmetrical signal. In section 9, a correlation
between the the non-symmetric deflection slope signal and the origin of damping is explored.
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Figure 2: Pavement deflection underneath a moving load for the model with various degrees of viscoelastivity
using the parameters in table 2. The model is plotted for a full viscoelastic pavement (damping in beam and
foundation), an elastic beam on viscoelastic foundation (E∗(−vkx) = Eelastic), a viscoelastic beam on an elastic
foundation (c=0) and a purely elastic pavement (E∗(−vkx) = Eelastic and c=0).

5. Influence of the physical parameters on the pavement response

The influence of various physical parameters on the dynamical pavement response is studied. We want to
look at the impact on both the pavement deflection basin and the deflection slope. This is done since the Traffic
Speed Deflectomenter technology provides direct measurements of the pavement deflection slope, and thus the
influence of various physical parameters on this quantity is interesting.

The parameters influence will be evaluated with respect to their impact on the maximum deflection and
the maximum and minimum deflection slope. We are looking at both the magnitude and x-location, as these
gives separate information. In the deflection basin, the time delay in the pavement response due to viscous
effects in the pavement is manifested by the maximum deflection occurring behind the load. The bigger a time
delay experienced, the further away from the center of the load (x=0) the maximum deflection occures. Thus
we would expect this quantity to say something about the amount of damping in the pavement. Similarly, the
magnitude of the maximum deflection, reflect how stiff or soft the pavement behaves. The behaviour of the
pavement deflection slope is more complicated to interpret.

On figure 3, a combined plot of the influence of the parameters k,G, ζ,τ and E is seen. The individual
parameter values are changed while all others are held constant and the resulting pavement response plotted.
This gives information about how the pavement response is influenced by a particular parameter. Note that all
parameter values are decreased with a factor 0.01 and increased with 1000 times. This gives some unrealistic
parameter values for some parameters, and will also result in some unnatural deflection basins. However these
plots can be used to get a general idea about how each parameter influence the model output and to which
parameter the model output is most sensitive.

On figure 3a-b, the behaviour of the amplitude and x-position of the maximum deflection is shown and some
interesting features is found. First of all, we find that the foundation stiffness k has the biggest influence on the
amplitude of the maximum deflection among all the parameters. This is particularly evident when k gets small
and the foundation gets soft, and the result is a deep and narrow deflection basin.
Secondly, a peak in the x-position curves for both the foundation and beam damping is found. This quantity is
often correlated with the amount of damping in the pavement and thus this indicates that there exist a value
for both τ and ζ which gives an maximum amount of damping. This behaviour is not surprising for τ , as it was
also seen in figure ??. It reflect that the loss modulus in equation (29) is bell shaped and thus has a maximum.
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Figure 3: The influence of the physical parameters in the model on the pavement response. The parameters
influence will be evaluated with respect to their impact on the maximum deflection, and the maximum and
minimum deflection slope. We are looking at both the magnitude and x-location, as these gives separate
information.
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A similar behaviour is not seen for the E curve, as this acts as a scaling in eq. (29) and thus just amplify the
value of the loss modulus. More surprising is it to see this behaviour for the foundation damping ζ as this is
expected to influence the damping in the model in a linear way. The explanation is that the values at which the
maximum damping behaviour is seen, is so large that the dash-pot becomes increasingly difficult to compress
and thus begin to act stiff.
The third thing worth noticing about the deflection basin is that increasing foundation stiffness in form of k
or G can counteract an increase in foundation damping. Thus the ”actual damping” experienced by the pave-
ment from the foundation is not just determined by the damping parameter ζ, but a function of all foundation
parameters.

On figure 3c-f the parameters influence on the deflection slope is plotted. A common trend is observed,
that for increased parameter values the magnitude of both the minimum (3e) and maximum (3c) goes towards
zero. On the other hand, the behaviour of the x-position of the two peaks is behaving different with respect
to the different parameters. This makes us capable of distinguish between changes in the different parameter
values based on the pavement deflection slope signals. E.g. it is possible to distinguish between increased (or
decreased) stiffness in the top layer and the foundation. Where an increase in k, and in some extend G, makes
the peaks moves closer to x=0, an increase in η and E moves the peaks away from x=0.

The influence of driving velocity v was also investigated and it was found that for a big range, it has the
same influence on the pavement response at τ . This is due to v being multiplied on τ in the used viscoelastic
model and thus these are correlated. However v is also correlated with the foundation damping ζ, and thus
deviates from the behaviour of the beam parameters when it is large.

5.1. Sensitivity analysis using Metropolis Monte-Carlo method

Above we have conducted a local sensitivity analysis on the different physical parameters included in the
model. An analysis of this kind takes its starting point in the given parameter values and explores the parameter
space in the neighbourhood of these. However, it is highly dependent on the chosen starting point and it
gives only a local interpretation of the parameters influence on the model output. Furthermore it does not
give any information about correlated parameters. In order to get a more comprehensive analysis, a global
sensitivity analysis using the Metropolis Monte-Carlo (MMC) method has been made. Using this, we can
obtain information about the sloppiness and degree of correlation within the parameters.
The MMC method investigate how changes in the parameter set θ influence the model output. This is done in
an iterative way, where the parameters are changed by θnew = θold + δθ0, where δθ0 is a uniformly distributed
random number with mean 0. The variance of δθ0 determines how big steps the algorithm takes in the parameter
space. For each new parameter set θnew, the cost function C(θ) is calculated and evaluated. In this study we
use the following cost function

C(θnew) =
m∑

i=1

(
(w(xi, θ0)− w(xi, θnew))

2
)
, (31)

where m is the number of data points and θ0 is original parameter set. If C(θnew) < C(θold) the parameter set
is accepted and the iteration is repeated. If C(θnew) ≥ C(θold) the set is only accepted if

R < exp

(
−C(θnew)− C(θold)

Ts

)
, (32)

where R is a random number taken from a uniform distribution between [0;1] and Ts is the sampling temper-

ature. We choose to use Ts = 2C(θ0)
N , where N is the number of parameters in θ as suggested in [26, 27]. δθ0

is chosen such that the acceptance ratio is around 0.5 tjek!!. The analysis was made with θ = {IE, τ, k, c,G},
as I and E is directly correlated and thus can be considered one parameter. A synthetic set of m data points
(w(x, θ0)) is generated using the model with initial parameter values values listed in table 2 plus some white
noise. This is done to avoid the algorithm to get stuck in a minimum corresponding to θ0.

The main findings from the analysis is that all foundation parameters (k, c and G) was found to be well
defined, illustrated by a normal distribution of the parameter ensemble in figure 4a. On the other hand the
beam parameters IE and τ are found to be sloppy, indicated by a skewed distribution of their parameter en-
semble (fig. 4a). Furthermore it was found that IE and τ is correlated, which is seen by the contour plot on
figure 4b. This means that an increase in IE can be compensated by an decrease in τ . IE and τ is found to
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(a) histogram over parameter ensemble accepted in the
Metropolis Monte-Carlo algorithm.

(b) contour plot over the cost function for the parame-
ter sets IE-τ and G-k. The original parameter values are
indicated with a red star.

Figure 4

be log-log linear correlated, with the sloppy direction where log(τ) is increased and log(IE) decreased (and vice
versa). This means that there exist a power law on the form

τ = IE−αeβ , (33)

which describes the relation relation between the two and that the model output is sensitive to changes in this
function and not the individual parameters. If we replaces τ = IE−αeβ in the model, we would not have gained
any new information, as we just have introduced two new nonlinear parameters α and β. Consequently, this
shows us that we can not estimate τ and IE based on one set of pavement deflection measurement.

The parameters k and G was also found to correlate, with stiff and sloppy direction indicated on figure 4b.
Here it is found that increasing G while simultaneously decreasing k has a little effect on the model output
(Sloppy direction) whereas decreasing (or increasing) G and k simultaneously has a big effect on the model
output. Thus a reduced stiffness in the foundation can be compensated for by an increased shear interaction
and vice versa. But a decrease/increase in both parameters will affect the pavement response significantly.
Furthermore this is found to be a well defined minimum (closed contour lines).

6. limitations to the beam model

To model the asphalt layer an Euler-Bernoulli beam is used. The Euler-Bernoulli beam theory is wildly used
within engineering as it is simple, and in many cases provides reasonable approximations to the desired solution
[28]. However, as this is a simple model it has its limitations and one should be careful not to use the model to
predict pavement response behaviour outside of the models validity domain.
A fundamental assumption in the beam model is that one dimension has to be much larger than the other,
meaning that the length of the beam has to be much larger than the height, L >> h. When investigating the
beam thickness influence on the pavement response, this assumption should always be fulfilled in order to obtain
trustworthy results. Likewise, there are restrictions for decreasing the beam thickness, as this will influence the
flexural rigidity (IE) of the beam. As mentioned in section 5, the height of the beam h is associated with the
second moment of area I by

I =
1

12
h3. (34)
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Thus this influence the flexural regidity by

IE =
1

12
h3E. (35)

Thus if h is decreased, IE is decreased. As IE is a measure of how much moment that is required to bend the
beam with a given curvature, an to small value of this will result in some nonphysical behaviour of the deflection
basin. This can be seen by evaluating the model for I going to zero. In this case, equation (9) will be reduced
to a second order linear partial differential equation. The solution to this is an exponential function ??? and
thus if we predict the pavement response from this model, we will obtain a deflection basin that is constructed
by two exponential functions. This is clearly an nonphysical behaviour.

Provided that we are within the limits of the models validity domain, the influence of h can be investigated.
The beam thickness is a desired physical property to investigate as the asphalt thickness often changes in real
life situations. On figure 5, a plot of the pavement response simulated for different beam thicknesses are seen.
The thickness is changed within 5-15 cm, as these are realistic thicknesses for an asphalt layer. The flexural
rigidity is also listed for each height. We find that when h (and IE) is increased, the maximum deflection is
decreased and the deflection basin gets increasingly narrow. Furthermore the maximum deflection moves away
from the center of the load as IE acts as a scaling of the beam damping. The decrease in maximum deflection
is not linearly correlated with the decrease in h, as predicted based on equation (35).
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Figure 5: simulated pavement response at different height of the top layer.

7. The impact of beam complex modulus E∗(ω) on pavement response

The viscoelastic behaviour of the beam is determined by the chosen viscoelastic model. In this study we
have chosen to use the Maxwell model, whose complex modulus in a moving reference frame is:

E∗(−vkx) = E
−ivkxτ

1− ivkxτ

Due to the present of a moving load characterised by its driving velocity v, the viscoelastic behaviour of
the beam is frequency dependent. This means that the pavement deformation is dependent on the specific
loading time determined by the driving velocity. This is opposite to the elastic case, where the deformation is
independent on the driving velocity. Having a frequency dependent pavement response, correspond to saying
that only the behaviour of E∗(−vkx) in a certain range of frequencies has an influence on the pavement re-
sponse. This range of frequencies (or equivalent in a moving reference frame, the range of wave numbers), at
which the pavement response is sensitive to the E∗(−vkx) curve behaviour, will hereafter be referd to as the
sensitivity interval. The sensitivity interval can be found either in the terms of frequency ω or wave number kx,
as ω = vkx.
Changing the physical parameters related to the beam in the model, such as driving speed v, the stiffness
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modulus E or the characteristic time τ , will shift the the sensitivity interval and E∗(−vkx) curve respectively.
Resulting in a different amount of storage and loss modulus within the sensitivity interval, and thus different
amount of damping expressed in the simulated pavement response.

The sensitivity of the pavement response with respect to E∗(−vkx) can be found by looking at the partial

derivative ∂ŵ(kx,−vkx)
∂E∗(−vkx) (eq. (36)). this is called the sensitivity function with respect to E∗(−vkx) . The sensi-

tivity interval is then the interval of wave numbers where ∂ŵ(kx,−vkx)
∂E∗(−vkx) 6= 0.

∂ŵ(kx,−vkx)

∂E∗(−vkx)
= − FIk4x

(E∗(−vkx)Ik4x +Gk2x − icvkx + k)2
(36)
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Figure 6: E∗(−vkx) curve and the sensitivity function ∂ŵ(kx,−vkx)
∂E∗(−vkx) plotted on normalized axis. Normalized wave

number κ = −vτkx

On figure 6, a plot of E∗(−vkx) is shown using a normalized x and y axis. The use of normalized wave
numbers (κ) ensures that that the complex modulus curve is fixed and only the sensitivity function will shift
up or down when parameter values are changed. This makes a comparison of different parameter sets possible.
E∗(−vkx) is is characterised by the storage modulus (real part) and the loss modulus (imaginary part). The
storage modulus accounts for the amount of elastic response in the beam and the loss modulus accounts for the
amount of damping in the beam.
The sensitivity function using the default parameters (table 2) is also plotted as the absolute value of equation
(36). This is used since (36) is a complex function. The sensitivity function indicates which parts of the complex
modulus that has an influence on the pavement response. It is found to be located at low normalized wave
numbers on the left side of the loss modulus peak. In this area, only a small amount of viscous damping is
present and the elastic part behaves rather soft.

Increasing the driving velocity v shifts the sensitivity function to a higher normalized wave number, as seen
on figure 6, purple area. This result in a pavement response with a higher degree of viscous damping and a
slightly higher stiffness. If v is increased further the sensitivity interval will pass the loss modulus top and the
behaviour will be like an elastic beam with E∗(∞) as an elastic modulus, thus experience no damping from the
beam.

Impact of temperature

Changing the temperature of the viscoelastic beam correspond to changing the parameter values of τ and
E. Thus this is effectively just a shift of the complex modulus curve. In order to investigate the effect of
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Figure 7: Plot of the sensitivity interval and the E∗(−vkx) curve on normalized axis. Changing the temperature
of the asphalt layer changes the parameter values for E and τ , which correspond to shifting the E∗(−vkx) curve.
On normalized axis, this is like moving the sensitivity function downwards with respect to the E∗(−vkx) curve.

temperature on the pavement response, we use the relation between asphalt temperature and viscoelastic model
parameter values found from rheological measurements in [14].

On figure 7 we see the sensitivity intervals and E∗(−vkx) in normalized axis for different temperatures, using
the given parameter values in table 2 and the relation between E∗(−vkx) parameters and temperature from
[14]. Here we see that increasing the temperature of the beam result in the sensitivity interval being shifted
from high to low normalized wave numbers. Thus when having a low temperature road result in a stiff road
and having a warm road result in a softer road. The amount of damping expresed by the pavement depends on
the specific location of the sensitivity interval.

8. Choice of E∗(ω)

For the model presented in this paper (eq. (28)) it holds that

lim
kx→0

ŵ(kx,−vkx) =
F

k
(37)

lim
kx→∞

Ŵ (kx,−vkx) = 0 (≈ F

IE∗(−vkx)k4x
) (38)

In equation (37) it is seen that the behaviour of the pavement response at big wavelengths (small wave
numbers) is dominated by the elastic springs in the foundation. On the other had, the behaviour of the pave-
ment response at low wavelengths (large wave numbers) is dominated by the viscoelastic beam term (eq. (38)).
This means that for pavement behaviour close to the load, the beam properties is important and for pavement
behaviour far away from the load the elastic part of the foundation is the most dominant.

The pavement deflection model (eq. (28)) allows for any viscoelastic model to be inserted. In the previous
analyses, the model used for describing the viscoelastic behaviour of the beam is the simple Maxwell model.
However, this model is known to be to simple to proper characterise the behaviour of a bituminous mix over all
temperatures and frequencies [13], as previous shown in figure ??.
The influence on the pavement response when choosing different rheological models is determined by the be-
haviour of E∗(−vkx) in the relevant frequency range. On figure 8a, a plot of the complex modulus for the
three mechanistic models; Maxwell, Burger’s and Huet-Sayegh (see table 1) is shown. This is plotted with
normalized axis for comparison. How a change in E∗(−vkx) will influence the pavement response, depends on
their individual behaviour within the sensitivity interval determined by the sensitivity function.
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Figure 8: a) complex modulus for the three mechanistic models; Maxwell, Burger’s and Huet-Sayegh. For
details see table 1. The sensitivity function is marked with blue, indicating the range of wave numbers that
influence the pavement response. It is found that the Maxwell and burger’s model behaves the same within the
sensitivity interval, whereas the Huet-Sayegh model behaves differently. b) simulated pavement response using
the three complex modulus models. The simulations is made using parameters from table 2 and 3.

The complex modulus curve for the different models has the same trends, with a peak in the loss modulus
and a elastic regime at low and high frequencies. If we look at the complex modulus for the models at high
frequencies, we find that they all goes towards some plateau value, determined by the spring constants (eq. (39)
). However, if we look at their behaviour at low frequencies (eq. 40) the Maxwell and Burger model goes to
zero whereas the Huet-Sayegh model goes to a nonzero plateau value.

lim
kx→∞

E∗Maxwell = E, lim
kx→∞

E∗Burger = E1, lim
kx→∞

E∗Huet−Sayegh = E2 + E1 (39)

lim
kx→0

E∗Maxwell = 0, lim
kx→0

E∗Burger = 0, lim
kx→0

E∗Huet−Sayegh = E1 (40)

The sensitivity function on figure 8a is located left of the loss modulus peak, where there is a big difference
between the behaviour of the Maxwell and Burger model and the Huet-Sayegh model. This is reflected in the
simulated pavement response in figure 8b. In figure ??, we found that the Maxwell model has a nonphysical
behaviour at low frequencies due to the storage modulus going to zero faster than the loss modulus. Thus
this model will no be advantageous to use for lower driving velocities or higher temperatures with the given
parameter set, as this shifts the sensitivity function to lower frequencies.
The Burger model is found to behave similar to the Maxwell model within the sensitivity interval. From figure
8a we conclude that of the three tested models, the Huet-Sayegh model is preferable when the used parameter
values result in a sensitivity function located at low frequencies. It is also found that if sensitivity interval for
the pavement response is located at high frequencies where all models has a constant elastic modulus and no
damping, there will be no different in the contribution to the pavement response within the models. Above
it was showed how such a shift can be made by changing the driving velocity or temperature. Furthermore
it should be noted that both beam and foundation parameters influence the sensitivity function and thus can
influence a potential shift.

9. Manifestation of viscoelastic effects through the pavement deflection slope

In figure 2 the viscoelastic effects of either the beam or foundation was found to manifests itself in the
pavement deflection slope through a change in both the x-location and amplitude resulting in a highly non-
symmetrical signal. However, a different behaviour was found depending on where the damping originated. It
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Table 3: Parameters used for simulation in figure 10, 8a and 8b. The parameter values is chosen such that the
complex modulus curves, explained in table 1, is comparable.

Simulation parameters for E∗(ω) models

Kelvin-Voigt model Maxwell model Burger’s model Huet-Sayegh model

E 1.7 ·1010 N
m E 1.7 ·1010 N

m E1 1.7 ·1010 N
m E1 150 ·106 N

m

η 9.3·106 Ns
m τ 5.4·10−4 s τ1 5.4·10−4 s τ 1.3·10−5 s

E2 1.7 ·1010 N
m E2 1.8·1010 N

m
τ2 2.7 ·10−4 s k 0.7 -

h 0.2 -
δ 0.08 -

appears that damping originating from the top layer and damping originating from underlying layers affect the
deflection slope curve in different ways. As a result, the origin of damping is reflected in the relative difference
between the amplitudes of the maximum and minimum deflection slope.

The asymmetry in the deflection slope curve can be quantified by looking at the ratio between the minimum
and maximum peak amplitude. This will be denoted Ω in the following,

Ω =

∣∣∣∣∣
max(dw(x)

dx )

min(dw(x)
dx )

∣∣∣∣∣ . (41)

For the simulated pavement responses in figure 2, Ω = 1 for the elastic pavement, Ω = 0.72 for the viscoelastic
beam on an elastic foundation and Ω =1.61 for the elastic beam on viscoelastic foundation. This indicates that
the origin of damping is reflected in the ratio Ω .

We hypothesise, that the viscoelastic effects in the pavement affect the pavement deflection slope differently
depending on their origin, and by evaluating Ω the origin of the most dominating form of damping can be found.
For Ω > 1, the most dominating viscoelastic effects is affiliated with the foundation. Conversely, for Ω < 1 the
most dominating viscoelastic effects is affiliated with the top layer. The special case of Ω = 1 occurs for either
a perfectly elastic pavement, or when the viscoelastic contributions from the different layers are equal. This
hypothesis is investigated using the model derived in equation (28).

The pavement deflection slope of the deflection basin can be written in the form of an the inverse Fourier
transform,

d(−w(x))

dx
=

1

2π

∫ ∞

−∞
Ŝ(kx,−vkx)eixkxdkx. (42)

Note that as w(x) is a measure of how much the beam deflect compared to a straight beam, w(x) is a positive
value when the beam is deflected. In order to get a depiction of the deflection basin (as on figure 2) we have to

plot −w(x) and as a result the associated deflection slope is d(−w(x))
dx .

Equation (42) can be rewritten as

d(−w(x))

dx
=

1

2π

∫ ∞

−∞
S′cos(xkx)− S′′sin(xkx)dkx + i

1

2π

∫ ∞

−∞
S′sin(xkx) + S′′cos(xkx)dkx (43)

=
1

2π

∫ ∞

−∞
S′cos(xkx)− S′′sin(xkx)dkx (44)

Where S′ and S′′ is the real and imaginary part of Ŝ. The last equal sign is due to the fact that the imaginary
part of a Fourier transform of a real function, F{f(x)} = f̂(kx), must become zero when inverse transformed,

as the resulting function F−1{f̂(kx)} = f(x) is real. The step is proven more detailed in supplementary.

17



-3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

4

5

-d
w

(x
)/

d
x

10
-3   = 1.31

-x
1

x
1

Figure 9: Pavement deflection slope found by inverse Fourier transform F−1{Ŝ} together with the anti-
symmetric contribution H(x) and the asymmetric contribution G(x).

Define the functions G(x) and H(x) as

G(x) =
1

2π

∫ ∞

−∞
S′cos(xkx) dkx,= F−1{S′} (45)

H(x) =
1

2π

∫ ∞

−∞
−S′′sin(xkx) dkx = F−1{iS′′} (46)

G(x) corresponds to taking the inverse Fourier transform of S’ and H(x) corresponds to taking the inverse
Fourier transform of iS”. On figure 9, a plot of G(x), H(x) and the inverse Fourier transform of Ŝ is seen. H(x)
represent the elastic contribution to the total deflection slope curve and is an even function, thus anti-symmetric
around the y-axis. The maximum of H(x) is indicated to be at x = x1. As H(x) is anti-symmetric, the minimum
is located at x = −x1. G(x), on the other hand, is an odd function, and contribute to the asymmetric behaviour
in the total deflection slope.

In the case of a perfectly elastic solution, d(−w(x))
dx = H(x). For small perturbations to the elastic solutions

(|G(x)| � 1), the maximum and minimum of d(−w(x))
dx is assumed to be located in the same place as maximum

and minimum of H(x). This assumption breaks down in the case of substantial amount of damping where

the viscoelastic effects will shift the d(−w(x))
dx signal to the left, thus affecting the x-position of the maximum

and minimum. As we are interested in understanding the fundamental characteristics of the problem, we will
conduct the analysis in the simple framework of a small perturbation and study the behaviour of H(x) and
G(x) in x = x1.

G(x) introduces the asymmetric behaviour in the pavement deflection slope, and thus in order to understand
the asymmetry seen in the deflection slope we have to investigate this.

G(x) is described by the function S’, which is the real part of Ŝ(kx,−vkx). Using the pavement response
model derived in equation (28), S’ can be found as

S′ =
−Fkx(IE′′k4x − cvkx)

(IE′k4x +Gk2x + k)2 + (IE′′k4x − cvkx)2
. (47)

Equation (47) reveals that when damping in the pavement structure is changed, the term f(kx) = (IE′′k4x−
cvkx) changes. In f(kx), the main difference between the two types of damping is the power in which kx is
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Figure 10: Contour plot of Ω as a function of damping in the foundation on the y-axis and beam on the x-axis.
Damping in the foundation is controlled by ζ, whereas damping in the beam is controlled by three different
E∗(−vkx) models. The storage and loss modulus (Re(E∗) and Im(E∗) respectively) that characterise the beam
response for each τ value is plotted underneath the x-axis for figure b. The plot shows a clear trend that
when damping in the foundation is increased Ω is increased and when damping in the beam is increased, Ω is
decreased. The line Ω = 1 illustrate the tipping point between the two damping forms. Parameters used for
the simulations is listed in table 2 and 3.

raised. For pure foundation damping f(kx) is raised to the power of one, whereas for pure beam damping it is
raised to a power higher than one, depending on the expression for E′′. In the case where damping is present
in both the beam and foundation, the situation becomes more complicated and the resulting power determines
the final behaviour of the pavement response.

On figure 10a the value of Ω is shown in the form of a contour plot, for the simple case with beam damping
modelled by the Kelvin-Voigt model (see table 1 for description). The Kelvin-Voigt model do not describe the
asphalt behaviour correctly, but is used due to its simplicity and linear relationship between stiffness (E) and
damping (η).

E∗(−vkx) = E − ivkxη (48)

This makes it perfect for preliminary analysis, as the beam damping is controlled by one single parameter which
can be adjusted. On figure 10a we find that increasing beam damping always result in a decrease in Ω and vice
versa for foundation damping, which always result in increase Ω .

The same analysis is now preformed using a more realistic complex modulus model to describe the viscoelastic
behaviour of the beam, namely the Huet-Sayegh model. The complex modulus for the Huet-Sayegh model is
given by:

E∗(−vkx) = E0 +
E∞ − E0

1 + δ(−ivkxτ)−k + (−ivkxτ)−h
(49)

In the Huet-Sayegh model, and similar models, there are a nonlinear relationship between stiffness and
damping parameters. This means that when equation (49) is divided into storage (E′) and loss (E′′) modulus,
these will contain both stiffness and damping related parameters. In addition, they are both functions of kx.
This is fundamentally different from the Kelvin-Model, where E′ was constant, and it means that adjusting the
beam damping is not trivial.

We chose to change the beam damping by changing the value of τ . Increasing τ shifts the complex modulus
curve to lower wave numbers and as a result, the sensitivity interval will cover different parts of the E∗(−vkx)
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curve. On a normalized x-axis, this correspond to shifting the sensitivity interval and thereby covering different
parts of the complex modulus, resulting in different amount of beam damping. Note that due to the shape of
E” there exist a value of τ at which the beam express a maximum amount of damping. As a result, damping
can be increasing by either increasing τ from the elastic plateau at low frequency (increasing ”from the left”) or
decreasing τ from the elastic plateau at high frequency (increasing ”from the right”). Since E” is not symmetric
the two approaches will not give the same result.

Using this notion of beam damping, we obtain the contour plot of Ω seen in figure 10b. On the y-axis we
have the amount of foundation damping and on the x-axis is the value of τ . Below the x-axis, the values of
E∗(−vkx) within the sensitivity interval at a given τ value is plotted. Overall figure 10b shows that at any
given value for τ , if we increase the foundation damping c, Ω will increase. The stiffness of the beam (given
by E’ within the sensitivity interval) affects how much foundation damping increases Ω . This is seen when
comparing the elastic regimes (left vs right side of figure 10b). Furthermore we find that if we begin at any
foundation damping c and increase the beam damping, either from the left or the right, Ω is decreased.

Thus we can conclude that different kinds of damping affects G(x) differently, and thus in the end affect the
pavement deflection slope differently. The crucial factor that distinguish beam and foundation damping is the
power to which kx is raised in f(kx). This determines whether G(x1) is positive or negative, and thus if Ω is
above or below 1. In general, we found that increasing foundation damping result in an increasing Ω , whereas
increasing beam damping result in a decrease in Ω . Thus validating the hypothesis. The result is found to hold
for ”realistic” beam complex modulus models, while it do not hold for all τ in the simple Maxwell model. In
this case, we find that the behaviour of E” within the sensitivity interval for some τ becomes to steep, and as a
result the behaviour in f(kx) mimics that seen for foundation damping. However, the Maxwell model is known
to be to simple to describe the complex behaviour of asphalt mixed accurately [13]. Consequently, the results
found here is believed to hold for real pavement structures.

From the analysis, we can conclude that by evaluating the ratio of amplitudes between the maximum and
minimum deflection slope, the location of the dominating damping can be found. On figure 10, the line of Ω
=1 is marked with blue. In the left corner this is due to the purely elastic nature of the pavement, but in the
rest of the plot damping is in-fact present in the pavement. Thus we can see that Ω =1 can happen when the
right ratio of foundation and beam damping is present. This illustrated the turning point where the dominating
damping goes from one layer to the other.

Being able to evaluate if the main damping is occurring from the foundation or beam directly from the pave-
ment deflection slope is use full when combined with Traffic Speed Deflection measurements, as this measures
the deflection slope directly.

10. Summary

In this study, we have presented and analysed a pavement response model consistent of a viscoelastic beam
on top of a damped Pasternak foundation. The pavement response is found in a moving reference frame such
that it is comparable with the measuring set-up in a Traffic Speed Deflectometer. The full viscoelastic beam
model was compared with models containing damping in only the beam or foundation and a purely elastic
model. The viscoelastic properties in the beam is seen to manifest itself with an increased time delay in the
response compared to both the elastic beam model and purely elastic model. Thus, the deflection basin for
the viscoelastic solution is highly asymmetric around the maximum load. The viscous effects was also studied
in terms of the deflection slope curve, as this is the direct output of the TSD method. The deflection slope
curve is characterised by having a minimum behind the load and a maximum in front of the load. In a purely
elastic case, these are perfectly anti-symmetric. Adding damping into the pavement result in a non-symmetric
behaviour of the peaks by changing both the amplitude and location of the maximum and minimum. The ratio
between the magnitudes of the maximum and minimum deflection slope, Ω, is studied in detail in figure 10.
Here it was fund that damping in the beam result in Ω < 1 whereas damping in the foundation result in Ω > 1.
When both damping type are present the vale of Ω reveals what is the most dominating source of damping.
Relating this result with Traffic Speed Deflectometer measurements will be a powerful tool to evaluate the origin
of the pavement damping, as it can be extracted directly from the measurements.

The proposed model was analysed with two different sensitivity methods; a local and a global method. Here
the impact of the various physical parameters on the model output was investigated. This was done using a set
of parameter values based on findings in the literature. The main findings was that
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(i) The foundation stiffness k has the biggest impact on the pavement deflection basin of all the parameters.
This is particularly evident for increased stiffness where the resulting deflection basin is deep and narrow.

(ii) Increasing the foundation stiffness or the shear interaction parameter can counteract an increase in foun-
dation damping. Thus the ”actual” foundation damping experienced by the pavement is not determined
by the damping parameter ζ alone, but through a function of all foundation parameters.

(iii) Through analysis of the pavement deflection slope signals, it was possible to distinguish between a change
in stiffness of the top layer and in the foundation.

(v) The flexural rigidity IE and the characteristic time τ of the viscoelastic beam, was found to be sloppy.
This means that a change in the sloppy direction for the individual parameter will not affect the model
output significantly. Furthermore, IE and τ was found to correlate in such a way that increasing IE can
be counterbalanced by an decrease in τ . Thus there exist a function of these to which the model output
is sensitive.

(vi) All foundation parameters (k, c and G) was found to be well defined. Furthermore k and G was found
to correlate, with the sloppy direction such that a decrease in k is counterbalanced by an simultaneously
increase in G. The stiff direction indicates that a simultaneously decrease or increase in k and G affects
the pavement response significantly. This harmonize with our physically intuition of the system, as both
G and k characterize stiffness in the foundation.

The results found from the theoretical sensitivity analysis of the pavement deflection slope signal can be applied
in combination with Traffic Speed Deflectometer measurements to obtain easy accessible information about
the pavement without complicated modelling work. Especially using the fact that we can distinguish between
increased foundation stiffness and top layer stiffness is usefull. This is done in data paper kilde.

The influence of driving velocity and temperature on the pavement response using the proposed model was
also studied. In the numerical study presented here, increasing the driving velocity resulted in a more viscous
behaviour of the beam. Opposite, increasing temperature resulted in a less viscous behaviour. The relationship
between the viscoelastic properties of a beam and velocity and temperature dependence, was also studied in
[18], using a more complicated viscoelastic beam model where the Burger’s model is used for the viscoelastic
response and the vehicles is modelled as a spring-mass system. Here it was found that increased v leads to a
decrease of viscous effects of the top layer and an increase in temperature result in a more viscous beam. Thus
opposite conclusions as found in this study.
Whether an increase in driving velocity or temperature will lead to more or less viscous behaviour of the beam,
depends on where the sensitivity function of the complex modulus is located relative to the loss modulus peak in
E∗(−vkx) . The location of the sensitivity function, and thus the relevant wave numbers within the sensitivity
interval, is dependent on both the beam parameters (temperature dependent), foundation parameters and the
driving velocity of the wheel. Thus these parameters has an influence on whether increased driving velocity is
seen to increase or decrease the pavement damping, and should be kept in mind when comparing studies.

In the literature, it is often noted that decreasing the driving speed result in a more viscous behaviour,
indicating that under these measurement or simulation conditions the frequency range is located on the right
side of the peak [11, 18]. This indicates that the chosen parameter values for the viscoelastic beam used
in this study is not representative. the parameter values where based on rheological experiments from the
literature and are similar other reported values in the litterature obtained through rheological measurements
[11, 14, 15, 16, 18]. This could indicate that values obtained through rheological measurements is not well suited
for numerical simulations with simple beam models. And that relevant parameter values for such simplified
models should be obtained in another way.

The parameter values used for the foundation stiffness k and shear interaction parameter G was chosen
based on often used values in the literature. In figure 2 the width of the deflection basin was found to be smaller
than seen in measured deflection basins, indicating that the used parameter values are to soft. In data paper
the model was fitted to a set of TSD data and estimated parameter values obtained. The estimated foundation
spring constant k was found to be in the same order of magnitude as the theoretical value used in this study,
indicating that this is a reasonable choise. The estimated shear interaction parameter however was found to be
three orders or magnitude larger than the one listed in table 2. Indicating that a much higher G value should
be used when making numerically studies with a Pasternak foundation model.

Lastly, the impact of diffident viscoelastic response models for the top layer was studied. The impact on
the pavement response when choosing different E∗ models depends on the location of the sensitivity function ,
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as seen on figure 8a. In the literature it has been found that when increasing the temperature or lowering the
driving velocity, the choice of E∗(−vkx) is of importance [11]. As mentiond before the influence of changing
velocity or temperature depends on the specific location of the sensitivity function, and thus is specific to the
individual study conditions. In genneral it holds that if the sensitivity interval is located at high or low freqency,
thus in the elastic regime of the complex modulus there are no difference in chosing various E∗ models, whereas
if it is located around the pak this can have a significant influence. A similar conclusion is found in [15], where
the Burger and Huet-Saygeh model is compared.
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Appendix B

Viscowave

The sophisticated pavement response model ViscoWave II-M was used at several occa-
sions to simulate pavement responses to a moving load. Viscowave II-M is developed
at Michigan State University, and the theoretical framework behind the solution is de-
scribed in Chatti et al. (2017) appendix C and Lee (2013). In this appendix, we will give an
overview of the solution and the modifications made by the author such that the model
output matches a TSD framework.

B.1 Overview over the solution

Viscowave II-M employs the so-called spectral element method to solve the wave prop-
agation problem in the pavement structure and subsequently calculate the pavement re-
sponse to an arbitrary loading. The model can simulate the time-dependent responses
while allowing the pavement materials to be either elastic or viscoelastic (Lee et al., 2018).
Overall, the program employs a cylindrical axisymmetric coordinate system and uses the
spectral element method to get the pavement response, where each element is defined as
a layer in the pavement (Balzarini et al., 2019). This is done by solveing the wave equation
that govern the axisymmetric wave motion in a continuous, linear viscoelastic medium.
From this, the pavement response to an arbitrary loading is calculated.

The program uses a continuous integral transformation, the Laplace and Hankel trans-
form. These are used as they are appropriate for transient, nonperiodic signals in the time
domaine (Chatti et al., 2017). To obtain these integrals numerically, an elaborate numeri-
cal integration scheme is required which will no be described here. For more information
see Chatti et al. (2017) appendix C.

Viscowave II-M calculates the pavement response due to a moving load of an obser-
vation point (Lee et al., 2018). This is done by first obtaining the pavement response to
a stationary load at a number of observation points along the driving direction x. Sub-
sequently, the superposition principle is used to shift the the pavement responses by the
time it would take the load to reach the point and the all the deflection is summed. The
result is the pavement response in one point (the observation point) as a load is moving
past it at a constant speed.
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B.2 Modifications of the program to match TSD setup

The output of the program was slightly modified in order to be comparable with the TSD
setup. The modifications are listed here.

i The original solution calculates the pavement deflection under the tire in a steady
reference frame. It has been modified such that the response is calculated in-between
a dual tire and furthermore, is obtained in a moving reference frame.

ii The model provides the vertical pavement deflection and subsequently the deflec-
tion slope was calculated.

iii The signal was filtered in order to remove low frequency noise. Here a moving aver-
age filter and a 6-pole Butterworth filter was used. Two passes have been performed
(forward and backward) to remove the phase lag.

Details about the different modifications is described below.

First of all (i), the simulation output was changed such that the simulated conditions
are similar to the TSD setup. The original solution calculates the pavement deflection
under a tire in a steady reference frame. This has been modified such that the response
is calculated in between two dual tires with 6.4 cm spacing (matching the distance at the
TSD). Furthermore a coordinate shift is made such that the model output is in a moving
reference frame.

Secondly (ii), numerical differentiation is used to obtain the deflection slope as Vis-
coWave provides the pavement deflection. As a consequence, some numerical noise is
introduced into the signal. In our case, we experience both high frequency and low fre-
quency noise, which is expressed in the signal through small and bigger oscillations re-
spectively (see fig. B.1, raw signal). These artifacts is removed using a filtering procedure
(iii).

The high frequency noise is a typical artifact related to numerical differentiation and
is removed by use of a moving average filter. After visual inspection we choose the cut
off at 30 m−1 and the result is shown on figure B.1.

The low frequency noise seen in the model output (bigger oscillations) was unex-
pected, and we have investigated whether this was due to a bad choice of parameter
values making the solution numerical unstable. In the solver, the solution to the wave
equations is found in the Laplace-Hankel domain and therefore an inverse Hankel and
Laplace transform is needed in order to get a solution the physical domain (Chatti et al.,
2017, p. 269). Both the inverse Laplace transform and the inverse Hankel transforma-
tion is obtained numerically through an elaborate integration scheme. The different steps
in this integration scheme was inspected in order to evaluate if these where the basis of
the oscillations seen in the model output. However they where ruled out, as the solu-
tion provided stable results when key parameter values where perturbed and thus it was
concluded that the low frequency oscillations seen in the model output is computational
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FIGURE B.1: Example on pavement deflection slope simulated using Vis-
coWave II-M. The raw signal (blue line) has both high and low frequency
noise, seen as fast and more slow oscillations in the signal. The high fre-
quency noise is a typical artifact related to numerical differentiation and is

removed by use of a moving average filter (red line).

noise.

A 6-pole Butterworth filter was used to remove the low frequency noise from the slope.
The Butterworth low-pass filter is a band filter, meaning that one can define a passband
which is the range of frequencies passing through the filter. In our case we chose a cut-of
frequency fc and then the passband is the range f = [0− fc]. When applying the filter is
is important not to remove any of the physical characteristics of the signal, as these are
used in the following analysis.

When choosing a filter there are two important things to consider; the flatness of the
magnitude within the passband and the amount of shift introduced in the output signal,
given by the phase. The strength of the Butterworth filter is that it is very flat in the
passband, meaning that the same magnitude of these frequencies are going through the
filter (Lee et al., 2009). This prevents that the filter removes some of the frequencies that
one wants to have in the signal.

In figure B.2a the frequency response of a Butterworth filter with varying orders is
seen. The sharpness of the curves around the cut off frequency fc is determined by the
filter order, with a sharper cut off when order increase. On the other hand, a high order
filter introduce a large amount of phase shift on the output signal.

In our case we want as sharp a cut of as possible and do not really care about the phase
shift since we do a reverse filter as well. consequently we choose a 6’th order filter. By
visual inspection the cut off frequency is chosen to be 7 m−1, which removes most of the
numerical noise but not physical features about the deflection slope curve.
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FIGURE B.2: A) Frequency response of a Butterworth filter with varying
orders. A high order implies a sharp cut of behaviour, but also introduce an
increased phase shift in the output signal. B) The model output subject to a
moving average filter is shown in red. Two passes of a 6-pole Butterworth
filter has been applied to this signal in the forward and reverse direction

(yellow and purple line respectively).

Two passes have been performed (forward and backward) to remove the phase lag.
The result of applying a 6-pole Butterworth filter (after a moving average filter has been
applied to the raw signal) in the forward direction and subsequently in the revers di-
rection is seen in figure B.2b. As we are interested in the location of the maximum and
minimum in the deflection slope the last reverse step is crucial for the filtering process.
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Appendix C

Metropolis Monte Carlo algorithm

In chapter 18, a Global sensitivity analysis was made using the Metropolis Monte Carlo
method. In the MMC method, the parameter values θ is varied in an iterative way and
then the given cost function, cost(θ), is evaluated. The new parameter set is then either
accepted and saved or rejected based on some criteria. This procedure is repeated until a
certain amount of parameter sets has been accepted. The iterative process performed in
the MMC algorithm can be described in the following three steps:

1) Creating θnew

A new parameter set θnew is found from the old one by

θnew = |θold + δθ0| (C.1)

Since we deal with only positive parameter values we chose to have θnew = |θold +
δθ0|. δθ determines how big a jump in the parameter space there is made and is
found as δθ0 = θ0σδθr, where r is a random number between -1 and 1 and σδθ de-
termines the step size in the parameter space. Consequently, if σδθ is to big the
algorithm will jump around a lot in the parameter space and if it is to small one risk
to get trapped in a local minimum.

2) Calculate cost(θnew)

Using the given cost function, we now calculate cost(θnew). This can have two out-
comes

i) cost(θnew) < cost(θold),
in the case that the new cost function is smaller that the old, the step is accepted
and the parameter set θnew is saved and the iteration is repeated.

ii) cost(θnew) ≥ cost(θold),
In the case the cost function for the new parameter set is bigger or equal the
old one, the parameter set is only accepted if

R < e−
cost(θnew)−cost(θold)

Ts (C.2)
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where R is a random number taken from a uniform distribution between [0;1]
and Ts is the sampling temperature.

3) Sampling
Only every tenth parameter set that gets accepted is sampled to the parameter sam-
ple that is the output of the MMC algorithm. This is done in order to avoid spurious
correlations, which is when a correlation appears to be causal but is not.
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