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Abstract

This thesis uses computer simulations as the main tool to explore the phase diagram of metals
in the liquid and solid part of the phase diagram in the context of isomorph theory.

This work has two main goals. The first is to test the validity of isomorph theory and its
predicted invariance along isomorphs throughout the solid and/or liquid part of the phase
diagram of the candidate metals. The second key prediction from isomorph theory that this
work focuses on pertains to the melting and freezing curve. Isomorphs that started from a
point at coexistence are predicted to be closely related to the nearby freezing and melting
curve and a method was devised that enables the prediction of the freezing and melting curve
from data of the neighbouring isomorphs on the solid and the liquid side. The second goal of
this thesis is therefore to combine predictions from isomorph theory with results from DFT
to predict the freezing and melting curve over a significant range of the phase diagram from
simulations at one state point only, making the most out of the costly DFT simulations.

The work is structured as follows: Some background information with focus on metals and
isomorph theory will be given in the first chapter followed by a detailed review of isomorph
theory and its predictions in the subsequent chapter. Chapter 3 provides an introduction to
computer simulation in general. A review of the two methods employed in the simulations
used for this work, density functional theory (DFT) and the effective medium theory (EMT)
is given in chapter 4.

The results can be found in chapter 5 and 6 with each chapter corresponding to one of the two
main focus points of this work. The first presents an investigation of the invariances predicted
by isomorph theory in different candidate metals. The study includes (a) mono-atomic crystals
(Ni, Cu, Pd, Ag, Pt, Au) and (b) liquid CuZr simulated using the EMT potential as well as (c)
two metals (Mg, Al) simulated using DFT in the solid and liquid state. The second part of the
results (Ch. 6) is dedicated to a method predicting the melting curve from nearby isomorphs
that is applied to one EMT metal (Cu) and three DFT metals (Al, Mg, Na). The chapter also
includes the review of and comparison to other state of the art methods to predict (points
on) the freezing and melting curves.This work establishes good isomorph invariance in all

candidate metals with the exception of DFT-Mg investigated in the first part of the study. The
second part demonstrates good agreement between the freezing and melting curves predicted
by our method when compared to the literature. The agreement is best with other methods
using DFT-based simulations while state points taken from experiments show more significant
(though still small) deviations.






Resumé

Denne afthandling bruger computersimuleringer som hovedverktgj til at undersgger fasedia-
grammet for metaller i den flydende og faste del af fasediagrammet med fokus pa isomorfteori.

Arbejdet har to hovedmal. Det fgrste er at teste gyldigheden af isomorfteori og dens forudsagte
invarians langs isomorfer gennem den faste og/eller flydende del af fasediagrammet for
metallerne i studiet. Den anden vigtige forudsigelse fra isomorfteori som arbejdet fokuserer
pa, vedrgrer smelte- og frysekurven. Isomorfe kurver der startede fra et tilstandpunkt ved
sameksistens, forudsiges at fglge tet langs den narliggende fryse- og smeltekurve. Ifglge
isomorfteorien findes der en metode, der muligggr at forudsige smelte- og frysekurve ud fra
de to nabo-isomorfer pa den faste og den flydende side. Afhandlingens andet mal er derfor at
kombinere forudsigelser fra isomorfteori med resultater fra DFT. P4 den made er det muligt
at forudsige smelte- og frysekurverne med et signifikant rekkevidde gennem fasediagrammet
ud fra simuleringer ved kun et tilstandspunkt. Det er en vigtig fordel nar man benytter dyre
DFT-simuleringer.

Afhandlingen er struktureret som fglger: Baggrund vedrgrende metaller og isomorfteori
praesenteres i fgrste kapitel efterfulgt af en detaljeret gennemgang af isomorfteori og dens
forudsigelser i det efterfglgende kapitel 2. Kapitel 3 giver en generel introduktion til comput-
ersimulering. En detaljeret sammendrag af de to metoder der bliver anvendt 1 simuleringerne -
density functional theory (DFT) og effektiv medium theory (EMT) - findes i kapitel 4.

Resultaterne findes i kapitel 5 og 6, hvor hvert kapitel svarer til et af de to hovedfokuspunkter i
arbejdet. Fgrste hovedfokuspunkt er at undersgge invarianterne som er forudsagt af isomorfte-
ori 1 forskellige metaller. Undersggelsen inkluderer (a) mono-atomiske krystaller (Ni, Cu, Pd,
Ag, Pt, Au) og (b) flydende CuZr simuleret ved hjelp af EMT-potentialet samt (c) to metaller
(Mg, Al) simuleret med DFT i fast og flydende tilstand. Den anden del af resultaterne (Ch.
6) omhandler en metode, der forudsiger fryse- og smeltekurven ud fra data langs n@rliggende
1isomorfer. Metoden bruges her for et EMT-metal (Cu) og tre DFT-metaller (Al, Mg, Na).
Kapitlet inkluderer ogsa en gennemgang af og sammenligning med resultaterne fra andre
avancerede metoder til at forudsige (tilstandpunkter pa) fryse- og smeltekurverne.

Afhandlingen finder god isomorf invarians i alle undersggte metaller, bortset fra Mg. Deru-
dover demonstrerer arbejdet god overensstemmelse mellem smelte- og frysekurver forudsagt
af vores metode sammenlignet med litteraturen. Overenstemmelsen er bedst med andre
metoder som ogsa brugte DFT-baserede simuleringer, mens tilstandspunkter taget fra eksperi-
menter viser mere signifikante, men stadigvaek sma, afvigelser.
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Introduction

The phase diagram of a material can be viewed as a type of map, that provides information
over the state of matter at a certain state point. The phase diagram of a typical one component
system is shown in Figure The two panels shows schematics of two possible ways to draw
such a map, in the temperature pressure plane (right) and in the density temperature plane
(left). In the temperature pressure plane, the lines indicate phase boundaries, thus separate the
different phases: solid, liquid and vapor. In the density pressure plane, the line indicates the
boundary between the pure phase and coexistence mixtures. This illustrates the interesting
fact that e.g. a solid and a liquid state point at coexistence have the same temperature and
pressure but different densities.
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Figure 1.1: Schematics of the phase diagram in the temperature pressure plane (left) and
in the density temperature plane (right). The lines mark the boundaries between phases.
The red dot indicates the critical point, the point beyond which vapor and liquid become
indistinguishable. The green dot is the triple point, the state point where all three phases can
coexist in equilibrium. The figures are taken from the SklogWiki [} 2]

The phase diagrams of real materials are generally well understood and mapped out from
ambient conditions; around low pressures, temperatures and densities. However, the higher
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Figure 1.2: Melting data for Na determined by different methods, figure taken from Ref. [3]].
The blue points are obtained from experiments, the black and red-ish points are from computer
simulation using DFT.

temperature or pressure (or both), the harder it is to investigate such conditions in experi-
mental setups. This means that upwards, outside from the upper part of both phase diagram
schematics, the map gradually becomes ‘uncharted territory’. Where the metaphorical map
ends, a given spot could be land or could be sea. And similarly, where the phase diagram is
uncharted, a given state point could be solid or fluid.

Metals have a number of interesting features in the high pressure regime of their phase
diagram. The solid phase for example undergoes several changes in crystal structure under
increasing pressure. Also the temperature at which a metal melts when under high pressure
deserves to be the main interest of research in itself. It is well know that some alkali metals
exhibit a re-entrant melting behaviour. This means that the melting curve — the dependence of
the melting temperature on the pressure — has a maximum temperature after which the melting
temperature decreases again when pressure is further increased. One example of re-entrant
melting is Sodium, whose phase diagram is shown in Figure While the different methods
do not agree on a maximum temperature the melting curve reaches, all methods find the
maximum at around the same pressure.

Recent results from computer simulations [3] show that this is actually not the anomalous
behaviour of alkali metals but rather a universal behaviour of the melting curve in most metals.
The difference is just that the re-entrant melting point in non-alkali metals happens at such
extreme pressures and temperatures that it is impossible to observe with current experimental
techniques.

Simple materials in literature [4-6] are traditionally defined as systems consisting of classical
particles whose interaction can be described by means of radially symmetric pair-potentials.
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Figure 1.3: Phase diagrams studied in the context of isomoprh theory. The left shows an

isomorph (blue solid line) in the liquid regime of the LJ system. Figure taken from Ref. [/].

The right shows isomorphs (grey dashed lines) around the re-entrant point (star) in the EXP

system. Figure taken from Ref. [§]].

This means that the adjective simple refers to the mathematical description of the system
rather than the system’s behaviour or thermodynamic phase diagram.

Simple is also used in the context of metals. Here the term simple metals refers to sp-bonded
metals like Aluminium [9H11]]. Such metals have a partially filled sp shell as the outermost
shell, which results in the outer electrons interacting only weakly with the metal ions. This
makes for a simple electronic band structure consisting of sp symmetry bands. These bands
are very close to a free electron band and thus the simple metals are simple in the sense of
Sommerfeld’s model of charge carriers in metals based on Fermi statistics [[12].

This work deals with a novel kind of simplicity which is motivated by the success of isomorph
theory [[13-18]] over the last decade in a variety of different (model) systems. Isomorph theory
gives the word ‘simple’ a new interpretation with respect to the phase diagram of model
system as well as real materials. The theory predicts the existence of curves — isomorphs
— in the phase diagram along which structure and dynamics are invariant (when given in
appropriately reduced units). Isomorph is a term from mathematics that derives from the
greek words iso, equal and morphe, shape or form. The presence of isomorphs in the phase
diagram leads to the rather dramatic consequence that the phase diagram of such ‘simple
materials’ is effectively one dimensional. This novel kind of simplicity — referred to as
R-simplicity to avoid confusion — has been shown to exist in several systems. R-simplicity
has been found in several groups of materials. Not limited to but included in this list are the
following systems: Simple models of liquids [16}17,|19]], molecules [20, 21] and crystals [22]
as well as in molecules and polymers in experiments [23H26]]. As a general trend, it has been
determined that most systems with non-directional interactions have this simple behaviour
while directional bonding as well as competing length scales of interactions spoil it.

Figure [I.3|shows the phase diagrams of two different systems with isomorphs, the Lennard-
Jones system on the left and the EXP system on the right. The Lennard-Jones system is
the standard 6-12 system with the blue line tracing an isomorph in the liquid regime of the
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Figure 1.4: This figure, the ’periodic table of isomorph theory’ has been taken from [29]]. The
elements are colored according to their R value, where green - R close to unity - means the
material is R-simple.

phase diagram. The EXP system is governed by a purely repulsive potential of the form
v(r) = er™"/? with ¢ and ¢ being a characteristic length and energy, respectively. The
EXP phase diagram is pictured with three isomorphs (grey dasehd lines) in the solid regime
(the third coincides with the solid blue and green line marking the phase boundary). The
EXP potential as been dubbed the “mother of all potentials™ [27] since it can be shown that
any system with a pair-potentials can be re-expressed by a sum of decaying exponentials.
Additionally, and this is especially interesting in the context of metals, the EXP potential
can be regarded as a prototype model for metals whose interaction in the condensed phase is
also dominated by repulsion. The fact that the EXP also exhibits re-entrant melting (with the
temperature maximum marked in the figure by a star) is in agreement with Hong and van der
Walle’s hypothesis of re-entrant melting being a universal feature of all metals.

The isomorphs shown in both systems in Figure are similar in shape to the solid-liquid
phase boundary. In fact it has been shown that isomorph theory can be used to calculate the
melting pressure as a function of temperature from data along nearby isomorphs [28]]. The
reference also includes how to calculate the freezing and melting densities, resulting in a
method to predict the freezing and melting curves in both the density-temperature and the
temperature-density plane.

Isomorph theory relies on a scale invariant behaviour where a system’s potential-energy
hypersurface follows a simple self-similar deformation when subjected to a change in density.
This self similar scaling behaviour leaves the ordering of the potential energies of different,
same-density configurations of particles unchanged under volumetric scaling to a different
density. It is in most cases not obvious from the form of the interactions between the particles



that this scale invariance holds, hence why it has been dubbed hidden scale invariance.

A recent study using density functional theory [29] has shown that most metals do obey
the scaling invariance at the one state point investigated, which was chosen to be close to
the material’s triple point. The ‘isomorph periodic table’ in Fig shows results from this
study. For every element, isomorph properties — the correlation coefficient R and the scaling
exponent v — have been calculated from simulations. An R value close to unity predicts
that the material obeys hidden scale invariance at the given point in the phase diagram. The
elements in Fig[I.4]are colored according to their R value, where green indicates an R value
close to unity, while red means no correlations. The gray elements, where not included in
this since they are not suited for DFT simulation. As most of the *isomorph periodic table’ is
colored green or light green, this suggests that most metals can be expected to have isomorphs
in parts of their phase diagram.

Metals cannot be accurately simulated using rigid pair-potentials only [30]. For example a
Cauchy relation that is by construction obeyed by pair-potentials is not fulfilled by metals.
Another example is the vacancy formation energy that is for real metals much lower than the
energy cost predicted by a pair-potential. Instead, it is necessary to use more sophisticated
models that include many-body contributions in some way. The weapon of choice for this
work are the effective medium theory (EMT) and density functional theory (DFT). The EMT
potential is a semi-empirical model that is derived from DFT using both, similar consideration
to motivate expressions as well as directly fitting to results from DFT. This results in a
model that includes many-body contributions at the computational cost similar to that of
simple pair-potentials. Density functional theory is a highly accurate method widely used in
computational physics and chemistry. While this method is computationally less expensive
than other methods with similar accuracy, the costs remain fairly high.

One objective of this work is to extend the study of hidden scale invariance in realistic models
of metals using both DFT and the EMT potential. The second objective of this work, after
having established good isomorphs, is to apply the method to calculate the freezing and
melting curves from nearby isomorphs.

Most isomorphs in this work are determined using the so-called direct isomorph check. This is
a method that enables to find several state points along an isomorph including thermodynamic
quantities at these state points from simulations at a single reference point. While there are
other methods that are slightly more accurate, this is the only method that is computationally
efficient enough to be used together with DFT simulations. The invariance of structure and
dynamics along the isomorphs is confirmed through additional simulations at state points
along the isomorph. The radial-distribution function, velocity auto-correlation function and
other dynamic functions are calculated for these state points and compared to determine that
structure and dynamics are indeed invariant. The same method to determine isomorph is also
used in pursuing the second objective. This means that the freezing and melting curves are
predicted from simulations at only one state point.

This work finds good isomorphs in a variety of candidate metals including both sp-simple and
not simple metals. With regards to the second objective, this work shows good agreement
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between the calculated freezing and melting curve in one EMT and one DFT metal and the
freezing and melting curves determined by other methods and experiments. Some features in
connection with re-entrant melting are discussed at the end of this thesis, even though not all
predictions from isomoprh theory are expected to hold around the re-entrant point.



R-simplicity and Hidden Scale Invariance

This chapter gives an overview over isomorph theory, its underlying (or hidden) scale in-
variance and what it means if a system is R-simple. Isomorph theory has been developed
in a series of papers and subsequently updated to the current, more generic for-
mulation in [I8]. We start with a brief recount of the history of the development of iso-
morph theory followed by the generic definition and a discussion of some consequences.
And last but not least, the relation between the freezing and melting lines and their neigh-
bouring isomorphs is highlighted. If a system is said to have isomorphs, it is equiva-
lent to state that it obeys isomorph theory’s hidden scale invariance or that is R-simple.

The traditional definition of a simple liquid is
a system of point-like particles with isotropic
and usually strongly repulsive pair-interaction [[6].
This means that the adjective "simple’ here refers
to the mathematical simplicity of the Hamilto-
nian describing such a system, rather than the
behaviour of the liquid in simulations or exper-
iments or with respect to a certain feature. An
alternative meaning for what makes a liquid (or
solid for that matter) simple has been provided
by isomorph theory. The simplicity of isomorph
theory refers among other things to the phase di-
agram. Isomorph theory predicts the invariance
of structure, dynamics and certain thermodynam-
ics quantities along well defined curves, dubbed
isomorphs, in the phase diagram. This effectively
reduces the phase diagram by one dimension. It
could be argued that this makes for a more useful

Figure 2.1: Illustration of the scaling be-
haviour of the potential energy hyper sur-
face that underlies isomorph theory

’simple’ than the traditional, mathematically motivated definition. The schematic in Figure [2.1]
illustrates the scaling behaviour of the potential energy landscape that underlies isomorph
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theory. In most R-simple systems, this scaling behaviour is not obvious from the form of the
potential which is why we speak of a hidden scale invariance.

2.1 A brief history about strong correlations

The story starts in 2008 with the discovery by the Roskilde group, that some model liquids
have strong correlations between equilibrium fluctuations of the potential energy U and virial
W when simulated in the NVT ensemble [13}|14]. The virial IV is the configurational part of
the pressure, PV = NkgT +W. An example of a time series of these fluctuations normalized
by their respective average is shown in the first panel of Figure[2.2] The R value indicated in
the panel is the Pearson correlation coefficient,

. (AWAU) o

VIAW)2)((AV)?)

where the sharp brackets denote the canonical constant-volume (NVT) averages. It is con-
vention that systems with R > (0.9 are considered strongly correlated in the isomorph theory
sense of the word. To avoid confusion with e.g. strongly correlated quantum systems, these
systems are called Roskilde or more often R-simple systems.

If a system is R-simple, it has strong correlation between the fluctuations AU and AW
AW = yAU, (2.2)

where the proportionality factor is called . The precise definition of v is given in Eq. (2.4).
The middle panel of Figure [2.2] shows a scatter plot of the same data as the time series in the
left panel. The stronger the correlation, the more narrow the resulting elliptic shape in the
scatter plot is. The dashed trend line in the middle panel gives the proportionality factor .
The interpretation of +y as the slope in a U vs. IV plot becomes clear from rewriting Eq. (2.2))
asy = AW/AU.

In contrast, the right panel in Fig. [2.2]shows a scatter plot for a system with no correlations,
resulting in a round and shapeless scatter plot. No proportionality can be observed and
calculating v would not be meaningful for a system without strong correlations.

Whenever strong correlations are present (complying with the condition that R > 0.9), then
the system is said to have isomorphs. Isomorphs are curves in the phase diagram along
which structure, dynamics and certain thermodynamical properties are invariant (to a good
approximation) when given in appropriately reduced units. Reduced units [[16] consist of the
length unit [y = p~'/3, the time unit £, = p~'/3\/m/kpT and the energy unit ey = kpT.

Isomorphs were introduced in Ref. [16] which showed that any isomorph invariant can be
expressed as a function following h(p)/T = const. with v = dIn h(p)/d1n p, i.e. where v
varies only depending on density and is independent of temperature. This also motivates why
~ is usually referred to as density scaling exponent or scaling exponent for short. The name
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Figure 2.2: Figure taken from Ref. [13]. Correlation between (normalized) potential energy
and virial as a time series (left) and scatter plot (middle) in a Lennard Jones System for a state
point with strong correlations, (R = 0.94). The slope, v = 6.3 is indicated in the scatter plot
as a red dashed line (Note that an older definition for v was used in the paper which differs
from the one given in the text by a factor of R?). Shown for comparison (right) is a scatter plot
for a state point in a system with no correlations; the TIPSP model for water, (R = 0.0005).

was also motivated by the fact that the first experimental evidence for the theory comes from
the so-called power-law density scaling relation [23-25]].

The dependence or independence of v has changed throughout the development of the theory.
Initially v was thought to be a constant, which fits most experimental data. It has since been
shown that  varies also with temperature not just density [[18]], which will be discussed in
more detail in the next section. Following paper IV [16], v is defined at any state point as

olnT
(p, T) = ( 31131,)) (2.3)
SE.’I)

Ref. [16] then goes on to show that « can also be calculated directly in simulations from

fluctuations, via
(AWAU)

V(o T) = AT (2.4)

As indicated by v(p, T') both definitions hold also for the later version, where ~ is no longer
independent of temperature. Isomorphs in the phase diagram can be traced out in a step-wise
fashion. One way to do this is by calculating v from fluctuations of simulations at each state
point via Eq. followed by numerically integrating Eq. by changing density in small
mcrements.

Extensive simulations throughout the thermodynamic phase diagram of various different
systems with various manifestations of strong correlations have been carried out and analysed
[14-17,/19-22]]. From these studies, some statements about the presence of strong correlations
can be made:

1. No realistic system is strongly correlated throughout their entire phase diagram. The
same goes for most model systems. One exception to this are systems interacting by an
inverse power law.
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2. Strong correlations are generally more present in the condensed part of the phase
diagram. They tend to break down close to the triple point and are not present in the
gas phase of any system. In particular when the virial becomes negative, the system
becomes uncorrelated.

3. If a system is strongly correlated in the liquid part of the phase diagram, the strong
correlations survive the phase transition and are also present in the solid part.

As hinted earlier, the original formulation as described above has since been updated and the
new version will be discussed in the next section. The update does not render the majority
of statements above wrong, but is of a more subtle nature. The original version is recovered
as a first-order approximation from the newer, more accurate theory. This also explains the
contradicting statements made about the temperature dependence of v, in that v depends
much stronger on changes in density then in temperature which means that the temperature
dependence can be neglected in the first order approximation.

2.2 Generic definition of R-simplicity

The new, generic definition of R-simple systems has been introduced in [18]] in 2014. The
original version can be recovered as a first order approximation of the reformulation. This
better accommodates the approximate nature of the invariance of certain quantities along
isomorphs. Following the reformulation, R-simple systems are now defined by the condition
that

UR,) <U(Ry) = UAR,) < U(\Ry) (2.5)

where ) is a scaling parameter and U (R) denotes the potential energy of the configuration
with N particles and the configuration coordinates vector R = (7 ... 7y ). The conditions
can be expressed by the statement that the ordering of the potential energies of configurations
at the same density, U(R,) and U(Ry,), is preserved under a uniform scaling A to a different
density. Saying that most (not all) of the physical relevant configuration obey Eq. is
equivalent to a system having strong correlations with R close to unity. For R = 1 all
(relevant) configurations obey the ordering.

Using the reduced units that have been introduced in the previous section, the configuration
vector R can be expressed in its reduced form as R= p'/?R. If two configurations at two
densities p; and po, are isomorphic to each other, they have the same reduced configuration
vector, p}/ ‘R, = p;/ ’R,. It has been shown that for systems that have isomorphs, the
potential energy function U (R) can be represented by the hidden-scale invariance identity as
follows [31}32]:

U(R) = h(p)®(p'*R) + g(p) (2.6)

where the function ®(p!/*R) = ®(R) is state point independent along an isomorph. This
means that the hidden scale invariance identity can be regarded as a global, approximate
scale invariance since the function ®, which governs structure and dynamics in reduced

10
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U(x)

Generic coordinate x

Figure 2.3: Schematic of the affine scaling of the potential energy hyper surface. In systems
that obey Eq. (2.5), the ordering of potential energies of configurations at the same density is
maintained. With the lines resembling the potential energies of different configurations at the
same density, the red points on each line are related to their counterpart on the other lines by
uniform volumetric scaling.

coordinates, remains unchanged under uniform scaling of R [32]. In the generic version of
2014, this scaling identity has been updated to directly relate the potential-energy surfaces at
two densities by eliminating ®(R) in Eq. |i The resulting expression is

I

U(Rz) = h(p1, p2)U(Ry) + g(p1, p2) (2.7)

where p; takes the role of the reference density. The equation now describes the scaling of
the potential-energy surface when density changes from p; to p,.

The scaling behaviour can be visualized in a few different ways. Figure shows a cartoon
version of Fig. a simplified view of the scaling of a potential energy hyper surface that
obeys Eq. (2.5). The line resembles the potential energies of different configurations at the
same density and the different lines resemble different densities. Uniform scaling of all
configurations to a different density transforms one line into another. The red dots on each
line highlight particular configurations and that their ordering remains the same with respect
to the other configurations on the same line.

Another way to illustrate the scaling using results from simulation is shown in Figure [2.4]
taken from Ref. [18]. For this figure, 20 configurations were drawn from an equilibrium
simulation. Each configuration was then scaled uniformly 20% up and down in density, the

11
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Figure 2.4: Figure taken from Ref. to illustrate the new definition of a Roskilde-simple
system. For each figure the potential energies of 20 configurations where taken from an
equilibrium simulation at the density marked by the red dashed line. Every line was obtained
from scaling each configuration 20% uniformly up and down in density and plotted as a
function of density and then normalized. For an ideal Roskilde-simple system, the curves
do not cross each other which is approximately true for the top panel, an LJ system that has
strong virial potential-energy correlations (R = 0.99). The bottom panel shows data for the
Lennard-Jones Gaussian (LJG) system of a state point where R = 0.16.

potential energy calculated and subsequently normalized by subtracting the potential energy
averaged over the 20 configurations determined at each density. For R-simple systems the
lines obtained from this procedure should (approximately) not cross each other as can be seen
in the left panel of Fig.[2.4] As a counter example, the right panel shows a substantial amount
of crossing in a system that is not R-simple and thus does not obey the scaling.

The original version and this reformulation are closely related because of the original version
being a first order approximation of its successor. This can be illustrated using the example

12
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of the isochoric heat capacity Cy,. According to the original formulation, C'y is expected to
be invariant along isomorphs. This often true to a good approximation but not exact. This
description is improved by the reformulation, which now predicts the slight variation of C',
when following an isomorph through large parts of the phase diagram [|18]].

Another one of the finer differences pertains the role of the excess entropy Sex. Excess entropy
Sex 18 the difference in entropy S of a system compared to the ideal-gas entropy Sjq at the
same density and temperature, Sex = S — Sjq. This means that S.; = 0 for an ideal gas and
Sex < 0 for systems with interactions. In the original version of isomorph theory, S has
been identified as one of the quantities that is invariant along an isomorph. The reformulation
now defines isomorphs as the configurational adiabats in the thermodynamic phase diagram,
meaning that S, is by definition constant along isomorphs. This is also encapsulated in
Eq. (2.3)) by the fact that the derivative is defined along lines of constant S.

A more crucial consequence involves the scaling exponent vy and its state point dependence
as briefly mentioned in the previous section. Recall that the scaling exponent v was namend
according to the initial interpretation of ~y as being related to an effective inverse power law
exponent. Assuming a constant -y, isomorphs of the form p” /T =const is consistent with
studies of isochrones, the experimentally accessible equivalent to isomorphs [23, 33-38]].
However, it has been shown [13]] that when determining  from fluctuations (Eq. (2.2))) in
simulations, there is some variation between state points. Additionally, in Ref. [20], it was
shown that ~ has to be only density and not temperature dependent if one assumes constant
C'y along isomorphs. All of this is consistent with the new formulation which predicts a ~y
with both density and temperature dependence. In accordance with the view that the initial
theory is a first-order expansion of the new formulation, the assumption of a constant C'y used
in Ref. [20] is just that, a fairly good but still an assumption meaning that C'y actually varies
slightly when following an isomorph over a long stretch in the phase diagram. This makes
the findings of Ref. [20] consistent with the fully state point dependent v of Ref. [|18]]. The
same argument also conciliates the experimental findings with the new formulation, because
the experimental window is small enough that only the approximately constant part of v and
other slowly varying quantities is observed.

One of the motivations of this work was to explore the variation of  with state points in
realistic models of metals. It has been found in [[39]] that v does in fact vary significantly,
both along an isomorph in a given metal and also between different metals using the EMT
potential. This is further validated in Ref. [40]] by observing the same in DFT metals as well.

2.3 Fantastic isomorphs and where to find them

If the computational resources permit, the straight forward way to trace out an isomorph is
in a step-wise fashion. From a simulation at a given state point, v can be calculated from
fluctuations in simulation using Eq. (2.4). Assuming a constant -y for small changes in density,
the next point on the isomorph can then be found numerically integrating Eq. (2.3). The
size of the change in density that can be used as a step size varies somewhat depending on

13
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the method used for the numerical integration. Using the Euler method, density should be
increased by only about 1% while the Runge-Kutta method allows for bigger steps. The
downside of the step-wise mapping is that, no matter the step size, it does require simulations
after every step.

An alternative for computationally expensive simulations - like the ab-initio simulations in
this work - is the direct isomorph check (DIC). The DIC has been introduced in paper IV
of the series [16]. According to the original framework, Roskilde simplicity implies that
isomorphic state points have approximately proportional configurational NVT Boltzmann

factors U(R) U(Ry)
V) ~ _Z\m2)
exp <—m) = 012 exXp ( ]{BTQ ) N (28)

where the constant C'5 depends only on the state points (77, p1) and (7%, po). Taking the
logarithm and rewritting the expression, Eq. (2.8) becomes:

T
U(Ry) = TjU(Rl) + kpToIn (Chs) . (2.9)

(In the accompanying paper [39], the logarithm in the above equation was erroneously left
out.) Recall that the reduced configuration vector is R= p'/3 R and that from the invariance
of structure follows, that if two state points are isomorphic, their reduced coordinate vectors
are the same: p}/ ‘R, = pé/ ’R,. Considering fluctuations about the respective mean values,
Eq. can then be expressed as:

15 < P2 1/
—AU(R;) =2 AU(Ry) = AU (—) R, . (2.10)
T, P1

From the above expression, the slope in Figure can be explained. For the figure, a
time series of configurations from an equilibrium simulation at state point p;, 77 has been
generated. Now we want to find the temperature 75 for a state point with a given density p,
that is isomorphic to the initial state point. To do so, every configuration has been uniformly
scaled to density p, and their potential energy has been calculated. Plotting the potential
energies per configuration of the scaled vs. unscaled density against each other results in
a scatter plot like the one shown in Fig. The slope of the best fit line of such a scatter
plot is according to Eq. given by the quotient 75/T} of the initial temperature 73
and the temperature 75 for the target density p,. Similarly, Eq. implies Eq. (2.8) if
Ty /Ty = h(p1)/h(p2) which is thus the condition to identify isomorphic state points in the
framework of the updated version [32]].

The advantage of this method is that the same series of configurations can be scaled to several
different densities. This means that only one simulation at one state point is required to map
out an isomorph. In addition to that, from averaging over the scaled configurations at each
density, reasonable estimates of thermal quantities like potential energy, pressure and virial
can be obtained as well without actually running simulations at all the state points.

14
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Figure 2.5: The unscaled potential energies are from configurations of a simulation at the
initial state point, 256 articles liquid DFT-Mg at 7} = 1000 K, p; = 0.038 AP (corresponds
to P = 0.5 kbar). The same configurations are then uniformly scaled to the second density,
here p, = 1.3p;. The direct isomorph check finds for the given density p, the temperature
Ty of a state point that is on the same isomorph as the initial state point (p;, 7). Plotting the
potential energies of scaled versus unscaled configurations results in a scatter plot where the
slope of the best fit line is given by 75 /T (see Eq. (2.10)).

As a simple verification of the DIC is a direct comparison of the isomorphic points found
from the DIC with a step-wise generated isomorph which is shown in Figure 2.6 Comparing
the red line (step-wise isomorph) with the black dots (DIC) gives an idea of how well both
methods agree with each other. The initial point for both methods was the low density and
temperature state point in the bottom left. From this point, density has been scaled in steps
of 10% of the initial density with the highest point being at twice the initial density. Both
methods are in near perfect agreement over the whole range of density.

Such a comparison is of course only possible for systems with potentials that allow for the
tracing of a step-wise comparison isomorph which in this case is Au simulated with the
effective medium potential (see Sec..3)). A suitable work-around for computationally too
expensive systems in form of a simple consistency check has been introduced in [|39]. Also
the self consistency check is included in Figure [2.6] The inset shows a fit of the function
~v(p) = a + b/p™ to the v dependency on density found using the DIC. The fit parameters are
given in the figure caption.

Recall that + is defined in Eq. 1} asy(p,T) = <(;11?1((Z))> . Equating the definition with the
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