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Abstract

This Ph.D. thesis falls into two basic parts. Part I explores a class of liquids commonly
referred to as Strongly Correlating Liquids. The central aim of the first part of the
study is to establish a better understanding of these liquids through an investigation
of their pair interaction potential. Part II examines the socalled rolypoly-particle, an
aspherical surface of constant width. This part of the study focuses on the self assembly
and densest packing of this particle. The overall objective of this part of the study is to
connect the shape of the particle directly to its glass forming ability. Both parts rely on
theoretical observations combined with Molecular Dynamics and Monte Carlo simulations.

The main conlusions are as follows:

Part I For liquids with strong virial and potential energy fluctuations in the canonical
ensemble, the two dimensional (density and temperature (ρ, T )) phase diagram can
be reduced to one variable (h(ρ)/T ). The scaling function h(ρ) is derived analytically
for atoms interacting via a pair potential constituting a sum of Inverse Power Laws:
φ(r) =

∑
n εn(σn/r)

n. It is shown how the scaling function h(ρ) directly links to the pair
interaction potential.

Part II The glass forming ability of the rolypoly’s is to a first approximation determined
by the non-sphericity of the particle and for high pressures, crystallization is controlled
by diffusion, consistent with classical nucleation theory. Densest packing is found for the
Rolypoly with a packing fraction ' 0.7698, having two particles in the unit cell.

Keywords: Viscous liquids, isomorphs, glass transition, strongly correlating liquids, in-
teraction potential, self assembly, densest packing, glass forming ability, aspherical particles
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Abstract in Danish

Denne Ph.D. afhandling består af to dele. Første del undersøger en klasse af væsker kaldet
stærkt korrelerende væsker. Formålet med dette studie er at forstå disse væsker
gennem deres par potentiale. Anden del af afhandlingen udforsker en næsten sfærisk par-
tikel kaldet rolypoly. Målet med dette studie er at vise en direkte sammenhæng mellem
formen og dens evne til at krystallisere på den ene side og rolypolyens pakningstæthed på
den anden side. Begge dele er teoretiske studier underbygget af Molecular Dynamics og
Monte Carlo simuleringer.

De væsentligste konklusioner er som følger:

Del I For væsker med stærke viriale – potentielle energi fluktuationer i det kanoniske
ensemble kan det to dimensionale faserum (densitet og temperatur (ρ, T )) reduceres
til én variabel (h(ρ)/T ). Skalerings funktionen h(ρ) er udledt analytisk for partikler
der vekselvirker med et potentiale bestående af en sum af inverse potens funktioner
φ(r) =

∑
n εn(σn/r)

n. Det bliver vist hvordan skaleringsfunktionen h(ρ) kan forstås ud fra
det vekselvirkende par potential.

Del II Evnen til at krystallisere for rolypolyen kan til en første approksimation beskrives
ved partiklens ikke sfæriske egenskab. Højtryks delen af krystalliserings kurverne er kon-
trolleret af diffusions koefficienten i væsken, konsistent med klassisk nukleations teori. Den
tætteste pakning af rolypolyen fylder rummet med ' 76.98% med to rolypolyer i enheds
cellen.

Nøgleord: Viskøse væsker, isomorfer, glas overgang, stærkt korrelerende væsker, vek-
selvirknings potential, krystallisering, tættest pakning, krystalliserings egenskab, ikke
sfæriske partikler
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Preface

This thesis is the outcome of my efforts as a Ph.D. student between March 2010 and
February 2013. The predominant part of the thesis is made up of numerical analysis
carried out in the simulation fraction of the Glass and Time group. The numerical analyses
have been executed in the in-house gpu Molecular Dynamics program RUMD developed
by the Glass and Time group.(see rumd.org). Enabled by vast computational resources a
large number of simulations with different systems have been investigated. Only a few of
those, however, have made it all the way to the thesis. Hopefully the ones that appear are
those that best cast a light on the core issues of the thesis.

A visit to Professor Sharon Glotzers group at the University of Michigan in the early
spring of 2012 forms the basis of the second part of this thesis. This second part of the
thesis can be read independently of the first part. The character of the work in this section
is fundamentally theoretical revolving around Monte Carlo simulations of a mathematical
shape named the rolypoly. The programs incsim and injavis used are developed by the
Glotzer group.

All data and figures in this thesis were produced and prepared by myself unless
otherwise stated.

Lasse Bøhling
Roskilde University

February 2013
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Chapter 1

Introduction

In this chapter we introduce the concept of strongly correlating liquids and isomorphs.
We investigate some consequences of strongly correlating liquids and derive a number of
invariant properties.

1.1 Motivation and supercooled liquids

Glass is one of the oldest artificial materials used by humans. Traditional usages
of glass include optical fibers, ceramics, windows, containers, touch-screens and of
course art work. But also less known applications like memory storage devices, thin
films and amorphous pharmaceuticals are playing an ever increasing role in financial
growth sectors like the information-, energy- and medical industries [Ediger 2012]. From
the earliest findings thousands of years ago up till now applications have continued to
grow and thus the need for understanding the basic nature of this intriguing form of matter.

Glass is a liquid cooled fast enough to avoid crystallization. Below some critical
temperature or pressure, the free energy of a crystal lattice becomes lower than that of the
liquid. Given time to relax and reach equilibrium the particles of this liquid will arrange
themselves into a crystal lattice [Dyre 2006]. If the kinetics of the particles, however, are
slower than the cooling, the particles will never find the crystal lattice sites and will be
frozen in this non equilibrium fluid configuration. In the Ehrenfest classification of phase
transitions where the n’th order refer to the n’th derivative of the free energy displaying
a discontinuity, there is no phase transition from a viscous liquid to a glass. A glass is
simply defined as a very viscous liquid with shear viscosity ≥ 1012 Pa · s. Despite this
simple picture of what a glass is, many fundamental problems still remain unanswered.

1.2 Short introduction to Molecular Dynamics simulations

Molecular Dynamics simulations are used in a wide range of areas e.g. as material sciences,
protein folding, DNA structure analysis, nucleation theory and several others. In this thesis
molecular dynamics are used in the study of viscous liquids. The complexity of problems
involving thousands of particles by far exceeds what is possible to solve analytically which
is why we need numerical methods. A brief basic introduction to molecular dynamics
simulation is presented in the following.

Newtons law defining the equations of motion for classical particles is used. Given the
force for particle i as the gradient of the potential:
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Fi = −∇iφ (1.1)

and initial conditions for all particles positions and velocities is essentially all the infor-
mation needed. We calculate new positions and velocities by stepping ∆t forward in time
using a discrete Leapfrog integration algorithm [Allen 2010]:

ri(t+∆t) = ri(t) + ∆tui(t) +
1

2
(∆t)2Fi(t)

ui(t+∆t) = ui(t) +
1

2
∆t [Fi(t) + Fi(t+∆t)]

(1.2)

with ri being the position of particle i, bold font indicating a vector: r = (rx, ry, rz),
and ui as the velocity of particle i. Iterating this procedure with specific constraints
depending on the ensemble, we calculate the motion and trajectories of the particles. In
this thesis we are working in the canonical NV T ensemble meaning that we keep the
numbers of particles N , the Volume V and Temperature T constant. The Nose-Hoover
thermostat [Nosé 1984, Hoover 1985] is implemented in RUMD for thermal equilibration.
See rumd.org for more information on our gpu accelerated MD program.

All potentials, except the standard Lennard Jones 12-6, in the thesis are implemented
in RUMD by myself.

1.3 Introducing Strongly Correlating Liquids

Strongly Correlating Liquids (SCL) is a class of liquids introduced by the Glass and Time
group [Bailey 2008a, Bailey 2008b, Schrøder 2009, Gnan 2009, Schrøder 2011]. The dis-
covery of these liquids dates back to 2008 where the Glass and Time group identified this
feature in a simulation of a Lennard–Jones fluid [Pedersen 2008]. Since then, more com-
puter and real liquids have been identified as strongly correlating. The correlations refer
to instantaneous equilibrium potential energy and virial fluctuations in the canonical en-
semble. Recall that energy and pressure are divided into two terms, an ideal and an excess
term; the ideal terms are functions of momenta and the excess are functions of positions:

E = K(p1, ...,pN ) + U(r1, ..., rN )

p = NkBT (p1, ...,pN )/V +W (r1, ..., rN )/V.
(1.3)

where T (p1, ...,pN ) is the kinetic temperature, W (r1, ..., rN ) the virial and K and U are
kinetic and potential energies respectively. The virial is defined as [Allen 2010]

W = −1

3

∑
i<j

rij
dφ(rij)

drij
(1.4)

where φ(r) is the interacting pair potential and rij is the distance between particles i and
j. We neglect many body effects and just look at the pair interaction: φ(r) = φ(rij). The
correlation between U and W is quantified by the standard correlation coefficient

R =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉
. (1.5)

rumd.org
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Angle brackets 〈· · · 〉 denote time and ensemble averages and ∆ denotes deviation from
mean value ∆X = X − 〈X〉 and is the fluctuation. Strongly correlating liquids have
correlation coefficient R > 0.90. An example of visualizing the correlation can be seen in
figure 1.1 where the time evolution and instantaneous values of the potential energy and
virial are plotted for a single component Lennard Jones liquid. The density of the system
is given by the number density: ρ = N/V , where V is the volume and N is the total
number of particles.

An important quantity we will use and discuss intensively is the density scaling exponent
γ. An example is seen in figure 1.1. There are different ways of defining γ, but only one
that keeps the excess entropy constant:

γ =

(
d lnT

d ln ρ

)
Sex

= −
βex
V

cexV
=

(
∂W

∂U

)
V

=
〈∆U∆W 〉
〈(∆U)2〉

, (1.6)

βex
V and cexV is the excess isochoric thermal pressure and heat capacity respectively. The

theory of strongly correlating liquids concern excess quantities. These relations are derived
in [Gnan 2009] and [Schrøder 2011]. This is the γ that will be used in the rest of this thesis.
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Figure 1.1: UW correlation. Left: Normalized fluctuations as a function of time. Right:
Scatter plot: potential energy per particle plotted against the virial per particle. The slope
gives the effective exponent γ. See eq. (1.6) for definition.

In appendix A of paper 4 [Gnan 2009] it is shown that if a liquid is strongly correlating
it has isomorphs and if it has isomorphs then it is strongly correlating. Isomorphs are state
points in the phase diagram with identical reduced dynamics and structure [Gnan 2009].
We denote reduced units with a tilde. Length and energy are given by:

r̃ = ρ1/3r and ε̃ =
ε

kBT
(1.7)

Two state points (1) and (2) are said to be isomorphic if pairs of scaled micro configurations
r̃(1) = r̃(2) (reduced units) have proportional canonical (NV T ) configurational Boltzmann
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factors

exp

−
U
(
r
(1)
1 , ..., r

(1)
N

)
kBT1

 = C12 exp

−
U
(
r
(2)
1 , ..., r

(2)
N

)
kBT2

 (1.8)

The proportionality factor C12 depends only on state point and is the same for all micro
configurations. An isomorph is a line in the phase diagram where all points on the line
obey eq (1.8). From this it can be shown that many quantities are invariant along this
isomorph [Gnan 2009]. See section II of paper [Gnan 2009] and paper [Schrøder 2011] for
a thorough definition and discussion of the isomorphs. The following list show some of the
important invariant quantities:

• Reduced structure: g(r̃)

• Reduced dynamics: D̃

• Excess entropy: Sex

• Isochoric specific heat: Cex
V

• Normalized auto correlation functions

• Infinite shear modulus: G∞/ρkBT

Structure is quantified by the radial distribution function g(r) and to realize that the
reduced structure g(r̃) is an isomorph invariant we notice that using reduced coordinates
corresponds to scaling the isomorphic state points onto each other with density. State
point (1) with density ρ1 have reduced coordinates r̃(1) = ρ

1/3
1 r(1) and state point (2) with

density ρ2 have reduced coordinates r̃(2) = ρ
1/3
2 r(2). The isomorph invariance follows from

the definition of isomorphic state points, that the micro configurations trivially scale into
each other: r̃(1) = r̃(2).

The time evolution is governed by Newtons second law. The force on the i’th particle
is given by:

Fi = mi
d2ri
dt2

, (1.9)

with Fi = −∇riφ. In order to identify the reduced force as an isomorph invariant, we
rewrite the force in terms of reduced time and mass:

t̃ = ρ1/3
√

kBT

m
t and m̃i =

mi

m
(1.10)

where m is the average particle mass. The reduced force is then seen to be:

F̃i = −∇r̃i φ̃ = m̃i
d2r̃i

dt̃2
= ρ−1/3(kBT )

−1Fi (1.11)

and because it is a function of reduced particle coordinates r̃i, we know from the previous
paragraph that these are identical in reduced units. It then follows that the reduced force
and therefore also reduced dynamics is invariant for all state points on the isomorph.
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1.4 Generating isomorphs in computer simulations

The method used to generate isomorphs in small steps is described in detail in
[Schrøder 2011]. This procedure does not assume any simplicity of the potential and can
be used for any strongly correlating system. It has the disadvantage that it is only possible
to explore small parts of the phase diagram. It relies on the assumption that the density
scaling exponent γ is constant for small density changes. Rearranging and integrating the
first equality in equation (1.6) with γ constant we find:

γ

∫
d ln ρ =

∫
d lnT ⇒ ργ

T
= C, (1.12)

where C is an integration constant. From one state point (ρ1, T1), density is changed by a
small amount (∼1%) and the temperature at the isomorphic state point (ρ2, T2) is being
calculated using power law density scaling with the exponent γ calculated from eq. (1.6)
at state point (1):

ργ1
T1

=
ργ2
T2

. (1.13)

The temperature at state point (2) is then found by rearranging equation (1.13).

An example of an isomorph generated by eq. (1.13) can be seen in figure 1.2 where the
structure and dynamics are shown for a simulation of the Kob-Andersen Binary Lennard
Jones (KABLJ) liquid [Kob 1994] with N = 1000 particles. The structure is probed
by the radial distribution function and the dynamics by the self part of the incoherent
intermediate scattering function. Both for the big A particles in reduced units. The
starting state point is (ρ, T ) = (1.20,0.458), then density is changed by 1% up and down
4-5 times resulting in the state points seen in figure 1.2 and 1.3. For comparison we plot
two state points at the same density as the starting state point (ρ = 1.20) and temper-
atures close to the lowest and highest temperature on the isomorph: T = 0.42 and T = 0.69.

Invariance of structure and dynamics lead to many properties and so these will be
the most displayed. In the potential-virial phase space (U − W ) we have a parametric
description of the isomorphs. It is derived in section III A of [Schrøder 2011] using the
invariance of structure. We write the potential and virial energies as a sum of two inverse
power laws with exponents m and n:

U = Um + Un and W =
(m
3

)
Um +

(n
3

)
Un . (1.14)

Let 0 denote a reference to the starting state point and ρ̃ = ρ/ρ0 as reduced density. Each
term in the potential energy has a simple scaling:

Uk = ρ̃ k/3Uk,0 (1.15)

Inserting equation (1.15) in (1.14) we recognize these equations as a parametric description
of isomorphs in the U −W phase diagram with density ρ̃ as the free parameter:

U = ρ̃m/3Um,0 + ρ̃n/3Un,0 (1.16)

W =
(m
3

)
ρ̃m/3Um,0 +

(n
3

)
ρ̃n/3Un,0 (1.17)
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Figure 1.2: Structure and dynamics for an isomorph with the Kob-Andersen system. Left:
the radial distribution function. Right: Self part of the incoherent intermediate scattering.
The q vector is also in reduced units and is calculated as q̃ = 7.25(ρ/1.20)1/3. Potential
and virial energies for these state points are black plusses in figure 1.3.
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Figure 1.3: Potential and virial energy. The solid lines are the prediction from
[Schrøder 2011] and the symbols are the simulated state points. Structure and dynam-
ics for the LJ 12-6 potential can be seen in figure 1.2.

These parametric equations are plotted against simulation data for three different
generalized Lennard-Jones potentials with exponents: 12-6, 12-8 and 12-10. It is the
Kob-Andersen system for all of them. See next chapter for an introduction to these
systems. The correlation is not 100 % and there is some deviation from the prediction to
the actual simulated data – this is the nature of the isomorphs. Only pure Inverse Power
Law (IPL) systems have 100 % correlation. As can be seen on figure 1.2 the dynamics are
more sensitive than the structure and we will mostly probe the dynamics for the KABLJ
liquid.
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A new way to generate isomorphs is introduced in chapter 3 utilizing the fact that we
now have an explicit expression for the density dependence of γ [Paper II]. This paper
introduce what we in the Glass and Time group informally call: The long density jump
formula. It refers to the fact that with this method it is possible to change density more
than a factor of 10 (1000%) and still achieve good isomorphs, instead of jumping 1% at
the time. By using this method we are able to explore greater parts in the phase diagram
that would otherwise be impossible to reach.





Chapter 2

Four generalized Lennard-Jones
potentials

We investigate four different generalized Lennard-Jones potentials for the (KABLJ)
system. It is done by simulating an isomorph and an isochore for each system in the
NV T ensemble. We extract several quantities for these systems, but will focus mostly on
the excess infinite frequency shear modulus: Gex

∞. We calculate Gex
∞ in two ways: first by

integrating the radial distribution function and then from the transient elastic modulus
G(t). A prediction of the temperature dependence of Gex

∞ on isochores exploiting Rosenfeld
- Tarazona scaling and isomorph theory is tested in section 2.2.8. From the plateau value
of the transient elastic modulus G(t) we test the Shoving model. In section 2.4 we compare
two fitting functions and finish this chapter by discussing quasi universality in section 2.5.

2.1 Introducing the systems

The generalized Lennard–Jones potentials is defined as

φαβ(rij) =
εαβ

m− n

{
n

(
σαβ
rij

)m

−m

(
σαβ
rij

)n}
. (2.1)

The subscripts ij point out that it is a pair potential and rij is the distance between
particle i and particle j. For systems with more than one component, the potential between
different species are designated α and β. The system used here is the Kob-Andersen
Binary Liquid [Kob 1994] (KABLJ) which is reluctant to crystallize due to its strong
interaction between small and big particles [Toxvaerd 2009]. The parameters for the
KABLJ liquid is: εAA = 1.00, σAA = 1.00 · 21/6, εAB = 1.50, σAB = 0.80 · 21/6 and
εBB = 0.50, σBB = 0.88 ·21/6. All simulations have been running with a total of N = 1000

particles, 800 A particles and 200 B particles and we adopt the unit system with kB = 1.0.
Because of its superiority in numbers and size the A particles dominate the physics of the
entire system and we will mostly focus on the A particles.

In this study we keep the repulsive exponent m = 12 fixed and vary the attractive
exponent n in steps of 2 from 4 to 10. The r−6 attraction in the Lennard-Jones po-
tential describes the dipole-dipole interaction between atoms. Higher order terms like
dipole-quadrupole (r−8) and quadrupole-quadrupole (r−10) interactions are usually small
compared to the dipole-dipole interaction [Hansen 1986].

The AA interaction potentials are plotted in figure 2.1 together with the 12-6 Kob-
Andersen potentials. They are all, except the 12-4, cut and shifted in rcut = 2.5σαβ which
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Figure 2.1: Left: Generalized Lennard-Jones potentials. The repulsive exponent m = 12 is
fixed and the attractive exponent n is varied in steps of 2 from 4 to 10. A higher attractive
exponent results in a steeper potential. Right: The Kob-Andersen potentials.

is cut and shifted in rcut = 3.5σαβ to ensure the minima has the same strength/depth as
the others.
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Figure 2.2: Correlation coefficient R and γ on isochores with density ρ = 1.20 for the four
different potentials. All the potentials are strongly correlating. Only the 12-4 LJ falls below
0.90 at low temperatures where pressure becomes negative. The dynamics, quantified by
the self part of the incoherent intermediate scattering function can be seen in figures 2.3
and 2.4.

Figure 2.2 show four isochores for the above mentioned potentials and all of them are
strongly correlating in most parts of the phase diagram, only the 12-4 potential falls below
0.90 at low temperatures. Around this temperature the pressure becomes negative and the
physics of the simulations changes. Despite the different physics we continue to include all
the state points from the 12-4 potential. The lowest temperature for each of the potentials
corresponds more or less to the same relaxation time. The temperature is 0.42 at density
1.20 for the 12-6 potential - a quite viscous state point. See figures 2.3 and 2.4 for the
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dynamics of the 4 isochores where the self part of the incoherent intermediate scattering
function has been calculated for the A particles.
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Figure 2.3: Self part of the Incoherent intermediate Scattering function Fs(q̃, t̃) for the big
A particles in reduced units. Left the 12-4 potential. Right: the 12-6 potential. Broken
vertical line indicates where the fitting in sec. 2.4.2 has been performed and the horizontal
dashed line is the relaxation time where it is decayed to exp(−1).
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Figure 2.4: Self part of the Incoherent intermediate Scattering function Fs(q̃, t̃) for the big
A particles in reduced units. Left the 12-8 potential. Right: the 12-10 potential. Broken
vertical line show where the plateau value is extracted and the horizontal broken–dotted
line is the relaxation time where it is decayed to exp(−1).

Isomorphs for the different potentials was simulated with the same starting density
for all (ρ = 1.20). An illustrative isomorph for the 12-10 potential is shown on figure
2.5, where structure, dynamics, energies, correlation and scaling exponent γ is plotted.
The starting state point for this isomorph is the (ρ, T ) = (1.20, 0.80) green line in
figure 2.4 for the 12-10 Lennard-Jones potential. As seen on this figure, the correlation
decreases when temperature (and therefore also density) decreases. The scaling exponent
γ also decreases and will at very high temperatures and densities reach 12/3 = 4 due
to the repulsive exponent m = 12 controlling the physics at very high densities. The
calculated UW state points does not follow the prediction rigorously, but is to a good
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approximation on the predicted isomorph. For the dynamics we probe the mean squared
displacement and see that these curves are less invariant than the structure. The small B
particles are faster than the A particles. The AB and BB radial distribution functions are
less invariant than the AA distribution. This is a general trend for the Kob-Andersen liquid.
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Figure 2.5: An isomorph for the 12-10 potential KABLJ. The starting state point is (ρ0, T0)
= (1.20, 0.80). Two figures on top show the radial distribution functions for the, left: AA

distribution, right: AB and inset BB. Bottom left is the potential-virial mean energy
plotted. The prediction from [Schrøder 2011] is also plotted as a red line, see eq. (1.15)
for the parametric description and the starting state point is indicated. Inset shows the
correlation coefficient and scaling exponent γ as a function of temperature. Bottom right
shows the mean squared displacement for the A and B particles.

Choosing an isomorph for one of the other potentials will look very similar, all the
trends are the same. The main difference is the density scaling exponent γ that, due to
the change in attractive exponent will be lower. See figure 2.2. The reason to include more
than the normal LJ (12,6) potential is threefold

1. Generality

2. Analytical solutions exists as functions of the exponents

3. Observing the effect of tuning the attractive term
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2.2 Shear modulus

One of the predictions from the isomorph theory is that the infinite frequency shear
modulus is invariant in reduced units [Gnan 2009] (section 3f). All normalized time
correlation functions expressed in reduced units are predicted to be invariant [Gnan 2009]
(section 3c). This follows from the fact that the reduced force is isomorph invariant,
as shown in section 1.3. If the normalization is done by dividing with the mean of the
squared: 〈A2〉 with A being any time auto correlation function, we ensure the correlation
functions amplitudes to be equal.

In the following chapter the invariance of the infinite shear modulus G∞/ρT and the
infinite bulk modulus K∞/ρT is tested for the Kob-Anderson binary liquid [Kob 1994]. The
infinite shear modulus is calculated first by integrating over the radial distribution function
and compared to the zeroth time transient elastic modulus G(t). We find these two methods
consistent if we include a tail correction to the integral over the radial distribution function.

By rewriting the integral to calculate the infinite shear modulus in terms of potential
energy and virial, we use the isomorph theory together with Rosenfeld–Tarazona scaling
[Rosenfeld 1998] to predict Gex

∞ on an isochore. We also show that the plateau value
from the transient elastic modulus is more invariant on an isomorph than the truly
instantaneous. The temperature dependence of these quantities are seen to be monotonic
with opposite signs, consistent with other findings for the transient elastic modulus
[Yoshino 2010].

First a motivation for calculating these quantities is given. Consult appendix A for a
macro– and micro–scopic description of these quantities. The transient elastic modulus is
calculated from the off diagonal elements of the stress tensor.

2.2.1 Motivation

When a viscous liquid is cooled, the relaxation time increases dramatically approaching
the glass transition temperature. To understand this behavior is one of the big scientific
challenges in the glass community. The Arrhenius expression for the relaxation time is
given by:

τα = τ0 exp

(
∆E(T )

kbT

)
(2.2)

where τ0 is a characteristic microscopic time (τ0 ∼ 10−13s) and E(T ) is an activation
energy, the subscript α refers to the structural relaxation time. What is the function E(T )?
Arrhenius behavior implies that ∆E(T ) = ∆E, so the relaxation time is linear in an Angell
(T−1, log(τα)) plot [Angell 1995]. This behavior is not universal and most liquids has a non-
exponential behavior of the relaxation time. Different models have different suggestions of
how this function should be. Elastic models, like the shoving model [Dyre 1996], suggests
that it should be the high frequency shear modulus times a characteristic volume Vc

∆E(T )

kbT
∝ VcG∞

kbT
(2.3)
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Since structure changes very little approaching the glass transition, the characteristic
volume Vc is assumed constant in the Shoving model.

2.2.2 Infinite frequency shear and bulk modulus

The shear and bulk modulus are in experiments measured in the frequency regime and
related to the frequency dependent viscosities by G(ω) = iωη(ω) with ω being frequency
and η the frequency dependent shear viscosity and K(ω) = K0 + iωηV (ω) with ηV being
the frequency dependent bulk viscosity and K0 being the zero frequency bulk modulus:

K(ω = 0) = K0 = −V
∂P

∂V

∣∣∣∣
S,T

. (2.4)

The subscript S, T refers to the adiabatic or isothermal bulk modulus respectively, de-
pendent on whether entropy or temperature are held constant. The zero frequency shear
modulus vanish, but the bulk modulus does not. When we calculate the limit of infinite
frequency we refer to the limit of the frequency dependent viscosities:

G∞ = lim
ω→∞

iωη(ω) = K∞ = K0 + lim
ω→∞

iωηV (ω) . (2.5)

By converting frequency to time it is shown in [Zwanzig 1965] how to calculate the transient
elastic modulus. Here we present the results:

G∞ = ρkBT +
2π

15
ρ2

∞∫
0

drg(r)
d

dr

[
r4

dφ(r)

dr

]
(2.6)

K∞ −K0 =
2

3
ρkBT + P +

2π

9
ρ2

∞∫
0

drg(r)r3
d

dr

[
r
dφ(r)

dr

]
(2.7)

The equations in (2.6) and (2.7) are the equations for single component fluids. For a binary
mixture, as we will use them, the infinite shear modulus becomes:

G∞ = ρkBT +
2π

15
ρ2

2∑
i,j=1

xixj

∞∫
0

drgij(r)
d

dr

[
r4

dφij(r)

dr

]
(2.8)

and the bulk modulus:

K∞ −K0 =
2

3
ρkBT + P +

2π

9
ρ2

2∑
i,j=1

xixj

∞∫
0

drgij(r)r
3 d

dr

[
r
dφij(r)

dr

]
(2.9)

where i, j = 1 indicate A particles and i, j = 2 indicate B particles. x1 is the fraction of A
particles and x2 is the fraction of B particles (x1 + x2 = 1). gij is the radial distribution
function for the i − j interaction and likewise for the potential φij . The simulations are
performed with the Kob-Andersen parameters.
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2.2.3 Invariance of G∞ and K∞ −K0

Like other predictions for isomorph invariance, we need to express the quantity in reduced
units. In paper [Gnan 2009] section 3f. it is argued that G∞/(ρkBT ) is an isomorph
invariant. Inserting reduced units in eq. (2.6) leads to:

G∞ = ρkBT +
2π

15
ρkBT

∞∫
0

dr̃g(r̃)
d

dr̃

[
r̃4

dφ̃(r̃)

dr̃

]
, (2.10)

and by dividing eq. (2.10) with ρkBT we have something that only depends on reduced
units on the right hand side. To see that this in fact is an isomorph invariant, consult
section 2.2.4 where it is shown that the integral can be written as a function of the
reduced force times reduced length. In what follows we focus on the excess shear modulus
Gex

∞ = G∞ − ρkBT and we also use the unit system with kB = 1. We do not have a
theory for the infinite bulk modulus and the invariance can not be deduced from equation
(2.9). The excess bulk modulus is, like the shear, defined as: Kex

∞ −K0 = K∞−K0−ρkBT .

Figure 2.6 display the temperature dependence of Gex
∞ and Kex

∞ − K0 on different
isomorphs and isochores. It is seen that the isomorphs are more constant than the
isochores. To quantify how invariant these modulus are on isomorphs and isochores the
logarithmic derivative is used.
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Figure 2.6: Testing invariance of the excess infinite shear and bulk modulus. Left: Reduced
infinite shear modulus. Right: Reduced infinite bulk modulus. All on four different iso-
morphs and four different isochores ρ = 1.2 for all the isochores. It is clear that the isochores
are changing more than the isomorphs, but the isomorphs are not perfectly constant.

This gives a relative measure of how much the reduced Gex
∞ or Kex

∞ − K0 varies as a
function of temperature on isomorphs and isochores.

∂ ln G̃ex
∞

∂ lnT

∣∣∣∣∣
x

(2.11)
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around 0.65. This implies that both Gex
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invariant in reduced units.

where G̃ex
∞ = Gex

∞/ρT is the reduced shear modulus and the x is indicating what to keep
constant (volume=isochore or excess entropy=isomorph). It is predicted that the infinite
shear modulus in reduced units is invariant on an isomorph.

The infinite shear and bulk modulus are too a good approximation invariant in reduced
units. The invariance becomes better at higher densities and temperatures.

2.2.4 Shear modulus from the stress auto correlation function

From the autocorrelation function of the off diagonal elements of the stress tensor, the time
dependence of the shear modulus is calculated [Zwanzig 1965]. We call this function the
transient elastic modulus:

G(t) =
1

V kBT
〈σxy(0)σxy(t)〉 . (2.12)

The stress tensor is microscopically defined as

σxy =
N∑
i

(
pxi p

y
i

m
+ F x

i yi

)
(2.13)

where pxi is the momenta in the x direction for the i’th particle, F x
i is the force in the

x direction and so forth. Here we have omitted the time dependence (t) on the force,
position and momenta for notation clarity. Assuming an isotropic liquid, all off diagonal
elements are identical.

In order to identify the instantaneous shear modulus G(0) as an isomorph invariant we
rewrite equation (2.12) in reduced units. Inserting the microscopic description for the stress
(eq. (2.13)), we get four terms and notice that the two cross terms connecting kinetic and
potential contributions are uncorrelated and therefore vanish. Symmetry considerations
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means any odd power of momenta are zero, x and y factorize-s in the average and the
kinetic temperature is 〈(pxi )2/m〉 = kBT . Recalling the number density is ρ = N/V means
the kinetic term is:

1

V kBT

〈
N∑
i

(
pxi p

y
i

m

) N∑
j

(
pxj p

y
j

m

)〉
= ρkBT . (2.14)

Which is seen to be the ideal term in the integral formulation of equation (2.12). Denoting
reduced variables with a tilde, length is scaled as: x̃ = ρ1/3x, and the reduced force in the
x direction is: F x

i = −kBTρ
1/3(∂φ̃/∂x̃) where φ is the inter acting potential. Leading to

the potential term expressed in reduced units:

1

V kBT

〈(
N∑
i

F x
i yi

)2〉
=

ρkBT

N

〈(
N∑
i

∂φ̃

∂x̃i
ỹi

)2〉
(2.15)

The isomorph invariance for the instantaneous shear modulus follow by inserting equation
(2.15) in equation (2.12) and dividing ρkBT over:

G∞
ρkBT

= 1 +
1

N

〈(
N∑
i

∂φ̃

∂x̃i
ỹi

)2〉
. (2.16)

Recognizing the right hand side as a reduced force ∂φ̃/∂x̃i, times a reduced length, we
know from section 1.3 that this is an isomorph invariant.
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Figure 2.8: Time dependence of the transient elastic modulus Gex(t) =

N〈σxy(t)σxy(0)〉/(ρkBT ) for state point (ρ, T ) = (1.2, 0.45). It is seen that there exist
a two step relaxation. The infinite frequency plateau value is defined as Gex

∞,p = Gex(t∗)

where t∗ is after the first relaxation on the plateau.

In figure 2.8 it is seen that there exist a two step relaxation function for the stress
autocorrelation. The value at t = 0 corresponds to the Gex

∞ (2.8). It is also possible to
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define a plateau value Gex
∞,p. In this work a specific reduced time t∗ is chosen, after the

first relaxation, before it has decayed on the plateau. See figure 2.8.

2.2.5 Consistency check

Because the limits in the integral of eq. (2.8) is from r = 0 to r = ∞ and the simulations
are running in a box with periodic boundary conditions, the radial distribution function is
only calculated up to half the box length L/2. From there on it is assumed that the radial
distribution function is 1. Assuming the radial distribution function g(r) to be 1 at L/2

and outward makes a small difference.

Gex
∞ =

2π

15
ρ2

 L/2∫
0

drg(r)
d

dr

[
r4

dφ(r)

dr

]
+

∞∫
L/2

dr
d

dr

[
r4

dφ(r)

dr

] . (2.17)

The last term in equation (2.17) (the tail correction) are calculated analytically.
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Figure 2.9: Check that Gex
∞ computed in two different ways give approximate the same

value on an isochore ρ = 1.2. The relative difference for Gex
∞ from the autocorrelation

function and the integral without the tail correction is around 2% for all the state points.
Including the tail correction makes the two curves collapse as they should.

Figure 2.9 show the difference between calculating the integral in equation (2.17) with
and without the tail correction. It is seen that including the tail correction is consistent
with the Gex(0) calculated from the stress auto correlation function. All the reported
Gex

∞’s has been calculated including the tail or directly from the auto correlation.
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2.2.6 G∞ from plateau or zero time?

Recently Dyre and Wang [Dyre 2012] and Puosi and Leporini [Puosi 2012] discussed
the difference between the plateau value of the transient elastic modulus and the zero
time elastic modulus, the same as calculated from the radial distribution function. Both
concluding that the plateau value is the right quantity for the instantaneous shear
modulus. The truly instantaneous shear modulus is much faster than the phonon times
and therefore not the right quantity for the elastic models. Experimentally it is not
possible to measure the real instantaneous value because the cross over from the affine
zero time G∞ to the relaxed G∞ plateau value is in the range of THz – not accessible
to experimentalists. Typically the highest obtainable frequency is in the GHz or MHz range.

The existence of a two step relaxation, this feature is seen many places in viscous
liquids where the first relaxation is attributed vibrations of the particles in their cage while
the second relaxation is attributed structural (α) relaxation of the liquid.
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Figure 2.10: The temperature dependence of the infinite and plateau shear modulus on an
isochore (ρ = 1.2) for all the potentials. The infinite shear modulus is increasing when in-
creasing temperature, whereas the plateau value is decreasing with increasing temperature.

As seen on figure 2.10 the t = 0 infinite frequency and the plateau value is increasing
and decreasing respectively with increasing temperature, consistent with [Yoshino 2010]
who did the same calculation for a soft sphere system. The decreasing behavior makes
the plateau value a candidate for the Shoving model [Dyre 2012]. See section 2.3 for
investigation of this question.
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2.2.7 Results for Isomorphs and Isochores

The invariance of the stress autocorrelation function in reduced units should according to
the theory be true for isomorphs where it should fail for isochores and isotherms. This
is, to a good approximation, also the case as seen in figure 2.11 where the isomorphs is
seen to collapse on one master curve. The autocorrelation function changes its shape on
an isochore as a function of temperature. The plateau value increases and becomes more
stretched. The autocorrelation function is calculated in two different ways. One where the
output from the simulation is sampled logarithmic and the autocorrelation is calculated by
brute force. This method resolves the short time behavior well, but is heavy due to the vast
amount of data that are saved. Another method takes advantage of the Wiener–Khinchin
theorem [Wiener 1930, Khinchin 1934] and Fourier transforms the data, calculates the
power spectrum and transform them back. The two methods gives the same results,
but the statistic for the plateau value is better if the method where the stress is Fourier
transformed forth and back is used. Unfortunately this method does not resolve the short
time behavior because linear saving is needed to transform the data. The other way of
calculating the shear modulus has been inserted for completeness at selected temperatures.
For all state points, 10 independent simulations with different initial configurations was
run and for each simulation, the three off diagonal elements was averaged, resulting in an
average of 30 points for each point displayed for the transient elastic modulus.
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Figure 2.11: Left: Isomorph. Right: Isochore ρ = 1.2. The autocorrelation function is
invariant on an isomorph when expressed in reduced units.

Extracting the Gex
∞ for the isomorphs and isochores on the examined potentials shows

that the plateau values are invariant on isomorphs and not on isochores.

2.2.8 Predicting Gex
∞ on isochores

Rosenfeld and Tarazona [Rosenfeld 1998] derived from density functional theory an expres-
sion for the potential energy on an isochore:

U(T ) = U0 + αT 3/5 (2.18)
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chores. From this figure it is concluded that the plateau value is invariant on isomorphs
and not on isochores.

with the somewhat strange temperature dependence with an exponent of 3/5.

Because the potential energy and virial can be computed as an integral over the radial
distribution function g(r) [Hansen 1986] it is possible to express the excess shear modulus
as a linear combination of the potential energy (per particle) and the virial (per particle).
The potential and virial energy per particle is

U

N
= 2πρ

∫ ∞

0
g(r)r2v(r)dr

W

N
=

2

3
πρ

∫ ∞

0
g(r)r3

dv(r)

dr
dr

(2.19)

which means we can write

Gex
∞ = C1

W

N
ρ+ C2

U

N
ρ (2.20)

C1 and C2 are constants depending on the potential. The constants C1 and C2 are found
by equating the integrands in eq. (2.20)

d

dr

(
r4

dφ(r)

dr

)
= C1r

2φ(r) + C2r
3dφ(r)

dr
(2.21)

Let the interaction potential be: φ(r) = ar−m − br−n with a and b as constants (that can
depend on n and m). We recognize this as two coupled equations in r−m+2 and r−n+2 with
two unknowns C1 and C2:

am(m− 3)r−m+2 = C1ar
−m+2 −mC2ar

−m+2

bn(n− 3)r−n+2 = C1br
−n+2 − nC2br

−n+2
(2.22)
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dividing with: r−m+2, r−n+2, a and b in their respective equations and solving for C1 and
C2, we find:

C1 =
mn[n(n− 3) +m(m− 3)]

m− n

C2 =
n(n− 3) +m(m− 3)

m− n
.

(2.23)

Combining Rosenfeld–Tarazona scaling U = U0 + αT 3/5 with a result for strongly
correlating liquids W = W0 + γU [Bailey 2008b] allow us to insert these expressions for U

and W in eq. (2.20) and we find:

G∞ = aT 3/5 + b . (2.24)

The constants a and b are then found to be a = α(C1γ +C2) and b = C1(W0 + γU0) +

C2U0. The linear relation between G∞ and T 3/5 is tested for the four glass forming systems
on isochores with density ρ = 1.20. As can be seen in figure 2.13 this relationship is fulfilled
very well. Calculating the constants a and b from the four isochores by calculating α, γ,
U0 and W0 gives good agreement with the actual values and are plotted as straight lines.
The results can be seen in figure 2.13.
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Figure 2.13: Testing the linear relation between the instantaneous shear modulus and T 3/5.
The solid black lines are not fits, but found from U and W data by calculating γ, α, U0

and W0. It is seen to follow this prediction for a large temperature range.
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2.3 Testing the shoving model

The Shoving model explain the non–Arrhenius dependence on temperature of the structural
(α) relaxation time τ . It predicts

τα(T ) = τ0 exp

(
G∞,p(T )Vc

kBT

)
(2.25)

where the characteristic volume Vc is independent of temperature. Structure changes very
little when a liquid approaches the glass transition temperature. Plotting G∞,p(T )/T ,
where the subscript p indicates that it is the plateau value (including the ideal ρkBT term)
against relaxation time should then result in a straight line. Results of simulations of four
isochores, one for each different system is shown in figure 2.14.
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Figure 2.14: Left: An Arrhenius plot: Structural relaxation time in reduced units versus
inverse temperature. Right: Testing the Shoving model for four isochores. The instanta-
neous shear modulus is seen to be responsible for most of the non Arrhenius behavior. The
deviation from a straight line is not big. The LJ 12-4 potential does not have filled symbols
to emphasize it has negative pressure and the physics is different. See figure 2.2.

Figure 2.14 shows the reduced relaxation time plotted against G̃∞,p/T also in reduced
units and including the ideal ρkBT term (right) and 1/T (left). The reduced relaxation
time τ̃α is defined as where the incoherent part of the self intermediate scattering function
for the large A particles has decayed to e−1, see figures 2.3 and 2.4 from where the
relaxation times has been extracted.

Since we are dealing with four different systems with four different temperature scales,
we scale the temperatures with a system dependent factor Tn in order to compare data
to the standard 12-6 LJ potential. This is done in the left side of figure 2.15 where it
is seen that the curves to a good approximation collapse onto the 12-6 potential. The
12-4 potential is seen to deviate significantly, we attribute this deviation to the negative
pressure. The fastest state points for the other systems are deviating little for the fastest
relaxations. It can be difficult to define a plateau value at these fast relaxations as seen in
figures 2.3 and 2.4.



26 Chapter 2. Four generalized Lennard-Jones potentials

Right side of figure 2.15 is the main result for this section. It shows that the non Arrhe-
nius behavior of relaxation time can, to a good approximation, be described by the plateau
value of the instantaneous shear modulus. The scaling is done by using the temperature
dependent factor Tn from the Arrhenius plot and multiply it with a system dependent vol-
ume Vn. There is no temperature dependence in this characteristic volume Vn = constant,
it is simply an overall factor close to one reflecting that the characteristic volume is differ-
ent for every system. The Vn scaling factor is seen to follow the volume of the first peak
in the radial distribution function (the cage). Figure 2.23 display the radial distribution
function for the exact same relaxation time and it is seen that they are very similar, but:
Vc,12−10 > Vc,12−8 > Vc,12−6 > Vc,12−4, with subscript c referring to the cage = Volume of
the first peak in the radial distribution function, consistent with our Vn’s decreasing with
increasing n. Again the 12-4 potential sticks out, probably due to the negative pressure.
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Figure 2.15: Left: An Arrhenius plot. Relaxation time versus Tn/T . The temperatures
has been scaled with Tn, as indicated in the legend, to compare with the 12-6 potential.
Right: Testing the Shoving model for four isochores. The scaling factor Vn is decreasing
with increasing n, consistent with the increasing volume of the first peak in the radial
distribution function with increasing n. See text for discussion. The LJ 12-4 potential does
not have filled symbols to emphasize it has negative pressure and the physics is different.
See figure 2.2.

2.4 Comparing fitting functions

The purpose of this section is to compare two different fitting functions with different
physical interpretations. We first give a short introduction to these functions and fit them
to the transient elastic modulus for the 12-6 LJ potential. There is practically no difference
for these functions, so we perform the same procedure for the self part of the incoherent
intermediate scattering function, where we have better statistics. Here we observe a small
difference in the tail, but there is not drawn any decisive conclusions, except that it should
be investigated in more detail.

There exist several different functions describing the evolution of correlation functions.
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One of them is suggested by Niels Boye Olsen:

fB(t) = a exp

(
− t

τ
− k

(
t

τ

)1/2
)

(2.26)

and is physically fundamentally different from the widely used Kohlrausch
[Kohlrausch 1854] or stretched exponential fitting function:

fK(t) = b exp

(
−
(
t

τ

)β
)

. (2.27)

The difference lie in the long time behavior of the relaxation rate of the functions. Differ-
entiating fB(t) and fK(t) we see that the stretched exponential has vanishing relaxation
rate:

lim
t→∞

(
d log fK

dt

)
∝ lim

t→∞

(
t

τ

)β−1

= 0 , for β < 1 . (2.28)

Meaning that the relaxation becomes slower and slower and never reaches equilibrium. The
long time behavior for the Boye fitting function is not vanishing, but finite:

lim
t→∞

(
d log fB

dt

)
∝ lim

t→∞

(
1

τ
+

1

2

(
t

τ

)−1/2
)

=
1

τ
, (2.29)

due to the linear term in the argument of the exponential function. Unlike the stretched
exponential, this function relaxes at a finite rate for long times and will eventually reach
equilibrium if you are patient enough.

The fitting has been performed in xmgrace. The performance of each fit is quantified
by the correlation coefficient defined as

r =

√
1− SSE

SST
(2.30)

with SSE equal to the Sum of Squared Errors and SST equal to the Sum of Squared
Totals. Denoting the error by f(t)− ffit(t) the SSE and SST are

SSE =
N∑
i

(f(i)− ffit(i))
2

SST =

N∑
i

(f(i))2 .

(2.31)

Time t is discretized in i with N being the total number of points in the data set.

2.4.1 Fitting shear data

In this section we test the two different fitting functions on the transient elastic modulus
for the 12-6 LJ potential.
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Figure 2.16: Fitting. Left is the stretched exponential and right is the Boye function. The
broken lines are fits to the data. There is no qualitative difference between the two fitting
functions.
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Figure 2.17: Correlation of fit and fitting parameters. Left is the relaxation time and
correlation as function of temperature. Right is the exponent β and k from the fitting
functions. There is no quantitative difference between the two fitting functions.

On figure 2.16 and 2.17 we see that the correlation is practically the same for both
fitting functions. Figure 2.16 show the actual data together with the fitted functions. Left
is the Boye function and right is the stretched exponential. The fitting parameters from
equation (2.26) and (2.27) can be seen in figure 2.17. These parameters are expected to
behave monotonically and it is clear from figure 2.17 that it is not the case for either fitting
functions. The stretching parameter β are seen to decrease from ∼0.75 to ∼0.52 at low
temperature. k is increasing with decreasing temperature. In experiments the value of k
is between 2 and 3 (personal communication with Niels Boye Olsen), fairly consistent with
our findings. These two fitting functions have the same number of fitting parameters and
can thus be compared. Despite the hard work to achieve good statistics on these data, it is
not the easiest quantity to compute. An attempt to investigate the long time behavior of
the fitted functions and compare them to data was was made, but unsuccesfull. We have
better statistics on the self part of the incoherent Intermediate Scattering Function (ISF)
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which we will fit to in the next subsection.

2.4.2 Fitting the self part of the incoherent intermediate scattering func-
tion Fs(q, t)

The self part of the incoherent intermediate scattering function Fs(q, t) is defined as
[Hansen 1986]:

Fs(q, t) =
1

N

N∑
j=1

〈
exp

(
− iq · [rj(t)− rj(0)]

)〉
(2.32)

with N being the number of particles, q being the scattering wave vector and rj(t)− rj(0)

as the displacement for the j’th particle and angled brackets denote time and ensemble
average. We choose the wave vector q = 7.25, close to the wave vector corresponding to
the first peak in the structure factor. We fit to all the systems, but only display the 12-6
results. The data for the 12-8 and 12-10 are very similar, as seen in 2.21 where the fitting
parameters are displayed. The 12-4 potential deviates significantly due to the negative
pressure and will not be included here. The q vector for the other systems are slightly
different, but are chosen so it also corresponds to the first peak in the structure factor.
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Figure 2.18: Left: Boye fitting function. Right: Kohlrausch fitting function. Showing the
Fs(q = 7.25, t) in reduced units (for the A particles) and the respective fits for the 12-6 LJ
potential. Axes are (log, lin). There does not seem to be any difference between the two
functions. The correlation for all fits is above 99% and can be seen in figure 2.19. Fitting
parameters can be seen in section 2.5.

By visulation inspection of figure 2.18, there is no qualitative difference between the
two fitting functions, but quantitative there is. Computing the correlation r it is clear
from figure 2.19 that the Boye fitting function is slightly better. This is apparent in the
way it decays to zero and by zooming in at the tail and changing axes from (log,lin) to
(lin,log) it is seen how the data and fitting functions relax to zero. As seen in figure 2.20
there is a visual difference when we focus on the tail.

Plotting the intermediate scattering function and the two fits in the same figure makes
it possible to compare them directly. In the following figures, we include two temperatures
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Figure 2.19: Correlation of fits. The fitting function suggested by Boye is slightly better
than the stretched exponential. The high correlation for both functions is due to the
relatively small number of points for the Fs,A(q, t).

and look at how they decay to zero. In these figures, it can be seen that the statistics
becomes too poor at values Fs,A(q, t) ∼ 10−3. The data fluctuates around 0 and some
of the points are negative. From these figures it is seen that the Boye fitting function
(circles in figure 2.20) follow the data better than the stretched exponential. The stretched
exponential "bends off" at longer times where the Boye function follow the data in a linear
way, until it has decayed to ∼ 10−3. Whether or not this is close enough to zero can be
discussed, better statistics is always welcome. Remember these Fs(q, t) are averaged over
10 independent runs, where all simulations have been running ∼ 100τα. All temperatures
show this tendency except the T = 0.43 Fs(q, t) for unknown reasons. We are working on
methods to achieve better statistic.

These findings are first indications that the long time behavior of relaxation functions
have a finite relaxation rate. This is consistent with experimental findings for relaxation
of the intermediate scattering function (personal communication with Niels Boye Olsen).
More simulations with better statistics are required to determine this issue. Obviously it
is more convincing to plot the rate itself, but the statistical errors increase dramatically
when data is differentiated.

2.5 Quasi universality for generalized Lennard–Jones systems

The collapse of the relaxation times (see figure 2.15) for the systems investigated indicates
there exist some sort of universality for the generalized Lennard–Jones systems. In this
subsection we look at the structure and functional form of the self part of the incoherent
intermediate scattering function to pursue the idea of quasi universality.

By plotting the fitting parameters for both fitting functions of the Fs(q, t) we see that
these parameters are very similar indicating some sort of quasi universality [Dyre 2013].
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Figure 2.20: Tail of the Fs(q, t) in reduced units for the 12-6 LJ potential at the 8 lowest
temperatures together with the stretched exponential and Boye fits. The solid lines are
Fs(q, t) data and the broken lines are Boyes fitting function with circles. Dotted lines with
plusses are the stretched exponential fit. We have shifted to logarithmic y-axis from 10−1

to 10−5 and linear time axis in order to zoom in on the tail. (a) is the lowest temperatures
with longest time up to 4.5 · 105, (b) has times up to 4.5 · 104, (c) has times up to 4 · 103
and (d) has times up to 4 · 102, thereby going one decade down for every window.

Due to the negative pressure for the 12-4 potential, we will exclude this system for the
discussion and in the plots.

Figure 2.21 show the fitting parameters for the 12-6, 12-8 and 12-10 LJ potentials. All
these fits are more than 99 % correlated. Indicating that these parameters describe the
actual data well. Left is the stretched exponential β and τ parameters plotted and right
is k and τ for Boyes fit plotted. It is seen that both set of fitting parameters are almost
falling on a master curve. For unknown reasons is the second fastest state point for the
12-10 potential deviating significantly from the master curves.

The invariance of structure is probed at one state point for all the systems with the
same relaxation time. The Fs(q, t) in reduced units for these four state points are shown
in figure 2.22 and are seen to be very similar in shape as expected from figure 2.21. There
seem to be a small difference in the slope. We look into this by computing the diffusion
coefficient for all state points and compare them in section 2.5.1.
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k parameter plotted against the reduced relaxation time from eq. (2.26). The relaxation
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Figure 2.22: Self part of the incoherent Intermediate Scattering Function for four different
potentials at same relaxation time. Displayed is the big A particles and the horizontal line
indicates when it has decayed to exp(−1).

The structure for these state points are shown in figure 2.23 where all the radial
distribution functions are displayed.

It is seen that the structure for all the distribution functions are more or less invariant
when going from one system to another system. There seem to be small deviations in
the top of the first peak for the big AA particles. The 12-10 potential is higher implying
that the volume of the first peak for this system is larger and so on: Vc,12−10 > Vc,12−8 >

Vc,12−6 > Vc,12−4 with Vc indicating the volume of the first peak. There seem to be small
differences for the AB and BB radial distributions as well, they are not significant and
it is concluded that there exist quasi universality for KABLJ generalized Lennard-Jones



2.5. Quasi universality for generalized Lennard–Jones systems 33

1 1.5 2 2.5
r in reduced units

0

1

2

3

4

5

g A
A

(r
) 

in
 r

ed
uc

ed
 u

ni
ts

LJ 12-04, ρ = 1.224, Τ = 0.3275
LJ 12-06, ρ = 1.164, Τ = 0.3912
LJ 12-08, ρ = 1.188, Τ = 0.5884
LJ 12-10, ρ = 1.188, Τ = 0.7512

AA

1 2 3
r in reduced units

0

1

2

3

4

5

6

g A
B
(r

) 
in

 r
ed

uc
ed

 u
ni

ts

1 2 3
r in r.u.

0

0.5

1

1.5

2

g B
B
(r

) 
in

 r
.u

.

AB

BB
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potentials.

2.5.1 Comparing dynamics with soft spheres

Soft spheres are purely repulsive Inverse Power Law potentials with a correlation coefficient
= 100%:

φ(r) = ε
(σ
r

)n
(2.33)

and have been studied extensively, among others De Michele et al. [Michele 2004].
Instead of looking at the relaxation time we calculate the diffusion coefficient in reduced
units and obtain a similar plot as De Michele et al. [Michele 2004]. They studied the
purely repulsive IPL (soft spheres) with different exponents n = {6, 8, 12, 18} on the
binary Kob–Andersen mixture and showed that they all collapsed to a master curve. This
means that there exist quasi universality inside the Kob - Andersen Binary IPL (KABIPL)
systems. Here we investigate whether or not there exist quasi universality between the
KABIPL and KABLJ systems. Figure 2.24 show the diffusion coefficients for the KABLJ
systems. Left is unscaled and right is a scaled version where the temperatures for the 12
-4, -8 and -10 potentials have been scaled to collapse the 12-6 potential. The temperature
scaling factor Tn is the one we found when scaling the relaxation times in section 2.3.

Fitting the different systems except the 12-4 to the VFT [Vogel 1921, Fulcher 1925,
Tamman 1926] fitting function, it is possible to compare them to the soft sphere pendant
from [Michele 2004] because they fit all their data to the VFT and find a good collapse
with the VFT describing the data well. Figure 2.25 show all the data points together with
the VFT fitted to KABLJ and KABIPL. The VFT fitting function is defined as:

D(T/Tn) = a exp

(
b

T/Tn − c

)
. (2.34)

The VFT fitting function describes the data quite well in figure 2.25 the fit is performed
for viscous state points T/Tn < 0.78. It is seen that the VFT from KABIPL seem to
be better for viscous state points and worse for faster diffusion coefficients. However, by
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changing the region where the fit is performed we can mimic the fast or slow diffusion.
Here the region T/Tn < 0.78 was chosen to give a good overall fit.

From figure 2.25 it is concluded that the dynamics for the KABIPL and the KABLJ
inherit quasi universality.
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2.6 Generalized Lennard-Jones conclusions

The generalized Lennard-Jones systems are all strongly correlating in most part of the
phase diagram and therefore they have isomorphs. The excess infinite frequency shear
modulus Gex

∞ and the bulk Kex
∞ −K0 was, to a good approximation, found to be invariant.

A prediction for the temperature dependence on isochores for Gex
∞ ∝ T 3/5 was tested and

verified. The isomorph invariance for the plateau value of the transient elastic modulus Gex
∞,p

was found to be better than the truly instantaneous Gex
∞. The plateau value of the transient

elastic modulus Gex
∞,p enters the Shoving model and it was found that it can explain most of

the non Arrhenius dependence of the KABLJ systems. We tested two fitting functions and
found indications that the relaxation rate for the incoherent intermediate scattering function
Fs,A(q, t) is finite opposite to the widely used stretched exponential. Quasi universality in
the generalized Kob Andersen Binary Lennard Jones (KABLJ) systems was established
and we find the dynamics (diffusion coefficient) between the KABLJ and the generalized
Kob Andersen Binary Inverse Power Law systems belonging to the same quasi universality
class.





Chapter 3

Generic density scaling

We derive a generic form of density scaling h(ρ) (the long density jump formula),
enabling us to explore big parts of the phase diagram, with unrealistic high pressures
and densities. For systems interacting via a sum of Inverse Power Law (IPL) potentials:
v(r) =

∑
n εnr

−n, the scaling function h(ρ) is found analytically. The rest of the chapter
are devoted testing this form of scaling. First we use the standard Kob Andersen Binary
Lennard Jones (n = 12, 6). At viscous state points, dynamics is highly sensitive to small
temperature changes and the slightest uncertainty in the density scaling exponent γ

entering h(ρ) leads to unsatisfactory scaling of dynamics. We explore different ways of
determining γ. Using the density scaling function h(ρ), we generate isomorphs for liquids
interacting with three IPL terms in the potential on the binary Kob Andersen system.
In section 3.4 we present a new interpretation of the role of attractive versus repulsive forces.

3.1 Derivation of the long density jump formula

The long density jump formula gives us the relation between different state points with
density and temperature (ρ, T ) and state points isomorphic to these. Power law density
scaling is a special case of this more general form of scaling. The density scaling exponent
is defined:

γ =
d lnT

d ln ρ

∣∣∣∣
Sex

. (3.1)

If γ is constant it is shown in equation (1.12) that integrating this equation leads to power
law density scaling:

ργ

T
= const . (3.2)

In the previous chapter we have seen that this form of scaling works well if density is changed
∼ 1%, but we did not see that if density was changed ∼ 5%, between a neighboring state
point, the scaling became poor due to the density dependence on γ. The power law density
scaling implies that the reduced relaxation time can be written:

τ̃ = F

(
ργ

T

)
. (3.3)

With F being a generic function. This form of density scaling was first suggested by
[Tolle 2001] based on experimental studies on a strongly correlating liquid (OTP).

Our starting point for the general density scaling is the definition of two isomorphic
state points. First: that pairs of scaled micro configurations have proportional canonical
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Boltzmann factors. Denoting state point (1) with potential energy, density and tempera-
ture: U1 = U

(
r
(1)
1 , ..., r

(1)
N

)
, ρ1 and T1 and state point (2) with: U2 = U

(
r
(2)
1 , ..., r

(2)
N

)
,

ρ2 and T2. Second: that the reduced coordinates must (trivially) scale onto each other
ρ
1/3
1 r

(1)
i = ρ

1/3
2 r

(2)
i . The definition of proportional Boltzmann factors is:

exp

(
− U1

kBT1

)
= C12 exp

(
− U2

kBT2

)
. (3.4)

Where C12 being the same proportionality constant for all micro configurations. We exploit
the direct isomorph check [Gnan 2009] that directly test the proportionality between the
Boltzmann factors. By taking the logarithm of eq. (3.4) and expressing coordinates in
reduced units we find:

U
(
ρ
−1/3
2 (r

(2)
1 , ..., r

(2)
N )
)

U
(
ρ
−1/3
1 (r

(1)
1 , ..., r

(1)
N )
) =

T2

T1
+K12 (3.5)

with K12 being a constant only dependent on state point (1) and (2), but the same for
all micro configurations. We perform the direct isomorph check by simulating a time
sequence at one state point (1) and save the micro configuration every ∆t time step.
From all these micro configurations at different times, we calculate the scaled potential
energies at state point (1): U

(
ρ
−1/3
1 (r

(1)
1 , ..., r

(1)
N )
)

and (2): U
(
ρ
−1/3
2 (r

(2)
1 , ..., r

(2)
N )
)
. The

scaled potential energies are plotted against each other in a scatter plot, like the one
in figure 1.1, and if there exist an isomorphic temperature at state point (2), it is
found by calculating the linear regression slope. A schematic drawing can be seen in
figure 3.1. This only works if the system is strongly correlating and the slope is well defined.

slope = 
1

1

(1)

(2)
1

~ ~
N

(2)

N
~ ~ (1)

T
2T

U(r  , ... ,r    )

U(r  , ..., r    )

Figure 3.1: Sketch of the direct isomorph check. A simulation is performed at state
point (1) with density and temperature (ρ1, T1). An ensemble of micro configurations
from state point (1) is plotted as scaled potential energies: U1 = U

(
r̃
(1)
1 , ..., r̃

(1)
N

)
vs

U2 = U
(
r̃
(1)
1 , ..., r̃

(1)
N

)
. The slope is found by linear regression and is the ratio of the

two temperatures: 〈∆U2∆U1〉/〈(∆U1)
2〉 = T2/T1. See text for a thorough explanation.
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The generic density scaling function h(ρ̃), with ρ̃ being the ratio of the densities ρ̃ =

ρ2/ρ1, is found as the linear regression slope in this plot:

h(ρ̃) =
T2

T1
=

〈∆U2∆U1〉
〈(∆U1)2〉

. (3.6)

As usual denotes angled brackets ensemble averages and ∆ is the fluctuation away from
mean.

We now turn to the class of systems interacting via a sum of inverse power laws. The
pair interaction potential is defined as

v(rij) =
∑
n

εn

(
σij
rij

)n

, (3.7)

with n being the number of terms present in the potential. The potential energy of a single
term n is:

Un

(
r1, ..., rN

)
=
∑
i>j

εn

(
σij
rij

)n

. (3.8)

Switching to reduced units means replacing r with ρ−1/3r̃, so the n’th term in scaled
coordinates are

Un

(
r̃1, ..., r̃N

)
= ρn/3

∑
i>j

εn

(
σij
r̃ij

)n

(3.9)

and because U1

(
r̃
(1)
1 , ..., r̃

(1)
N

)
= U2

(
r̃
(2)
1 , ..., r̃

(2)
N

)
we can express the potential energy at state

point (2) in terms of the potential energy at state point (1):

U2 =
∑
n

ρ̃n/3Un,1 . (3.10)

Inserting this in eq. (3.6) leads to an expression given in terms of the reduced density
and potential energies at state point (1):

h(ρ̃) =
∑
n

ρ̃n/3
〈∆Un,1∆U1〉
〈(∆U1)2〉

. (3.11)

This is our generic density scaling function. It can be rewritten in terms of heat capacities.
Recall Einsteins fluctuation formula for the total heat capacity at constant volume is (the
subscript 1 is discarded for notation clarity. It is implied that the quantities on the right
hand side depends on the starting state point)

CV =
∂〈U〉
∂T

∣∣∣∣
V

=
〈(∆U)2〉
kBT 2

(3.12)

and the partial derivative with respect to temperature of observable A in the Boltzmann
ensemble average:

∂〈A〉
∂T

∣∣∣∣
V

=
〈∆A∆U〉
kBT 2

. (3.13)
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We recognize our generic density scaling function as a sum of weighted heat capacities:

h(ρ̃) =
∑
n

ρ̃n/3
CV,n

CV
. (3.14)

Since CV =
∑

nCV,n, the number of constants: CV,n/CV entering the density scaling
function eq. (3.14) is n−1. For the single IPL potential we see that this has has power law
density scaling ργ/T with γ = n/3 and there is no parameter entering the scaling function.
For the generalized LJ potential with two terms m and n as defined in equation 2.1, The
partial potential energies Um and Un can be written as

Um =
3W − nU

m− n
and Un =

−3W +mU

m− n
, (3.15)

where U and W is the total potential energy and virial, respectively. Inserting these ex-
pressions in eq. (3.11) and recognizing the density scaling exponent γ’s fluctuation formula,
we find:

h(ρ̃) = ρm/3

(
3γ − n

m− n

)
+ ρn/3

(
−3γ +m

m− n

)
. (3.16)

Especially for the standard 12-6 LJ it is:

h(ρ̃) = ρ̃4(γ/2− 1) + ρ̃2(2− γ/2) . (3.17)

All this suggests the more general form of density scaling:

τ̃ = G

(
h(ρ̃)

T

)
, (3.18)

with h(ρ̃) = ρ̃n/3 for systems interacting with a single IPL term. We are not the
first suggesting this form of density scaling. [Alba-Simionesco 2002, Tarjus 2004,
Alba-Simionesco 2004], are some of the density scaling pioneers. However, their considera-
tions and arguments are very different than ours. They used the symbol e(ρ), instead of
h(ρ) indicating that it is a form of activation energy function.

Changing notation by referring to the starting state point with subscript 0, our scaling
function reads: h(ρ̃) = T/T0 ⇒ T = h(ρ̃)T0. From our density scaling function and the
definition of γ in eq. (3.1) we find the density dependence of γ by inserting T :

γ(ρ̃) =
d lnT

d ln ρ
=

d ln[h(ρ̃)T0]

d ln ρ
=

d lnh(ρ̃)

d ln ρ
, (3.19)

inserting our density scaling function for potentials interacting with sum of IPL terms, we
arrive at:

γ(ρ̃) =
d lnh(ρ̃)

d ln ρ
=

∑
n

n
3 ρ̃

n/3CV,n∑
n ρ̃

n/3CV,n
(3.20)

The results/predictions for γ and h(ρ̃) will be studied for a number of systems and is
the main result of this part of the thesis.
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3.1.1 Intermezzo: the Grüneisen parameter

Eduard Grüneisen derived in 1912 a model describing the effect a density change of a mono
atomic crystal lattice has on the phonon frequencies in the lattice. This is comparable to
our investigations of density changes influence on liquid dynamics and structure.

The equation for γ(ρ̃) (3.20) resembles the Grüneisen parameter γG from its microscopic
definition in the way that it is also a sum of weighted heat capacities:

γG =

∑
i γicV,i∑
i cV,i

. (3.21)

But the physics is completely different and it is derived on totally different grounds. Here
the sum over i is that of phonon frequencies in the solid crystal. The γi’s are defined as
the volume dependence of the ith mode of vibration in the crystal lattice:

γi =
∂ lnωi

∂ ln ρ
(3.22)

ωi being the frequency of the i’th mode and the cV,i’s are the partial vibrational contribu-
tions the the heat capacity: cV =

∑
i cV,i.

It can be showed that this microscopic definition is related to a macroscopic (or ther-
modynamic) definition by summing over all the γis in the first Brillouin zone. See e.g.
[Ashcroft 1976, Barron 1957].

γG =
αpKT

cV
(3.23)

where αp is the isobaric thermal expansion and KT is the isothermal bulk modulus defined
by

αp =
1

V

∂V

∂T

∣∣∣∣
P

and KT = −V
∂P

∂V

∣∣∣∣
T

. (3.24)

The thermal expansion αp and the bulk modulus KT is related to the isochoric thermal
pressure coefficient βV [Gnan 2009, Schrøder 2011]

βV ≡ ∂P

∂T

∣∣∣∣
V

= −∂V

∂T

∣∣∣∣
P

∂P

∂V

∣∣∣∣
T

= −αpKT . (3.25)

Substituting the isochoric thermal pressure from (3.25) into equation (3.23) we find:

γG = −βV
cV

(3.26)

which is almost our definition of γ from equation (1.6), except that our γ is governing the
configurational contribution:

γ = −
βex
V

cexV
(3.27)

In condensed matter, the ideal term is usually much smaller than the configurational con-
tribution and so the two γ’s will be much the same. See also section IV paragraph A in
[Schrøder 2009] and [Paper IV] for a discussion of the Grüneisen parameter and a Grüneisen
equation of state respectively.
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3.2 Scaling of the Kob-Andersen Binary Lennard-Jones sys-
tem

This system has been used extensively since Kob and Andersen introduced it in 1994
[Kob 1994] and is one of the most studied system in viscous liquids because of its re-
luctance to crystallize due to its strong interaction between the big and small particles
[Toxvaerd 2009]. It consists of 80 % big A particles and 20% small B particles. The
potentials look as follows:
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Figure 3.2: Kob-Anderson Binary Lennard-Jones potentials. The black line is the AA

interaction, AB is red and the BB interaction is green. The strong interaction between A

and B: εAB = 1.5εAA, makes this system reluctant to crystallization.

In section 3.1 we derived the long density jump formula from the isomorph definition.
In this scaling equation, relating density and temperature at one state point to isomorphic
state points, the density scaling exponent γ0 is entering. At viscous state points, dynamics
is highly sensitive to small temperature changes. It is therefore important to have a
reliable way of determining γ0. In this section we investigate different ways of estimat-
ing/calculating γ0 and observe the quality of the scaling when going to viscous state points.

The scaling function h(ρ̃) is displayed in equation (3.17) and written here again for
completeness:

h(ρ̃) = (γ0/2− 1)ρ̃4 + (2− γ0/2)ρ̃
2 . (3.28)

We investigate three different ways of determining γ0 where the subscript 0 is included to
emphasize that it is a constant parameter. The first is from the UW fluctuations at the
starting state point (ρ0, T0):

γ0 =
〈∆W∆U〉
〈(∆U)2〉

. (3.29)

The second method used to find γ0 is done by calculating the slope of isochoric UW data:

γ0 =
∂W

∂U

∣∣∣∣
V

(3.30)
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and the third method is by collapsing two isochores using power law density scaling: ργ0/T

with γ0 as fitting parameter.

3.2.1 Using h(ρ̃) with γ0 from one state point

Calculating γ0 at state point (ρ0, T0) = (1.20, 0.55), the U − W fluctuations (3.29) gives
γ0 = 5.17 ± 0.01 (the subscript 0 indicates a reference to the starting state point and
the uncertainty represents one standard deviation calculated from 10 independent runs).
Inserting this in eq. (3.28) and calculating the corresponding temperatures for densities
ρ = 1.20 up to ρ = 10.0 gives temperatures from 0.55 up to 4200. As already shown in
figure 2.2 the correlation coefficient decreases when going to lower densities and increases
going to higher densities.

In what follows, the simulations are performed in reduced units. It is a technical issue
and has a physical interpretation. See section 3.4 on how it is done and why it is not a
problem simulating liquids with densities ρ = 10.0.
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Figure 3.3: Intermediate incoherent scattering function on an isomorph in reduced units.
The relaxation time is defined as where Fs,A(q, t) = 1/e. The q values are chosen to lie
close to the first peak of the structure factor in reduced units q̃ = 7.25 ∗ (ρ/1.2)1/3. For
comparison two state points with ρ = 1.20 and different temperatures than the starting
state points is displayed with broken lines.

For this isomorph and in the following we quantify the invariance of the dynam-
ics by calculating the reduced relaxation time. The reduced relaxation time, defined
as where the incoherent intermediate scattering function has decayed to 1/e, is 26 in
reduced units for ρ0 = 1.20 and increases slowly to 48 for the highest density. See figure 3.3.

At each state point γ is calculated from the fluctuations of potential energy and virial
eq. (3.29) and the corresponding prediction for γ(ρ̃) from (3.19) is calculated to observe
the quality of the prediction. The partial heat capacities contribution to the total heat
capacity is interpreted as a weighting factors of how much each term in the potential is
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contributing to the physics at the corresponding state point. Since the attractive term is
negative, the contribution from this term is also negative implying the repulsive term is
larger than 1. For the starting state point with γ0 = 5.17 ± 0.01 we find the following
weighted heat capacities:

CV,12

CV
=
(γ0
2

− 1
)
= 1.59 and

CV,6

CV
= 1−

CV,12

CV
= −0.59 (3.31)

The prediction of γ(ρ̃) and the calculated γ’s at the state points simulated on the
isomorph is shown in figure 3.4. It is seen to follow the prediction very well. It is seen
that the state point at ρ = 10.0 have γ ' 4.00. At this state point all the physics is
dominated by the repulsive term since CV,6/CV ' 0 consistent with our physical intuition
that repulsions dominate at high densities and pressures.
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Figure 3.4: Prediction of γ and simulated points. The inset show the prediction of γ for
densities −10 to 10 which is rather unphysical with negative densities. The prediction is
symmetric and has a singularity shown with blue. The correlation coefficient is written
for ρ = 1.20 and 4.00 it increases with density. At a density of ρ ∼ 1.00 the simulations
crystallize, phase separate and the correlation is so low that the isomorph theory breaks
down. This corresponds to approaching the triple point and entering the coexistence phase
in the (ρ, T ) phase diagram.

Choosing a more viscous state point (ρ0, T0) = (1.20, 0.47) as starting state point, we
find γ0 = 5.16 ± 0.02 and simulate the same density range as the previous isomorph. On
figure 3.5 we display the results for the incoherent intermediate scattering function. As
can be seen, the reduced relaxation time for the starting state point is τ̃ ∼ 335. Going up
in density produces dynamics that are much slower than this. The relaxation times for the
highest density is τ̃ ∼ 2500. Jumping to (ρ = 2.00, 4.97) has τ̃ ∼ 1360 more than 4 times
as slow as the starting state point.

Since the deviation from the perfect isomorph is systematic - the reduced relaxation
time increases with density - we expect that we can produce a better isomorph by
estimating γ0 differently. Note since the dynamics does not change significantly from
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Figure 3.5: A "bad" isomorph with starting state point (ρ0, T0) = (1.20, 0.47) and γ0 =

5.16 ± 0.02 having τ̃ ∼ 335. These relaxation times increase with density up to τ̃ ∼ 2500

for ρ = 10.

densities ρ = 2 and up, we focus on jumps up to ρ = 2.

3.2.2 Using h(ρ̃) with γ0 from UW isochore slope

As seen in equation (3.30) γ0 is the slope of the (U,W ) energies at constant density.
Because γ0 is state point dependent: γ0 = γ0(ρ, T ) it may be possible to generate viscous
isomorphs by estimating γ0 as the mean γ0 on an isochore. In this subsection we are
calculating γ0 by fitting a straight line to the UW energies on an isochore. Choosing the
ρ0 = 1.60 isochore and fitting to all energies results in a slope with γ0 = 4.52. See figure
3.6. Since it is the viscous region with the slowest relaxation times we are interested in,
we argue that it should be the most viscous state points to perform the fit on. This is
the same as [Pedersen 2010] did estimating γ0 for the single KABIPL potential describing
the physics of KABLJ. Performing the fit for the 6 most viscous state points, we obtain
a slightly higher γ0 = 4.58. Using this value in the density scaling formula, we calculate
isomorphs with a longer relaxation time than earlier. See figure 3.6 for UW data, fit and
dynamics of these state points.

We generated four isomorphs using γ0 = 4.58 with reduced relaxation times: τ0 ≈
(4.5, 40, 430, 3300), significantly slower than previously studied isomorphs. The results
for dynamics and γ(ρ) are displayed in figure 3.7. We see that they are all to a good
approximation invariant, but the reduced relaxation times for the slowest isomorph are
going from τ̃ ' 2500 for the lowest density up to τ̃ ' 4700 for the highest densities.

3.2.3 Using h(ρ̃) with γ0 from isochore collapse

Three isochores with densities ρ = 1.20, ρ = 1.60 and ρ = 2.00 were simulated at different
temperatures, starting from a high temperature and cooled down to a viscous state point.
The structural relaxation time τα is defined here as the time where the self part of the
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Figure 3.6: Left: Potential energy vs. Virial on the ρ = 1.60 isochore. The slope gives γ0.
We perform two fits: To all the state points with γ0 = 4.52 and to the 6 lowest energies
with γ0 = 4.58. Right: Self part of the incoherent intermediate scattering function for the
state points on this isochore.

0.01 1 100 10000 1e+06
reduced time

0

0.2

0.4

0.6

0.8

1

F s,
 A

(q
,t)

 in
 r

ed
uc

ed
 u

ni
ts

ρ = 1.20
ρ = 1.30
ρ = 1.40
ρ = 1.60
ρ = 1.80
ρ = 2.00

1 1.2 1.4 1.6 1.8 2 2.2
ρ

4

5

6

7

γ

τ∼  ∼ 4.50
τ∼  ∼ 40
τ∼  ∼ 430
τ∼  ∼ 2500
Prediction from τ∼

 ~ 4.50 and ρ0 = 1.60

Figure 3.7: Four different isomorphs with reduced relaxation times τ̃ ≈ 4.5, 40, 430 and
3300. Left: the incoherent intermediate scattering function in reduced units. Right: γ and
the prediction plotted against density. The slowest isomorph have reduced relaxation times
from τ ' 2500 up to τ ' 4700.

incoherent intermediate scattering function for the A particles has decayed to a value of 1/e.

The three different isochoric relaxation times is plotted in figure 3.8 as a function of
f(ργ/T ). It is known [Coslovich 2008, Pedersen 2010] that power law density scaling with
a fixed exponent γ makes the relaxation times (or diffusion coefficients) scale in reduced
units for small density changes. Here we show that power law density scaling breaks down
for large density variations.

The three different isochores are plotted against the power law density scaling variable
ργ0/T , by changing γ0 two of the isochores collapse, but no single γ0 collapse all the
isochores. The fact that power law density scaling with exponent γ0 = 4.90 makes the
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Figure 3.8: Break down of power-law density scaling. The reduced structural relaxation
time τ̃α for three isochores at densities ρ = 1.20, ρ = 1.60 and ρ = 2.00 are plotted as
a function of the density scaling variable ργ0/T . Left γ0 = 4.90. Right: γ0 = 4.45. It is
impossible to find a single exponent γ0 that makes all the isochores coincide.

ρ = 1.20 and 1.60 isochores scale onto each uniquely determines what the power law γ0
collapsing the ρ = 1.60 and 2.00 should be. This can be seen in the following way. Power
law density scaling imply that going from ρ0 = 1.60 to ρ = 1.20, temperatures are scaled
by: (

1.20

1.60

)4.90

= 0.244 . (3.32)

Equating the density scaling function h(ρ̃ = 1.2/1.6) with 0.244 and solving for γ0 in
h(1.2/1.6) we find:

γ0 =
2(1.2/1.6)4.90 + 2((1.2/1.6)2 − 4(1.2/1.6)4)

(1.2/1.6)4 − (1.2/1.6)2
= 4.59 . (3.33)

Using this γ0 in the density scaling function h(ρ̃) means:

h(ρ̃) = (4.59/2− 1)ρ̃4 + (2− 4.59/2)ρ̃2

= 1.30 ρ̃4 − 0.30 ρ̃2 .
(3.34)

Especially h(ρ̃ = 2.0/1.6) = 2.70 = (2.0/1.6)4.45. Consistent with figure 3.8.

Recalling the constants in front of the density terms is the partial heat capacities:

CV,12

CV
= 1.30 and

CV,6

CV
= −0.30 (3.35)

Comparing this to the values at ρ = 1.20 with exponent 5.17 we had: CV,12/CV = 1.59

and CV,6/CV = −0.59. This reflects the fact that the repulsive term is more dominating
here than at lower densities. The absolute value of the attractive term indicates this term
contribution. Going to the limit with pure r−12 ⇒ γ = 4 repulsion we get CV,12/CV = 1.0

and CV,6/CV = 0.0. Plotting the three isochores using h(ρ̃)/T with γ0 = 4.59 as a scaling
parameter all three isochores scale nicely on top of each other as seen in figure 3.9.
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Figure 3.9: Generic density scaling. The isochores ρ = 1.20 and ρ = 1.60 are scaled to
collapse onto the ρ = 1.60 isochore. The temperatures are scaled with: h(1.2/1.6) = 0.244

and h(2.0/1.6) = 2.70, for the ρ = 1.20 and 2.00 isochores respectively.

From this h(ρ̃) we decide to trace out four isomorphs with h(ρ̃)/T = 0.25, 0.40, 0.50
and 0.55 for a density change of 1.2 − 2.0 using ρ0 = 1.60 and γ0 = 4.59. Figure 3.10
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Figure 3.10: 4 isomorphs with relaxation times spanning almost 4 decades. γ0 = 4.59 for
ρ0 = 1.60. Each isomorph is chosen so h(ρ̃) = const. See figure for the values. Left is the
dynamics probed by the self part of the incoherent intermediate scattering function for the
big A particles and right is the structure quantified for the most viscous isomorph with
h(ρ̃) = 0.55 by the radial distribution function. All distribution functions are shown.

beautifully show how structure and dynamics are invariant for these isomorphs. This is
the isomorphs shown in paper [Paper II]. The dynamics is quantified by the self part of
the incoherent intermediate scattering function and the structure by the radial distribution
functions. Two fairly fast isomorphs was also simulated from densities ρ = 1.20 up to
ρ = 10.0 to investigate the density dependence of γ. Plotting all isomorphs and the three
isochores γ against density we see that the prediction holds well. There is some temperature
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dependence on γ for the isochores and between the different isomorphs as seen in figure
3.11.
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Figure 3.11: γ as a function of density for different isochores and isomorphs. The solid line
is the prediction and seen to follow the simulated points well.

Structure and dynamics for the two isomorphs going up to 10 in density is shown in
figure 3.12, and has h(ρ̃)/T = 0.37 and h(ρ̃)/T = 0.47. The reduced relaxation time for
the fast isomorph is τ̃ ∼ 4.2 and for the slower τ̃ ∼ 45. It is seen that structure does not
change much when dynamics becomes 10 times as slow.
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Figure 3.12: Two isomorphs with h(ρ̃)/T = 0.37 and h(ρ̃)/T = 0.47. Left dynamics for the
big A particles. Right: structure, also for the A particles. The inset shows a zoom in of
the top of the first peak.

3.2.4 KABLJ scaling conclusions

In this section we have tested the generic density scaling equation h(ρ̃) for the KABLJ
liquid. The density scaling parameter γ0 entering h(ρ̃) have been calculated in three dif-
ferent ways. First from a single state point with γ0 = 〈∆W∆U〉/〈(∆U)2〉. This method
gave reasonable isomorphs if the state point is not too viscous. Secondly by calculating
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the scaling exponent γ0 from a single isochore by fitting to UW energies: γ0 = ∂W/∂U |V ,
the isomorphs produced are more invariant at viscous state points, compared to γ0 from a
single state point. Last we simulated different isochores and used power law density scal-
ing ργ0/T in order to collapse two isochores by fitting γ0. Using this γ0 to calculate h(ρ̃)

generated the best isomorphs at the most viscous state points.
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3.3 Scaling of potentials with three terms

We test the robustness of the density scaling function by including an extra term in the
potential. When 3 terms are present it is not sufficient to calculate the density scaling
parameter γ0. We need two constants and they are calculated directly as partial heat
capacities via the fluctuations from a single state point. By including an extra term in
the pair potential, it is possible to include an extra feature, like a local maxima after the
minima. See figure 3.13. This feature with a bump is an effective potential for the ion-ion
potential of liquid potassium [Sullivan 1981]. See also figure 1.4 in [Hansen 1986].

The potential is a sum of inverse power laws and defined as:

vm,n,k(r) = a
(σ
r

)m
+ b

(σ
r

)n
+ c

(σ
r

)k
. (3.36)

In order to have full control over the position of the minima, it is redefined in terms of the
parameter α and the generalized Lennard-Jones potentials. The generalized LJ potential
is defined as:

vm,n(r) =
ε

m− n

{
n
(σ
r

)m
−m

(σ
r

)n}
(3.37)

and the vm,n,k potential is then redefined as:

vm,n,k(r) = (1− α)vm,n(r) + αvm,k(r) . (3.38)
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Figure 3.13: Different potentials. Going to higher α’s increases the steepness of the poten-
tial. The α = 0 potential is the normal LJ 12-6. Only potentials with α = 2 and higher
has contributions from all three terms in eq. (3.36). All the potentials are cut and shifted
at rc,ij = 3.00σij in the forces [Toxvaerd 2011].

In this study, the exponents are chosen as follows: m = 12, n = 6, k = 8 and
α = {−1, 0, 1, 2, 4, 6}. α = −1 is the generalized Lennard-Jones potential with repulsive
exponent 8 and attractive exponent 6. The standard L-J potential has α = 0 and α = 1

is the generalized L-J with repulsive exponent 12 and attractive exponent 8, this potential
was also studied in chapter 2. Higher α’s include a combination of all three terms. The
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simulations are performed with the Kob-Andersen mixture.

For three IPL terms, the density scaling function is:

h(ρ̃) = ρ̃m/3CV,m

CV
+ ρ̃n/3

CV,n

CV
+ ρ̃k/3

CV,k

CV
. (3.39)

In the following we compute h(ρ̃) by calculating the partial heat capacities directly from
the fluctuations. At each state point we also calculate the density scaling parameter γ from
eq. (1.6) and compare it to the prediction:

γ(ρ̃) =
d lnh(ρ̃)

d ln ρ̃
=

m/3ρ̃m/3CV,m + n/3ρ̃n/3CV,n + k/3ρ̃k/3CV,k

ρ̃m/3CV,m + ρ̃n/3CV,n + ρ̃k/3CV,k
(3.40)

For all the systems we jump from density ρ = 1.20 to ρ = 8.00 and probe the structure
as well as the dynamics for the big A particles. We restrict ourself to fairly fast state points
because we calculate the parameters from one state point.
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Figure 3.14: Left: Self part of incoherent intermediate scattering function in reduced units
for the A particles with q̃ = 7.25(ρ/1.20)1/3. Right: The AA radial distribution function.
Legend show the isomorphic state points densities and temperatures.

Choosing α = 6 gives constants from eq. (3.36): a = 28, b = −45 and c = 20. An
isomorph is created from density ρ = 1.20 and T = 2.25 using equation (3.39). At this
state point γ = 6.37 and the partial heat capacities is CV,12/CV = 3.21, CV,6/CV = 0.86

and CV,8/CV = −3.07. The negative partial heat for the term with exponent 8 reflect the
fact that this term is the attractive term and is therefore negative like the constant c in
the potential eq. (3.36).

Figure 3.14 show the dynamics and structure for this isomorph. It can be seen that the
isomorph is invariant to a good approximation. Dynamics is seen to be slower at higher
densities and faster at ρ = 1.10. Since this is an isomorph created from knowledge of one
state point (ρ, T ) = (1.20, 2.20) and the deviation from perfect collapse is systematic, it is
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Figure 3.15: γ as a function of density. The prediction is calculated from the starting state
point (ρ, T ) = (1.20, 2.20). Inset shows the correlation coefficient eq. 1.5 as function of
density. Notice both density axes is plotted on a log scale.

expected that the procedure used in section 3.2.3 can produce better isomorphs.

The prediction of γ from eq. 3.40 is seen to work well for all the densities. The
correlation decreases when density decreases and the ρ = 1.10 γ is seen to fall outside the
prediction. It is still impressive how good this isomorph is, taken into account we have
three terms, density has been increased by a factor 8/1.2 ∼ 7 and temperature by a factor
12900/2.2 ∼ 6000. Figures showing dynamics and the prediction of γ for the potentials
with α = −1, 0, 2 and 4 are shown in appendix B and are very similar to the ones for α = 6.
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3.4 A new perspective

In this section we give a new perspective on the question regarding whether or not
attractive forces play an important role. We show by simulations of a single component
Lennard Jones liquid that it is impossible to separate repulsive and attractive forces and
the important quantity is the reduced force.

When we perform simulations at high densities, it is done by running the simulation
in reduced units. Running all simulations in reduced units means we are changing the
potential and keeping the state point fixed. By running in reduced units at state point
(ρ, T ) = (1, 1) simply imply that the potential are expressed in reduced units. Remember
reduced units are denoted by a tilde and length and energy are measured in units of ρ−1/3

and kBT our reduced LJ potential is written:

φ(r̃) =
4ε

kBT


(
σρ1/3

r̃

)12

−

(
σρ1/3

r̃

)6
 . (3.41)

We simulate one state point for a single component LJ system at (ρ0, T0) = (0.85, 0.80),
from the fluctuations we calculate γ0 = 5.71. Using the density scaling function h(ρ̃) we
generate a set of isomorphic state points and plot the reduced potentials corresponding to
these state points in figure 3.16.
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Figure 3.16: Reduced potentials for an isomorph. φ(r̃) written in eq. (3.41) with densities
and temperatures indicated in the legend.

These potentials are constructed to give same structure and dynamics when all
potentials are simulated at (ρ, T ) = (1, 1) which is certainly the case as seen in figure
3.17. Choosing a different state point leads to same isomorphic invariance. See figures in
[Paper IV]. This picture shed light on an old debate regarding the role of repulsive versus
attractive forces [Paper IV]. In traditional understanding of liquid theory, repulsive and
attractive forces play distinct roles for the physics. Figures 3.16 and 3.17 are not consistent
with this picture where some of the potentials have insignificant attraction and are almost
purely repulsive. It is well accepted in liquid theory that attractions can be regarded



3.4. A new perspective 55

as a perturbation to the repulsive core. Weeks-Chandler-Anderson (WCA) [Weeks 1971]
proposed cutting and shifting the Lennard-Jones potential in the minima so it is purely
repulsive. This potential have shown to reproduce the Lennard-Jones potential well for
the structure, but are known to be too fast in the dynamics [Berthier 2009].
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Figure 3.17: Left: Structure for the potentials showed in figure 3.16 and the dynamics
probed by the mean-squared displacement.

Performing the same simulations for the WCA version of the potentials in figure 3.16
lead to similar, but less invariant, structure than the LJ isomorph. The dynamics is as
expected faster than the full LJ potentials. Figure 3.18 shows the reduced WCA potentials
of the same potentials shown in figure 3.16.
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Figure 3.18: Left: WCA versions of the potentials in figure 3.16. Right: The diffusion
coefficient for both the LJ potentials and the WCA counterparts.

The state points with the three lowest densities for the WCA potentials deviates
significantly when calculating the diffusion coefficient. These state points are the ones
in the LJ potentials that have significantly attractive contribution. For ρ ≥ 1.20 the
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attraction for the LJ potentials are vanishing as seen in figure 3.16.

The reason dynamics and structure are invariant in reduced units along a LJ isomorph
is not that they posses the same repulsion nor attraction, but because the reduced force is
virtually the same for all the potentials.
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Figure 3.19: The reduced force as function of time.

In figure 3.19 we plot the reduced force in the x direction as a function of time. They
are almost identical except at the extremas.

3.5 Conclusions

In this chapter we have derived a general form of density scaling relating density and
temperature at isomorphic state points. The scaling have been investigated thoroughly
for the KABLJ system and a family of potentials interacting with three IPL terms. The
scaling is found to work very well for large density changes (ρ = 1.2 → ρ = 10). From
the density scaling function, the effective exponent γ is predicted and seen to hold well for
all systems investigated. A new perspective is given where we show that it is impossible
to separate attractive and repulsive forces from each other. The important quantity is the
reduced force.



Chapter 4

Relating h(ρ) directly to the potential

In this chapter we compute the effective exponent of the potential n(r) and compare it to
the density scaling exponent γ(ρ). By relating the potential directly to the density scaling
exponent, we convert densities to lengths and find that there is an overall length scale
entering the expression for the effective exponent. We use four different single component
systems and argue that this length scale is to a good approximation the distance to the
top of the first peak in the radial distribution function.

4.1 Introduction

From simulations of LJ like systems we have a good understanding on the density
dependence on the scaling exponent. For all these systems we have seen that γ > n/3

with n being the exponent for the repulsive term in the potential and at high densities the
scaling exponent γ approached n/3. That is: γ goes down when density goes up.

However, from experiments on a strongly correlating liquid (van der Waals) it is
the other way around. Here it is seen that γ goes up when density goes up. It is
not straight forward to measure the density scaling exponent γ directly in experiments
[Gundermann 2011].

In [Paper II] experimental isochrones (constant relaxation time) is extracted for a real
van der Waals liquid (DHIQ) under high pressure. The procedure used to extract these
points can be found in [Paper II]. From these experimental data, different relaxation times
are scaled to collapse onto one master curve in a (ρ, T ) plot. Thereby extracting the density
scaling exponent γ as:

γ(ρ) =
d lnT

d ln ρ
(4.1)

In figure 4.1 it can be seen that this curve is not a straight line. Implying that there exist
is a density dependence on γ = γ(ρ). Furthermore, the curvature of the isochrones is
positive meaning γ goes up as density goes up.

We try to understand this apparent mismatch and the idea is very simple and straight
forward. We examine different interatomic potentials, or more precisely the effective slope
of it. We want to relate γ(ρ) to the potential, so we convert densities to lengths by simple
dimensional analysis

r = ρ−1/3 . (4.2)
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Figure 4.1: Figure taken from [Paper II]. Experimental isomorphs. (d) shows isobaric (black
and blue) and isothermal (green and red) relaxation times τ̃ in reduced units. (e) show
isochronal dependence log10(T ) versus log10(ρ) determined for a given reduced relaxation
time τ̃ . (f) curves from (e) shifted to collapse. See text in figure. It is seen that the
curvature in the (ρ, T ) phase diagram for these isochrones is positive implying γ goes up
when density goes up.

In [Bailey 2008b] it is shown that by computing successive ratios of the potential dif-
ferentiated it is possible to extract an effective IPL exponent n of order p:

n(p)(r) = −rv(r)(p+1)(r)

v(r)(p)
− p . (4.3)
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We need at least p+1 differentiations to get the p’th order n and we show in section 4.4 and
4.5 that it is most likely the n(2)(r) effective exponent to use when describing γ(r). This is
consistent with a low temperature analysis of a crystal made in [Bailey 2008b] concluding
we should use n(2) or higher orders of n. Replacing density with distance using (4.2) in
γ(ρ) and equating it to the effective exponent n(2)(r) leads to:

n(2)(r) = 3γ(ρ−1/3) = 3γ(r) . (4.4)

We know that γ is state point dependent and it is also a function of temperature γ = γ(ρ, T ).
In [Paper IV] we state that γ is only a function of density. This is the zeroth order
approximation and works well. Going to next order we seek to incorporate the temperature
dependence in the prediction of γ. The temperature dependence is built in by introducing
a length parameter Λ which is temperature dependent Λ = Λ(T ).

n(2)(r) = 3γ(r · Λ). (4.5)

The exact temperature dependence of Λ is not fully understood, but we shall see how it
connects to the top of the first peak in the radial distribution function in the following
sections. The position of the first peak in the radial distribution function is defined as the
distance where the volumetric maximum is located:

Λtop = max(4πr2g(r))top . (4.6)

The subscript top denotes top of first peak and it is understood that Λtop is a length from
zero to the distance where the maximum of the position of the first peak is located. An
example of how Λtop is extracted for four different state points can be seen in figure 4.2.
The unscaled radial distribution functions (without the volumetric factor 4πr2) are seen
in left part of figure 4.4.
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Figure 4.2: Radial distribution function times 4πr2 with the position of the maximum of
the first peak Λtop indicated by vertical broken lines. These are the starting state points
for the LJ isomorph. The densities is 1.00 for all and the temperatures together with Λtop

can be seen in the legend.
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Beside using Λtop in equation (4.5) we also use it as a free fitting parameter Λfit. The
distance to the center of mass for the first peak was investigated as a parameter, but with
poor scaling.

4.1.1 The systems

In this chapter four potentials are investigated for an effective exponent of the poten-
tial. By changing density and keeping the relaxation time constant (tracing out an
isomorph) it is possible to probe the potential at different distances. By doing this we
have a direct measure of how much each term in the potential are contributing to the
dynamics and structure. In this way we have a specific procedure of how to relate the
interatomic potential directly to the dynamics. To simplify things we focus purely on sin-
gle component systems and choose 4 fundamentally different potentials as seen in figure 4.3.

The four systems investigated are:

v1(r) = 4ε

{(σ
r

)12
−
(σ
r

)6}
(4.7)

v2(r) =
ε

2

{(σ
r

)12
+
(σ
r

)6}
(4.8)

v3(r) = ε

{(σ
r

)18
−
(σ
r

)12
+
(σ
r

)6}
(4.9)

v4(r) = ε

{(σ
r

)18
− 2

(σ
r

)12
+
(σ
r

)6}
(4.10)

Model system v1(r) (4.7) is the standard Lennard-Jones potential. v2(r) (4.8) is the purely
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Figure 4.3: Potentials studied in this chapter. Inset zoom in on the local maxima for the
potential with three terms and attraction.

repulsive version of the Lennard-Jones potential. Model system v3(r) (4.9) is similar to
the purely repulsive Lennard-Jones because it is decreasing monotonically despite the fact
that a negative term is present. Potential v4 (4.10) is similar to the normal Lennard-Jones
because it has a potential well with a minima (and maxima). The potentials are plotted
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in figure 4.3 were the inset show a zoom of the local maxima of system (4.10). For all
model systems we simulate four isomorphs at different temperatures. These four systems
behaves very different. Because single component systems crystallize easily, dynamics for
all these systems is fast and does not change significantly. In the following sections we will
focus on structure.

4.2 Lennard-Jones

Four state points with density = 1.00 and temperatures = {1.00, 1.50, 2.50, 5.00} was used
as starting state points for different isomorphs. The LJ system undergoes a phase transition
at low densities close to the triple point [Hansen 1986] so we stick to densities above 0.85.
In all of the four isomorphs, we simulated a density range from 0.85 up to 8.00. In this
way we are sure to visit low density state points and high density state points. The triple
point for a single component Lennard-Jones liquid is (ρ, T ) = (0.85, 0.66) [Ahmed 2009]
and since an isomorph have invariant structure and dynamics it means that it also describes
the freezing and melting curves. Lindemanns criterion for melting line relates the mean
vibrational thermal energy in the crystal to an interatomic distance. It is independent of
pressure and therefore fulfills the isomorph theory. [Khrapak 2011] and Morfill actually
found that the freezing and melting curves for the 12-6 LJ system must have the functional
form:

T = Aρ4 +Bρ2 . (4.11)

Which is seen to be the generalized density scaling function of the isomorph theory.
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Figure 4.4: Left: Initial conditions for the isomorphs. Right: Isomorphs simulated from
the state point shown to the left. Densities range from 0.85 up to 8 for all of them. Legend
indicate the starting state point from where the isomorph was generated.

From [Ingebrigtsen 2012] we know that the physics for strongly correlating liquids is
described by the interactions of the nearest neighbors. We believe that the reason for γ

changing on an isochore is that the first peak of the radial distribution function changes.
As temperature is increased the radial distribution function g(r) decreases in height and
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the first peak moves to shorter distances. As seen on figure 4.4 it also broadens.

We used the density scaling function h(ρ) to generate the isomorphs:

h(ρ) = ρ4(γ/2− 1) + ρ2(−γ/2 + 2) . (4.12)

The starting state points and their respective γ’s can be seen in the legend of figure 4.4.
From these state points and the γ from the starting state point, we generate isomorphs
with density from 0.85 up to 8.00. At each state point we calculate γ from the fluctuations
and compare them to the prediction. Because of different γ’s at each isomorph we get
different predictions (γ is not just a function of density). The results can be seen in
figure 4.5 where a sketch of a LJ (ρ, T ) phase diagram is drawn together with the isomorphs.
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Figure 4.5: Left: γ as a function of density for the four isomorphs shown in figure 4.4
together with the prediction. Each isomorph follow their respective prediction well, but
all the points does not collapse. Right: A sketch of the LJ phase diagram with the four
isomorphs sketched as broken lines. The grey area is the coexistence region between solid
and liquid. V and L is abbreviations for liquid and vapour.

From the starting state point we calculate Λtop and Λfit and compare n(2)(r) = 3γ(r ·Λ)
with the respective Lambdas on figure 4.6. From this figure it is clearly seen that the
prediction agrees well with the simulated state points. The fitting gives obviously better
agreement than following the first peak, but the result is fairly good. See figure 4.15 where
the two Λ’s are plotted against each other along with the other systems.

4.3 Purely repulsive Lennard-Jones

Because the exponents in the potential are the same as the standard Lennard-Jones
potential, the same scaling function hold for this system. The biggest difference is that
γ is restricted to lie between 2 and 4. 2 and 4 is the low and high density limits for
γ. This potential is highly correlated as seen in figure 4.7 together with the structure
for isomorphic state points. This system is also prone to crystallization if temperatures
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first peak. See text and figure 4.2.

or densities exceed certain values. The isomorph describe the freezing and melting
curves. The height of the first peak can reach the same value as the Lennard-Jones
potential before crystallizing. The (ρ, T ) phase diagram does not have critical point
as seen in the standard LJ (fig. 4.5), there is no coexistence region separating liquid
from vapour. Figure 4.16 display one isomorph for all the systems in the (ρ, T ) phase di-
agram. See caption and text in that figure for a discussion of potentials and phase diagrams.
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Figure 4.7: The radial distribution function for the entire isomorph plotted in reduced
units. Inset show a zoom on the first peak. Structure is to a good approximation invariant
in reduced units on the isomorph.

Figure 4.7 show how invariant the structure is on one isomorph (the most viscous one,
closest to the freezing line). The isomorphs for the other state points are very similar. It
is seen that the lowest densities first peak moves to shorter distances. The starting state
point is at (ρ, T, γ) = (1.0, 1.0, 3.49). The density scaling function at this density and
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temperature is

h(ρ) =
CV,12

CV
ρ4 +

CV,6

CV
ρ2 = (γ/2− 1)ρ4 + (−γ/2− 2)ρ2 ' 0.75ρ4 + 0.25ρ2 (4.13)

where it can be seen that the ρ4 term contributes with 75% and the ρ2 contributes with
25% to the total heat capacity. The low and high density regimes bundle into two regions
separated by intermediate densities. Overall the structure is to a good approximation
constant on the isomorph. Notice that density is changed by a factor of 80 and temperature
is changed approximately with a factor of 106. Also plotted is the correlation coefficient
R which is very high for all state points. It has a dip at intermediate densities and is
approaching 1 at very low and very high densities. This is consistent with just one IPL
term, with 100% correlation, dominating at these limiting state points.

Again we test the isomorph prediction of equation (3.20). Following the procedure of
the Lennard-Jones system we arrive at figure 4.8. The legend indicate the starting state
points temperature. All starting state points have ρ0 = 1 and IM040 means T0 = 0.40 and
IM250 means T0 = 2.50 and so on.
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Figure 4.8: The effective exponent plotted against distance in reduced units: r = ρ−1/3.
Left with Λfit and right with Λtop.

It is seen on figure 4.8 that the prediction agrees well with simulated state points. The
Λtop is seen to be too high compared to the fitted value, but is definitely comparable.

4.4 Three terms, but purely repulsive

We use the same procedure as the two preceding systems and generate 4 isomorphs with
different structure. The structure is comparable to the Lennard-Jones isomorphs.

It is seen on figure 4.9 that the structure is not as invariant as the previous systems.
The tendency here is the same as the previous purely repulsive LJ potential that the low
and high densities bundle together with a gap in between them. Shown is the isomorph
with the highest temperature T = 9.00 on the ρ = 1.00 isochore.
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Figure 4.9: Left: The structure on this isomorph bundle into a high density structure and
a low density structure. Right: The correlation coefficient as a function of density.

The intermediate densities between the two bundles are the densities between the
n = 18 and n = 6 term in the potential. See figure 4.10 where the effective exponent
n(2)(r) is plotted together with the γ’s scaled with Λfit and Λtop.
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Figure 4.10: Effective exponent n(2)(r) together with 3γ(r · Λ). Left with Λ as fitting
parameter and right with position of first peak.

For the LJ and purely repulsive LJ systems it will always be possible to scale γ(r ·Λ) on
any order of n(p)(r) because it merely shifts the effective exponents left if Λ < 1 and right
if Λ > 1. Having three terms in the potential, like this one and the next, it is not sufficient
to scale the potential horizontally due to the maximum and minimum. To see what order
of the effective exponent n(p) that does the best job we plot the first 5 (p = 0 → 4) orders
of n in figure 4.11 together with the prediction of γ from eq. (3.40) and data points from
one isomorph.

The higher the order of n(p) is, the higher and lower the maximum and minimum gets.
The prediction of γ is seen to lie in between the n(1) and n(2) effective IPL exponent.
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Figure 4.11: Different orders of the effective exponent n(p) together with γ (black plusses)
and γ(ρ) (magenta) for one isomorph. No scaling involved (Λ = 1.00). The prediction of
γ(ρ) from eq. (3.40) is seen to fall between the n(1) (red) and n(2) (green) effective IPL
exponents.

4.5 Three terms, but with attraction

Because this potential has a well with a minima, the prediction of γ as a function of density
has a singularity. Just like the normal Lennard-Jones. But since it also has a local maxima
it has two singularities. The prediction of γ as function of density is

γ(ρ) =
d lnh(ρ)

d ln ρ
=

∑
n n/3ρ

n/3CV,n∑
n ρ

n/3CV,n
(4.14)

which mean that there is a singularity whenever the denominator of γ(ρ) is zero∑
n

ρn/3CV,n = 0 . (4.15)

Close to these singularities, the simulations become unphysical and we need to stay
away from these to have meaningful equilibrium simulations. The correlation coefficient
drops rapidly when the critical point is approached and temperature is predicted to be
negative between these singularities. See LJ phase diagram in figure 4.5. This implies
that the state points where the isomorph is physical are limited to densities from 0.90 and
above, like the normal LJ system, but also at very low densities where the potential is
repulsive again. In right of figure 4.12 the correlation for all state points in the isomorph is
shown. Left side of figure 4.12 show the radial distribution function for state points with
a correlation above 90%. At the lowest density = 0.10, the structure is, as seen before,
shifted to longer distances.

Figure 4.13 show the effective exponent n(2)(r) like the three other systems with Λ

equal to a fitting parameter and the top of the first peak. At short and long distances
(high and low densities) we see the the state points follow the prediction fairly well. The
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Figure 4.12: Left: Structure on the isomorph. Only strongly correlating state points is
included. Right: The correlation coefficient for all densities. At intermediate densities the
correlation disappears.

state points in between the two singularities are predicted to have negative temperatures.
Only the lowest density (largest distance r ' 2) is strongly correlating and densities above
0.9 (distances smaller than ∼ 1.04).
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Figure 4.13: The effective exponent n(2) as a function of distance together with the calcu-
lated γ for all state points. Left the scaling factor Λ is fitted. Right: The position of the
first peak is used as scaling factor Λ.

It is seen that away from the singularities the prediction match the simulation results
well. Between the two singularities, the predicted temperature is negative. Further support
for using n(2) as the effective exponent is given in figure 4.14 where the first 5 orders of n
is plotted together with γ just as was done in the previous system.

There is a lot of things going on on figure 4.14. The message of this figure is that the
width of the forbidden area between the two singularities where temperature is predicted
to be negative is for γ(r) almost identical for n(2)(r). Lower orders of n(p) are too narrow



68 Chapter 4. Relating h(ρ) directly to the potential

0.5 1 1.5 2 2.5
r

0

6

12

18

24

30

36

n(p
) (r

) 
=

 3
 γ

(r)

n
(0)

(r)

n
(1)

(r)

n
(2)

(r)

n
(3)

(r)

n
(4)

(r)
γ(r)
data points

Figure 4.14: Different orders of the effective exponent n(p) is plotted together with simula-
tion points and the prediction γ. Purple broken line is the prediction for γ and green line
is n(2) almost coinciding with each other.

and higher orders of n(p) are too wide.

4.6 Conclusions and discussion

It is possible to approximate the effective exponent γ derived from the isomorph theory
to an effective IPL exponent n(p) derived purely from the interaction potential. The right
order of n seems to be 2. Plotting the fitted values of Λ against the position of the first
peak results in almost a straight line. See figure 4.15 where a guide to the eye with
Λfit = Λtop also is plotted.
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Figure 4.15: Plotting Λfit against Λtop shows there is a correlation between the position of
the first peak and the effective exponent γ.

On figure 4.16 density and temperature is plotted against each other in a log-log plot.
These curves indicate freezing and melting lines in the (ρ, T ) phase diagram. The density



4.6. Conclusions and discussion 69

0.1 0.3 1 3
ρ

10
-2

10
0

10
2

10
4

T

LJ
LJ repulsive
3 terms repulsive
3 terms with attraction

Single component isomorphs

slo
pe =

 4

slo
pe

 =
 6

slope = 2
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morph for each system. These lines indicate freezing and melting curves for their respective
systems.

scaling exponent γ is given by:

γ(ρ) =
n(2)(ρ)

3
=

d lnT

d ln ρ
. (4.16)

The curvature of these plots, d2 lnT/d(ln ρ)2, are seen to have different signs, depending
on whether or not attraction is present. The standard LJ and the three terms with
attraction have negative curvatures where the purely repulsive systems LJ and three terms
have positive curvature. If the curvature is positive then γ increases as density increases
and if it is negative it decreases when increasing density.
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Chapter 5

Introduction

In this chapter we introduce the rolypoly and motivate our work.

5.1 Motivation

Great progress in particle synthesis have created a massive interest in designing nano
particles with the aim of producing materials bottom up [Whitesides 2002, Glotzer 2007].
By customizing the particle it is possible to achieve desired material properties for
targeting specific crystal structures. These nano particles are predicted to become the
building blocks of tomorrows materials and are found in a variety of anisotropic shapes.
Studies with truncation or rounding of corners on polyhedra particles, reveals many
different thermodynamically stable crystal phases, [Damasceno 2012a, Ni 2012] including
quasi-crystals. Understanding these self assembly phenomena is complex and it is natural
to simplify the problem by eliminating interactions. These hard particle models are not
only of interest to the material scientists, but raises fundamental problems in mathematics
and computer science [Chen 2010] and serves as a stepping stone towards understanding
self assembly.

By eliminating Van der Waals, electrostatic and magnetic interactions the system
consists of hard impenetrable particles. These systems are subject to phase transitions,
and are driven into equilibrium by entropic forces. The free energy of the system depends
on translational and orientational degrees of freedom and the system will eventually fall
into equilibrium when the free energy is minimized. The most studied hard particle is
the hard sphere and it is well known that this particle will form a stable face centered
cubic (fcc) [Bolhuis 1997a]. The difference in free energy between the (fcc) lattice and
hexagonal close packed (hcp) is small but present. Hard rod or disc like particles form
liquid crystals if they are sufficiently anisotropic [Bolhuis 1997b, Marechal 2011] and
particles with shapes that are close to spherical order into plastic crystals known as rotator
phases [Vega 1997, Bolhuis 1997b]. The goal is to relate the shape of the particle directly
to the target structure [Damasceno 2012b, de Graaf 2012].

In this chapter we perform Monte Carlo simulations of solids with constant width.
Solids of constant width are sometimes referred to as spheroforms. The simulated particle
is a two parameter object that are varied continuously from a sphere to a regular rotated
Reuleaux triangle1. Shapes in between can rightfully be termed a non regular rotated
Reuleaux triangle. Instead of calling it a non regular rotated Reuleaux triangle we

1See e.g. http://en.wikipedia.org/wiki/Reuleaux_triangle.

http://en.wikipedia.org/wiki/Reuleaux_triangle
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provide it with a short name: the Rolypoly meaning round shaped.

The purpose of the simulations is two fold. For the Rolypoly we will study:

• How dense the particles can be packed

• The glass forming ability (nucleation rate)

The densest packing of a solid is a mathematical challenge that keeps fascinating
mathematicians. Aristotle mistakenly thought the regular tetrahedrons could fill space
completely. It took many years before someone argued against him and the arrangements
for densest packing of tetrahedrons is a record that keeps getting beat [Chen 2010].

The glass forming ability is a measure of the ability to crystallize and is proportional
to the nucleation time. It has recently been discovered that single component ellipsoids
are good glass formers [Letz 2000] which helped motivating this study. We calculate the
glass forming ability of a selected number of rolypolys.

5.2 Introducing the rolypoly

The rolypoly is a solid of constant width, which means that the measured distance
between two parallel plates is constant irrespective of the direction in space. To the best
of our knowledge no one has simulated this particle/geometry before. It is a family of
two parameters which can be changed continuously from a sphere to a regular rotated
Reuleaux triangle.

The rolypoly is defined as 6 circular arcs with varying radii, choosing an overall
length for the constant width (we choose 2 for convenience) the particle can be uniquely
determined by two parameters. Draw an isosceles triangle and extend the lines, these
three lines intersect at three vertices used as centers for the circular arcs. See figure 5.1.
The two parameters a1 and a2 in the rolypoly are defined as the radii of the top and lowest
side region. See figure 5.1. In two dimensions, the extremes are a circle and a Reuleaux
triangle. The three dimensional rolypoly is simply rotated around its center of axis.

We define the constant width c to be 2 in all our simulations. The two parameters are
then restricted to the interval

0 ≤ a1 ≤ c/2 = 1 and 0 ≤ a2 ≤ c/2 = 1 . (5.1)

A plot of the Rolypolys can be seen in figure 5.2 where a1 and a2 are varied in steps of
0.2 from 0 to 1.2

2Elizabeth R Chen has kindly provided me with a mathematica script to generate the Rolypolys in
figure 5.2.
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Figure 5.1: Rolypoly in 2D, the different colors represent different domains of the rolypoly
shape. The colors are approximate the same as in figure 5.2 where a 3 dimensional version
is displayed for a selected number of parameters.
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Figure 5.2: The family of Rolypolys. a1 and a2 are varied in steps of 0.2. If both of them
are zero, the most anisotropic shape - a rotated Reuleaux triangle - is obtained. If one
of a1 or a2 is one the shape is a sphere. Different colors represent different regions of the
Rolypoly. Approximate the same color coding as figure 5.1.



Chapter 6

Densest packing

We calculate the densest packing of rolypolys by simulating 1, 2, 3 and 4 particles in the
unit cell. The numerical results for one particle in the unit cell is confirmed by an analytical
expression. We discover different topological domains for two particles in the unit cell. The
densest packing is not achieved for the most anisotropic particle, but has a global maximum
for (a1, a2) = (0.00, 0.07) with two particles in the unit cell. Simulations with three and
four particles did not reach higher packing fractions than for two particles.

Packing of solids have intrigued mathematicians since the ancient Greeks. It is of
academic interest to see how these geometries should be arranged in order to fill most
possible of space. We attack this problem by performing Monte Carlo simulations using
the code Incsim (INteractive C SIMulation) and the visualization program Injavis (INter-
active JAva VISualization) both developed by Michael Engel at the University of Michigan.

The procedure is simple and consists of an algorithm compressing the simulation box
in the NPT ensemble and allowing shear deformations. Starting from a low pressure (a
dilute system) the simulation box is slowly compressed and sheared until an unreasonable
high pressure ensure that the packing fraction does not change significantly (going to
the fifth significant figure). Iterating this procedure by keeping the highest packing
fraction and the configuration we obtain the densest packing. This algorithm does not
guarantee that the densest packing is found. The procedure was used with one, two and
three particles in the unit cell. In what follows, we only consider mono disperse simulations.

The validity of the program was done by visual inspection to see if any overlap occurred
and by recovering literature data from the hard sphere model. The densest packing of hard
spheres was proofed by Gauss in 1831 to be

φsphere =
π√
18

' 0.74048... (6.1)

There exist two different arrangements for the sphere that achieve this packing fraction.
It is the fcc and hcp arrangements and due to the slightly lower free energy for the fcc
[Bolhuis 1997a], this configuration is obtained in simulations and experiments. Our
densest packing for two particles in the unit cell does not distinguish between fcc and
hcp since there is only two layers and the third layer determines if it is the fcc or hcp lattice.
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6.1 One particle in the unit cell

For one particle in the unit cell, the densest packing is found to have a lower packing
fraction than the sphere. Figure 6.1 show the results of the simulations where it is seen
that increasing anisotropy (decreasing a1 and a2) implies decreasing packing fraction.
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Figure 6.1: Densest packing with one particle in the unit cell. This result was achieved by
numerical simulations. Shown is 1012 − 200 + 1 = 10002 different geometries. a1 and a2 is
varied in steps of 0.01 from 0 to 1. These results are confirmed analytically by Elizabeth
R Chen via eq. (6.2).

The densest packing configuration for three different shapes, the sphere (a1, a2) = (1, 1)

an intermediate shape (a1, a2) = (0.5, 0.5) and the rotated Reuleaux triangle
(a1, a2) = (0, 0), is shown in figure 6.2. Here 4 particles are shown to visualize how
they arrange for densest packing if there is one particle in the unit cell.

The packing fraction for the most anisotropic shape (a1 = a2 = 0) is found numerically
to be 0.63563 and for the sphere 0.74048. These results are consistent with the analytical
solution found by Elizabeth R Chen:

φ(b1, b2) =
π√
18

[
1 + 3(b2 − b1)

√
b1(b1 + 2b2)

+ 3b21 − 3b22 arcsin

(√
b1(b1 + 2b2)

b1 + b2

)] (6.2)

where b1 and b2 is defined as: b1 = 1− a1 and b2 = 1− a2. The a1 = a2 = 0 shape is seen
to be1:

φ(1, 1) =
π(4− π)√

18
' 0.63563... (6.3)

Consistent with our numerical finding.
1Recall: π = 3arcsin(

√
3/2).
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Figure 6.2: Configurations for densest packing with one particle in the unit cell. (a) is the
sphere with parameters and packing fractions: a1 = a2 = 1, φ ' 0.74 , (b) is an intermediate
shape with parameters: a1 = a2 = 0.5, φ ' 0.71 and (c) is the most anisotropic shape with
parameters a1 = a2 = 0, φ ' 0.64.

6.2 Two particles in the unit cell

Having more than one particle in the unit cell increases the densest packing. This is
expected because it resembles a tetrahedra which is known to fill more than 85 % of space
if packed well [Chen 2010].
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Figure 6.3: Densest packing for two particles in the unit cell. Topologically different do-
mains are clearly visible, a1 and a2 are varied in steps of 0.01 from 0 to 1 giving 10002

different geometries. The packing fraction clearly exceeds the densest packing for spheres.

In figure 6.3 the densest packing for two particles in the unit cell is plotted. It seems
as the a1 = a2 = 0 particle is the most space filling particle, but a closer look reveals
that it is the (a1, a2) = (0.00, 0.07) with a packing fraction = 0.7698... compared to the
0.7696... for the most anisotropic (0, 0) particle. We plot the two borders of figure 6.3
with a1 = 0 and a2 = 0 in figure 6.4 where a maximum is present for the (0.00, 0.07)
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particle. We also notice that the algorithm does not always find the densest arrangement.
It is clear that there are different topological domains and it happens that the algorithm
finds an arrangement at a domain with lower packing fraction. On figure 6.4 the particle
(a1, a2) = (0.00, 0.27) has a packing fraction of ∼ 0.755 equal to the green domain in figure
6.3, but it is expected to be in the yellow-orange domain. Longer simulations with more
iterations could potentially solve this problem.
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Figure 6.4: Packing fraction lines for a1 = 0 and a2 = 0. The densest packing is not
a1 = a2 = 0, but a1 = 0 and a2 = 0.07 as indicated in the figure. This arrangement and
the (a1, a2) = (0.85, 0.00) together with (0.20, 0.60) is shown in figure 6.5.

Three different configurations: (a1, a2) = {(0.85, 0.00); (0.20, 0.60); (0.00, 0.07)},
belonging to three different topological domains are shown in figure 6.5. For ease of
visualization, particles pointing up are colored blue and particles pointing down are
colored red. Two adjacent layers, in the (0.85, 0.00) particle densest packing arrangement,
are separated vertically and horizontally by approximate one particle diameter whereas the
(0.00, 0.07) particle arrangement is separated close to half a particle diameter. The layers
in the (0.20, 0.60) particle arrangement are mixed between the two other arrangements.
The packing fractions are written in the figure caption. A more detailed analysis is
required to understand these different domains.

Simulations with three and four particles in the simulation box was performed, but did
not reach higher packing fractions. Furthermore the algorithm had difficulties finding the
optimal packing for all the particles. Three and four particles in the simulation box led to
a mix between the one and two versions with no higher packing fraction. See appendix
C.1.

6.3 Conclusions for densest packing

Densest packing for the rolypoly with one and two particles in the unit cell is reported
in figure 6.1 and 6.3. For one particle in the unit cell we found an analytical solution
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Figure 6.5: Densest particle arrangements for two particles in the unit cell. (a) is the
(a1, a2) = (0.85, 0.00) particle with a packing fraction of 0.7621, (b) is the (a1, a2) =

(0.20, 0.60) particle with a packing fraction of 0.7521 and (c) is the (a1, a2) = (0.00, 0.07)

particle with a packing fraction of 0.7698. These configurations represent different topo-
logical domains. All particles are identical, but the particles pointing up are colored blue
and the particles pointing down are colored red.

confirming our numerical results. The densest packing is less dense for one particle in the
unit cell and more dense for two particles in the unit cell. The highest density achieved for
two particles in the unit cell is the (a1, a2) = (0.00, 0.07) particle with a packing fraction
' 0.7698... Densest packing for two particles in the unit cell displayed a variety of different
topological domains. Three and four particles in the unit cell did not display higher packing
fractions than two particles in the unit cell.
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The glass-forming ability

The mean nucleation time 〈τ〉 is calculated from NPT simulations by averaging over
20-50 independent runs. We find that these nucleation time curves display a minima 〈τ∗〉
when plotted as a function of pressure and corresponds to the glass forming ability of
the particle. The glass forming ability increases with increasing anisotropy. The high
pressure part of the nucleation time curves are dominated by the self diffusion coefficient
consistent with classical nucleation theory. An estimation of the crystallization packing
fraction φcryst is made and compared to the isoperimetric quotient (iq) (asphericity). From
simulations for the crystallization packing fraction φcryst, the glass forming ability 〈τ∗〉
and densest packing for one particle in the simulation box, we suggest the rolypoly can, to
a first approximation, be reduced to depend on one parameter: the iq.

The glass forming ability is a measure of a particles abilities to crystallize. We define
it as the minimum of the nucleation time τ , the time before a nucleation start and grows.
We use the NPT ensemble and adopt the same procedure as [Pedersen 2011], performing
20-50 simulations at each state point and record a mean crystallization time 〈τ〉. The
order parameter used to detect crystallization is a volume change of the simulation box.
A critical packing fraction φc was chosen as a boundary between liquid and solid phases
and the nucleation time is defined to be the time when the packing fraction φ(t) equals
the critical packing fraction φc: φ(τ) = φc. In figure 7.1 we plot an example of how the
nucleation time was determined where the packing fraction as a function of time steps
is shown for 20 identical simulations with different initial conditions. All simulations are
performed with 1000 particles and the critical packing fraction between liquid and solid
was in this case: φc ∼ 0.56.

We investigate finite size effects by simulating the sphere with 100, 500, 1000, 2000,
4000 and 8000 particles, and extract the mean nucleation time 〈τ〉. The system should be
large enough to have several nucleation sites during the simulation. For systems with less
than 1000 particles the mean nucleation was considerable smaller than simulations with
more than 1000 particles. See figure C.2 in appendix C.2 for system size dependence on
〈τ〉. [Pusey 2009] et al. also studied finite size dependence of the hard sphere and found
that there was no difference in the nucleation time for systems with 2000 and 100 000
particles. The absolute values of the glass forming ability is not important as long as we
are consistent in all our simulations.

We produced consistency simulations with 1000 particles at low pressure to confirm
the pressure – packing fraction liquid line of the hard sphere phase diagram [Mulero 2008].
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Figure 7.1: Detection of crystallization. 20 independent simulations with different initial
conditions was quenched from a dilute system with low pressure to the desired pressure.
The liquid and solid packing fractions are denoted with φl and φs respectively and the
critical packing fraction is denoted φc .

See section C.3 in appendix C.

All shapes crystallize into a rotator fcc structure (plastic crystal) consistent with e.g.
the hard ellipsoids [Letz 2000]. It therefore makes sense to compare the crystallization
times for different particles. See figure 7.6 for an example of a simulation that crystallized
into a rotate fcc lattice.

We select a number of particles on the diagonal a1 = a2 and some with a2 equal to
zero to study in detail. We perform NPT simulations at different pressures for each shape
and plot the mean nucleation time against pressure.

Figure 7.2 show the mean nucleation time as a function of reduced pressure. The
pressure is measured in units of [Vp/kBT ] where Vp is the volume of the particle and we
use the unit system with kBT = 1. These findings are consistent with [Pusey 2009] where
the mean nucleation time is extracted for hard spheres and poly disperse solutions. They
study hard spheres and polydisperse systems by molecular dynamics simulations in the
NV T ensemble. The main conclusions are that that increasing polydispersity slows down
crystal nucleation and above a certain limit of polydispersity, crystallization is completely
avoided. In their NV T simulations they find the minima of the nucleation time curve 〈τ∗〉
of the hard spheres to have a packing fraction: φ(〈τ∗〉) = 0.56, consistent with our liquid
packing fraction at pressure p∗ = 11.5 giving φ(〈τ∗〉) = 0.555.

From figure 7.2 it seem as there exist some universal behavior for the high pressure
part of the mean nucleation time curves. At low pressure nucleation is slow and diverges
towards the melting pressure. Just above the melting pressure the thermodynamic driving
force (∆µ) is small and increases with increasing pressure. The thermodynamic driving
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Figure 7.2: Glass forming ability for different shapes, the two numbers in the legend indicate
the particle parameters (a1, a2). The minimum of the sphere (a1, a2) = (1.0, 1.0) has
pressure 11.5Vp/kBT . At this pressure, the liquid packing fraction is ∼ 0.555 consistent
with [Pusey 2009] who found 0.56 as the minima for their nucleation time. The arrow
indicates a typical standard deviation on a datum point. Standard deviations becomes a
little smaller for fast crystallization and a little higher for slow crystallization. Time are
measured in units of MC sweeps.

force can to a first approximation be written:

∆µ ≈ −∆V (p− pm) , (7.1)

where ∆V = Vliquid − Vsolid is the volume difference between liquid and solid phases pm
is the melting pressure. At high pressure kinetics become slow and starts dominating
the nucleation. According to Classical Nucleation Theory (CNT) the nucleation rate k is
proportional to the diffusion coefficient. The nucleation rate is given by [Turnbull 1949]:

k = A(T ) exp

{
−∆G∗

kBT

}
, (7.2)

where ∆G∗ is the height of the free energy barrier and A(T ) is a kinetic prefactor
proportional to the diffusion coefficient. Inserting the prefactor A(T ) and the Gibbs free
energy from CNT [ten Wolde 1996] leads to

k =

√
∆µ

6πkBTNc

24DsN
2/3
c

vlλ2
exp

{
− 16πγ3vs
3kBT (∆µ)2

}
. (7.3)

In this expression we have: ∆µ = as the chemical potential between the solid and
liquid, Nc = −32

3 πvsγ
3(∆µ)−3 is the size of the critical nucleus (expressed in numbers of

particles), λ is an atomic length, vs and vl is the volume per particle in the solid and liquid
respective, γ is the surface tension, T is temperature and last but not least we have Ds as
the self-diffusion constant. The nucleation time τ is inversely proportional to the diffusion
coefficient 〈τ〉 ∝ D−1

s .

We calculate the diffusion coefficient from the mean squared-displacement of the parti-
cles and because we are dealing with NPT simulations where the size of the box fluctuates,
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length is ill defined and the mean-squared displacement does not make sense. Instead we
extract the self diffusion coefficient in the liquid phase from NV T simulations at pack-
ing fractions corresponding to pressures lower than the melting pressure. The diffusion
coefficient is found by fitting to the mean-squared displacement [Allen 2010] :

Ds = lim
t→∞

1

6t
〈|r(t)− r(0)|2〉 . (7.4)

With units of area per time. We assume the pressure dependence on the diffusion coefficient
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Figure 7.3: Diffusion vs. pressure. Assuming a straight line in this plot means diffusion as
a function of pressure is described by an exponential function: D(p) = c1 exp

(
− p

c2

)
with

c1 and c2 being fitting constants. Numbers in the legend refer to the particle parameters
(a1, a2). Left: From liquid state points. Right: comparing with diffusion calculated from
meta-stable state point.

to be exponential (Arrhenius behavior):

Ds(p) = c1 exp

(
− p

c2

)
, (7.5)

where c1 and c2 are constants and extrapolated into the meta stable state points. We
ensure that particles have moved a minimum of 10 diameters (100 in the mean-squared
displacement) in average to ensure long time behavior.

From figure 7.3 we conclude that this relation is obeyed to a good approximation.
For some state points in the meta stable regime it was possible to calculate the diffusion
coefficient because it did not crystallize and it was possible to simulate long time behavior
as seen in figure 7.3.

From CNT we have that diffusion is proportional to the nucleation rate. Our nucleation
times 〈τ〉 time diffusion are according to CNT then predicted to be constant. In order to
check this we define the diffusion length to be:

lDs =
√

〈τ〉Ds . (7.6)
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The diffusion length are then plotted as a function of pressure in figure 7.4. At low pressure
diffusion is not controlling the nucleation time, the high nucleation time is due to the low
thermodynamic driving force, see eq. (7.1). At high pressure, the diffusion lengths are
approaching a constant value, indicating diffusion is dominating this part of the curves.
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Figure 7.4: Diffusion length = square root of glass forming ability times self diffusion
plotted against pressure. The legend indicate the particle with parameters (a1, a2). At high
pressures the curves seem to approach a constant value indicating diffusion is controlling
this regime.

In order to check the universality of these curves we would have liked to subtract the
thermodynamic driving force by plotting the diffusion length as p − pm, but since we do
not have a good estimate for the melting pressure we can not do this.

[Pusey 2009] et al. discuss three different nucleation regimes. The first regime
corresponds to conventional CNT where a nucleus must grow large enough to overcome
the free energy barrier and is the steep part of the diffusion length curves. [Auer 2001]
calculated this barrier height for the hard spheres and found that it dropped rapidly
from packing fractions 0.521 - 0.534. Interpolating their results suggest that this height
becomes comparable to kBT at packing fractions 0.55 − 0.56 [Pusey 2009] corresponding
to pressures 10 - 11 — around the minima of the nucleation time curves 〈τ〉 for the hard
spheres. CNT assumes homogeneous nucleation where one critical nucleus start the entire
crystallization process. We believe that we have heterogeneous nucleation nucleation with
several nucleation sites present in the sample.

The second regime is where nucleation only requires to move about one particle
diameter. The authors of [Pusey 2009] suggest that we should refer to this regime as
spinodal nucleation where the driving force is strong and there is practically no free energy
barrier to overcome. The particles just need to rearrange in order to crystallize. This is
where our diffusion length is approximate one.

The third regime corresponds to higher pressure and packing fractions. In this regime
the nucleation time becomes small compared to the relaxation time. We do not see any
evidence of this regime and the authors of [Pusey 2009] does not understand or explain
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the mechanisms of this regime.
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Figure 7.5: Sketch of the three different nucleation regimes. Classical Nucleation Theory
predict: ∆G ∝ r3cbulk + r2csurf with constants cbulk < 0 and csurf > 0.

A sketch of the free energy barrier in the three different regimes is drawn in figure 7.5.
The Gibbs free energy for a spherical nucleation crystallite with radius r is according to
CNT given by

∆G =
4

3
πr3ρs∆µ+ 4πr2γ (7.7)

where ρs is the number density in the solid ∆µ(< 0) is the chemical potential and γ is the
surface tension. These two terms represent bulk and surface properties respectively. It is
energetically favorable to create crystallites where it is unfavorable to create surface energy.

7.1 Liquid to solid crystallization packing fractions

In the previous section we calculated the nucleation rates. This was done in the NPT

ensemble where we found a minimum pressure corresponding to the fastest nucleation
time 〈τ∗〉. At low pressure these curves are diverging towards the melting pressure. In
this section we simulate 1000 particles in the NV T ensemble at different packing fractions
and record the lowest packing fraction where crystallization is observed during the simula-
tions. This packing fraction is higher than the freezing packing fraction (φfreeze = 0.495

for hard spheres) and will be named and denoted the crystallization packing fraction: φcryst

The crystallization packing fraction is a measure of how dense a particle need to be
packed before it crystallizes. CNT predicts that the energy barrier to be crossed decreases
with increasing packing fraction. Assuming CNT holds for the rolypolys the lowest packing
fraction where crystallization is observed is a rough measure of the ability to crystallize.
High packing fraction means good glass former and bad crystallizer.

Melting packing fractions was calculated for particles with parameters a1 and a2 in
steps of 0.1 from 0 to 1 making a total of 112 − 19 = 102 different particles1. It is done
by simulating 1000 particles in the NV T ensemble starting from a liquid configuration

1Remember -19 comes from a1 or a2 equal one is a sphere
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Figure 7.6: Detection of crystallization for the (a1, a2) = (0.4, 0.4) particle. Left: is the final
configuration together with the diffraction and bond order diagram shown for a simulation
of ∼ 107 MC sweeps at packing fraction 0.56. Right: Same simulation parameters, but
at packing fraction 0.57. The simulation with φ = 0.57 clearly crystallized where the
simulation with φ = 0.56 did not.

with a low packing fraction and increasing it in steps of 0.01 and record the packing
fraction when crystallization first occurred. Crystallization was detected by examining
the configuration visually, by the diffraction pattern and using the bond order diagram.
An example of crystallization with the particle (a1, a2) = (0.4, 0.4) can be seen in figure
7.6 where the configuration, diffraction pattern and bond order diagram for the nearest
neighbor is shown for the final configuration (∼ 107 sweeps) for packing fractions 0.56 and
0.57.

Calculating a phase diagram accurately, requires in principle free energy calculations or
advanced simulation techniques such as Umbrella Sampling or Transition Path Sampling.
The main hurdle is that nucleation is a rare event and you should in principle wait
infinitely time to assure the sample nucleates or melt. Here we simply simulate the
different particles at different packing fractions. The more anisotropic it gets, the longer
the simulations takes before it crystallizes. It was necessary to run the particle (0, 0) for
∼ 108 MC sweeps before it crystallized where the sphere only need ∼ 105 MC sweeps. The
results for the the packing fractions can be seen in figure 7.7.

With this method of determining the crystallization packing fraction, it is not certain,
that a lower packing fraction does not crystallizes, if it was simulated longer and or with a
different initial condition. It gives a rough estimate for the melting packing fraction. For
the hard sphere we get φcryst = 0.53 consistent being in the meta stable regime for the
hard sphere model which has a melting packing fraction of 0.545 and a freezing packing
fraction of 0.495 [Rintoul 1996].
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Figure 7.7: The lowest packing fraction where crystallization first was observed φcryst. This
is at a higher packing fraction than the freezing packing fraction [Marechal 2011].

7.2 Reducing the rolypoly to one parameter

In this section we will argue that the rolypoly, to a first approximation, can be reduced to
depend on one parameter: the isoperimetric quotient (iq) defined as

iq = 36π
V 2

S3
, (7.8)

where V is the volume and S is the surface of the particle. It is done by comparing
the iq to the densest packing for one particle in the unit cell, our crystallizing packing
fraction φcryst given in the previous chapter and the glass forming ability. As will
become clear, these measures, the densest packing for one particle and the lowest
packing fraction where crystallization was observed resembles the iq. For the iq and dens-
est packing, we have analytical solutions and they are not identical, but deviates only little.

The isoperimetric quotient is defined in eq. (7.8) and has a lowest upper bound being
one for a sphere. It is a measure of the deviations from a sphere, the lower iq is, the less
spherical the particle is.

As can be seen in figure 7.8 the isoperimetric quotient is very similar in shape to the
densest packing for one particle in the simulation box, but they are not identical as can be
seen by inspection of the densest packing equation (6.2) and the volume and surface of the
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Figure 7.8: Isoperimetric quotient for the rolypoly. The most aspherical particle has a
iq = 0.852...

rolypoly:

V (b1, b2) =
4π

3

[
1 + 3(b2 − b1)

√
b1(b1 + 2b2)

+ 3b21 − 3b22 arcsin

(√
b1(b1 + 2b2)

b1 + b2

)]

S(b1, b2) =2π

[
2 + 2(b2 − b1)

√
b1(b1 + 2b2)

+ 2b21 − 2b22 arcsin

(√
b1(b1 + 2b2)

b1 + b2

)]
(7.9)

Remember b1 = 1− a1 and b2 = 1− a2. It is seen that the densest packing is proportional
to the volume and not the surface and therefore iq(a1, a2) 6= Γφdens(a1, a2) with Γ being
the same proportionality constant for all particles and the subscript: dens, indicating that
it is densest packing.

Likewise it seems as the crystallizing packing fraction φcryst(a1, a2) is proportional to
the iq. We address this question by plotting the densest packing as a function of iq in
figure 7.9 where it is seen that the curves to a first approximation is linear.

7.2.1 Comparing this work to hard aspherical spheres

[Miller 2010] et al. study the crystallization of hard aspherical particles by generating a
number of random aspherical particles by random perturbations to the sphere. On each
particle they perform a set of NPT simulations from low to high pressure and detect
whether or not the particles crystallize during the simulation. They divide all their particles
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Figure 7.9: Left: The densest packing and crystallization packing fraction φcryst(a1, a2) as a
function of iq. φcryst(a1, a2) is discretized in steps of 0.01, but is too a first approximation
linear. Right: The glass forming ability calculated as the fastest nucleation time: 〈τ∗〉.
Black line is particles from the diagonal with (a1, a2) = (0.2, 0.2) being the most aspherical.
The error bars represent one standard deviation.

into two regimes: particles that easily crystallize and particles that does not and find that
they need two parameters to describe the boundary between particles that easily crystallize
and particles that does not. The first is the asphericity A, defined in terms of volume to
surface ratio of a particle αp = Sp/Vp with respect to that of a sphere αs = Ss/Vs is:

A = 1− αp

αs
(7.10)

The second parameter is the orientational symmetry q. It is constructed from the eigen-
values of the inertia tensor Iij as

q =
(λ1

2 − λ2
2)2 + (λ1

2 − λ3
2)2 + (λ2

2 − λ3
2)2

2(λ2
1 + λ2

2 + λ2
3)

2
(7.11)

with λ1, λ2 and λ3 being the three principal eigenvalues. q and A are constructed so
they both are 0 for a sphere and increase with increasing asphericity with 1 being the
upper bound for extremely aspherical particles. Figure 7.10 show these two parameters
for the rolypoly, they are well inside the region that easily crystallize consistent with the
conclusion of [Miller 2010] because all the rolypolys crystallize. In [Miller 2010] there is
no distinction about how easy (or hard) a particle crystallize. If it crystallized during the
simulation, then it crystallized easily and the border between easy and hard to crystallize is
only approximate. Here we have tried to answer the question: how easy does it crystallize,
if it crystallize.

7.3 Glass forming ability conclusions

The mean nucleation time 〈τ〉 was calculated at different pressures for a selected number
of particles. These curves exhibit a minima corresponding to the fastest mean nucleation
time 〈τ∗〉 = glass forming ability. Right part of figure 7.9 shows that the glass forming
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Figure 7.10: The asphericity A and orientational symmetry q as defined in the text for
particles with a1 and a1 varied from 0 to 1 in steps of 0.1.

ability depends to a first approximation linearly on 〈τ∗〉 in a log plot: 〈τ∗(iq)〉 ≈ exp(iq).
For high pressures the nucleation times are controlled by diffusion consistent with classical
nucleation theory.

The densest packing for crystallization φcryst(a1, a2) (figure 7.7) and the crystallization
packing fraction φcryst(a1, a2) (figure 7.7) clearly resembles the isoperimetric quotient (fig-
ure 7.8). The rolypoly can to a first approximation be reduced to depend on one parameter:
the isoperimetric quotient iq. These results are consistent with [Miller 2010].





Appendix A

Derivations for shear viscosity and
modulus

In this appendix we derive the macro- and micro-scopic definitions of the stress tensor. It
is based on: [Hansen 1986] and [Landau 2005].

A.1 Macroscopic description of the stress tensor σij

The stress tensor defines the stress at a specific point (x, y, z) in space and can be divided
into a normal stress and a shear stress. Where the normal stress is perpendicular to the
surface and the shear is tangential. From figure A.1 it is clear that the normal stress
will tend to change the volume (bulk) and the shear will change the shape of the volume
considered. The volume considered is a small volume inside the liquid and we look at what
the stress on that volume is. The average normal and shear stress on the surface is scalar
quantities

σn =
Fn

A
, σs =

Fs

A
(A.1)

where it is seen that the normal stress corresponds to the hydrostatic pressure. In
general the stress is a second order tensor σik representing nine components completely
describing the stress at any point in any direction. The normal stress is the diagonal
elements and corresponds to the negative pressure:

σik = −pδik (A.2)

The shear stress is the off diagonal elements where the first entry describes the plane
where the shear acts and the second entry is the direction of the shear on that plane.

If the volume considered in figure A.1 changes its shape due to shear stress it is strained.
The amount it is displaced x1 − x0 due to the deformation of the tangential force on the
volume is denoted by ∆x.

∆x = x1 − x0 (A.3)

The strain is given as the displacement length ∆x with respect to the height yh of the
volume. Notice that these directions are perpendicular to each other.

ε =
∆x

yh
(A.4)
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Figure A.1: (a) Normal and shear stress. (b) displacement due to shear stress.

See figure A.1. Considering infinitesimal distances and therefore small deformations,
the strain tensor is to a first order approximation given by:

εij =
1

2

(
∂εi
∂xj

+
∂εj
∂xi

)
(A.5)

and is seen to be symmetric.

Stress and strain tensors are related by a generalized hooks law:

σij = cijklεkl (A.6)

where the fourth order elasticity tensor cijkl has 43 = 81 entries. Symmetry considerations
can reduce this number to two independent quantities representing a pure shear deformation
and a bulk (hydrostatic) deformation. These are in material science called the shear and
bulk modulus respectively (usually denoted by G and K) and reflects the rigidity and
compressibility. In what follows we use G and K as notation for shear and bulk respectively.
Notice Hansen and McDonald [Hansen 1986] use the notation η and ζ as shear and bulk.
Because we deal with highly viscous liquids one can argue in favor for both a solid and a
liquid.

σij = 2Gεij +

(
K − 2

3
G

)
δijεll (A.7)

The diagonal elements of the stress σii = 3Kεii is associated with a pure volume
change. The hydrostatic pressure is given by p = −1

3σii. The off diagonal elements (i 6= j)
represents a volume preserving, but shape changing shear viscosity σik = 2Gεij .

A.2 Microscopic description of shear and stress

In computer simulations, the shear viscosity can be calculated using the autocorrelation
function of an off diagonal element of the stress tensor (in this case the xy component).

G(t) =
N

ρkBT
〈σxy(t)σxy(0)〉 (A.8)
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This is what we will refer to as the transient elastic moduli. A microscopic expression
of the stress tensor can be derived by looking at the particle current

j(r, t) =
N∑
i=1

ui(t)δ[r− ri(t)] (A.9)

where ui(t) is the velocity of particle i at time t, δ[r− ri(t)] gets the local position of the
particle i. Taking the Fourier transform of (A.9) and multiplying with mass m one arrives
at

m
djk

α

dt
= m

N∑
i=1

(
duiα

dt
− ikβuiαuiβ

)
exp[−ik · ri] (A.10)

α denotes any spatial direction x, y or z and β is in the direction of the wave vector k.
Recognizing the first term as the force and rewriting it in terms of the potential of the
system one can use the continuity equation for particle momenta

m
djαk(t)

dt
+ ikσαβ

k (t) = 0 (A.11)

to get a microscopic expression for the stress tensor:

σαβ
k =

N∑
i=1

muiαuiβ +
1

2

N∑
j 6=i

rijαrijβ
r2ij

Φk(rij)

 exp[−ik · ri], (A.12)

where Φk(rij) is a function containing the potential. Taking the k → 0 limit and inserting
the Φ function. The stress tensor becomes

σαβ =

N∑
i=1

muiαuiβ − 1

2

N∑
j 6=i

rijαrijβ
rij

dv(rij)

drij
)

 . (A.13)

As seen in the general formula for the stress tensor (A.13) it contains two terms. The first
one which is associated the particle momenta in the α direction times the velocity in the
β direction. This term transfer momentum in the transverse direction, from α to β. The
second term is purely configurational, contains only positions, and will be much larger
than the kinetic term at normal liquid densities. It is also noted that the stress tensor is
symmetric.

For our investigations we will only consider the second term – the excess shear stress.
This term will dominate at normal liquid densities and is what we want to observe. The
isomorph theory is for excess quantities.





Appendix B

Isomorphs for potentials with three
terms

Data shown for isomorphs with 3 terms in the potential defined as

vm,n,k(r) = a
(σ
r

)m
+ b

(σ
r

)n
+ c

(σ
r

)k
. (B.1)

and redefined in terms of α and the generalized LJ potential eq. (2.1):

vm,n,k(r) = (1− α)vm,n(r) + αvm,k(r) . (B.2)

with m = 12, n = 6 and k = 8.
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Figure B.1: Top: Potentials for the A interaction plotted. Left: Dynamics is probed by the
self part of the incoherent intermediate scattering function Fs(q̃, t̃) for the A particles with
q̃ = 7.25(ρ/1.20)1/3. Right: The prediction of γ(ρ̃).
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Figure B.2: Left: Dynamics is probed by the self part of the incoherent intermediate scat-
tering function Fs(q̃, t̃) for the A particles with q̃ = 7.25(ρ/1.20)1/3. Right: The prediction
of γ(ρ̃). Top two figures are the system with α = 1, in the middle α = 2 and bottom is
α = 1.



Appendix C

Rolypolys

C.1 Three and four particles in the unit cell

We investigate if three or four particles in the unit cell can be arranged to achieve a denser
packing than two particles in the unit cell. Figure C.1 show the results for both three and
four where it is seen that it is not the case. Actually the three particles in the unit cell
arrange into packings similar to the one particle in the unit cell. This merely shows that
the algorithm does not find the optimal packing fraction. It is a mix between the one and
two particles in unit cell packing fractions.
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Figure C.1: Left: Densest packing simulations with 3 particles in the unit cell. Right:
Densest packing with 4 particles in the unit cell.

C.2 System size dependence

In figure C.2 we plot the mean nucleation time < τ > as a function of numbers of particles
in the simulation box. The error bar indicate one standard deviation.

The mean nucleation time increases slightly with increasing particles in the simulation
box. Going from 1000 particles with 〈τ〉 ∼ 40 ∗ 103 to 16000 particles with 〈τ〉 ∼ 50 ∗ 103,
the nucleation time has increased with 25% where the number of particles have increased
with 1600%.
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Figure C.2: System size dependence for the sphere at pressure 11. There is a small increase
in 〈τ〉 with increasing the number of particles.

C.3 Hard sphere liquid line

We reproduce the hard sphere packing fraction - liquid equilibrium line for 1000 particles
in the simulation box. Figure C.3 show simulation data with error bars and figure shows
literature data with picture taken from www.sklogwiki.org/SklogWiki/index.php/Hard_

sphere_model. The shaded area corresponds to the range in figure C.4.
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Figure C.3: Packing fraction versus pressure for the hard spheres. The broken red lines
indicate the coexistence pressure and freezing packing fraction. Error bars indicate one
standard deviation. Pressure units is [σ3/kBT ] with σ being diameter of the sphere. Con-
verting our [V/kBT ] units to diameter units, we simple scale with 6/π.
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C.3. Hard sphere liquid line 103

Figure C.4: Phase diagram for hard spheres. The shaded area corresponds approximately
to the range in the left figure. Pressure units is [σ3/kBT ] with σ being diameter of the
sphere.
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Summary

Part I investigates a class of generalized Lennard Jones potentials. They are all strongly
correlating and so we use these systems to demonstrate a number of isomorph predictions.
The transient elastic modulus exhibit a two step relaxation and it is argued that the
plateau value of the transient elastic modulus G∞,p, compared to the truly instantaneous
modulus G∞, is the right quantity entering the elastic models. We confirm the Shoving
model by demonstrating a linear dependence of the structural relaxation time, in a
logarithmic plot, against VcG∞,p/T where Vc is a constant characteristic volume. The
entire transient elastic modulus was found to be isomorph invariant when expressed in
reduced units. Using Rosenfeld-Tarazona scaling for the potential energy and a result
for isomorphs, we predict the temperature dependence of G∞ on isochores and find good
agreement with our data. We analyse two fundamentally different fitting functions and
focus on the long time behavior of these. One having a finite relaxation time the other
being the widely used stretched exponential with a diverging relaxation time. Our data
indicates a finite relaxation time, but more investigations with better statistics are needed
to make a final conclusion on this issue.

We have derived a generic form of density scaling from the isomorph definition. This
isomorph scaling function was tested for a number of strongly correlating systems and seen
to work extremely well. From the scaling function, the density dependence on the scaling
exponent γ(ρ) is found and seen to agree well with data. An analytical expression for the
density scaling function is derived for systems interacting via a sum of inverse power law
potentials. We show how the interaction potential relates to the density dependence of
γ(ρ). A direct relation linking the interatomic potential to the phase diagram, i.e. the
shape of freezing and melting lines, is established.

Part II is devoted the study of a solid of constant width, named the rolypoly. Densest
packings are found for this two parameter particle. Two particles in the unit cell reached
the highest packing fraction of 0.7698. The glass forming ability, defined as a mean nucle-
ation time, was calculated for a number of rolypolys and found, to a first approximation,
to depend on the non sphericity of the particle. The crystallization packing fraction (a
phase transition measure), densest packing for one particle in the unit cell and the glass
forming ability indicates the rolypoly can be reduced to one parameter (the sphericity). At
high pressures, the glass forming ability curves are controlled by the diffusion coefficient,
consistent with classical nucleation theory.
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