
Doctor of Philosophy
Doctoral Thesis in Condensed Matter Physics

Expanding the Class of R-simple Systems:
The Weeks-Chandler-Andersen Liquid and the Asymmetri-
cal Dumbbell Plastic Crystals

Author: Eman Attia



Supervisor: Assoc. Prof. Ulf R. Pedersen
Co-supervisor: Prof. Jeppe C. Dyre

Glass & Time
Department of Science and Environment

Roskilde University
Universitetsvej 1

Building 27
4000 Roskilde, Denmark



Abstract
In 2008, Bailey et al. [1] classified a class of liquids that show hid-
den scale invariance in some regions of the phase diagram. These
liquids are referred to as R-simple systems. They present interest-
ing consequences and simple properties. Their simplicity lies in the
fact that curves can be traced out in their phase diagram called iso-
morphs, along which many properties are invariant to a high degree.
To explore this simplicity, a framework was formulated, the isomorph
theory. This thesis is an investigation of two systems, the Weeks-
Chandler-Andersen (WCA) system and the asymmetrical dumbbell
model (ASD) system in the light of isomorph theory. The work proves
the WCA system as an R-simple system, showing hidden scale invari-
ance and obeying the isomorph theory with some interesting observa-
tions. The WCA system is demonstrated to exhibit ”extreme density
scaling” unlike any other R-simple system in the low temperature/-
density region of the phase diagram, with an unprecedented variation
of the density scaling exponent. The WCA system shows to be very
far from an inverse power law system while exhibiting the hidden scale
invariance. The second system, the ASD system, shows hidden scale
invariance in both the liquid and the plastic-crystalline phases of the
phase diagram and obeys the isomorph theory where its predictions
follow in the liquid and plastic crystalline phases. The ASD plastic
crystals are the first plastic crystals to be investigated for the hidden
scale invariance. In summary, the work presented expands the R-
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simple systems family to include the WCA liquid and the ASD liquid
along with the ASD plastic-crystals.



Dansk Resumé
I 2008 klassificerede Bailey m.fl. [1] en gruppe af væsker, der viser
skjulte skaleringsinvarianter i nogle områder af fasediagrammet. Disse
væsker refereres til som R-simple systemer. De giver anledning til in-
teressante konsekvenser og simple egenskaber. Deres enkelthed ligger
i, at kurver kan følges i deres fasediagram, benævnt isomorfier, hvor
mange egenskaber i meget høj grad er invariante. For at udforske
denne forenkling yderligere er der formuleret et metodeapparat, nem-
lig isomorfiteorien. I denne afhandling undersøges to systemer, Weeks-
Chandler-Andersen (WCA)-systemet, og det asymmetriske dumbbell-
model (ASD)-system, begge i relation til isomorfiteorien. Arbejdet i
denne afhandling efterviser WCA som et R-simpelt system med en
skjult skaleringsinvariant, der er en hovedidentifikation inden for iso-
morfiteorien, langs isomorfierne i fasediagrammet, og det eftervises at
efterfølge isomorfiteorien med nogle interessante observationer. WCA-
systemet eftervises at udvise såkaldt ”ekstrem densitetsskalering” med
en hidtil uset variation af densitetsskaleringseksponenten, i modsæt-
ning til andre isomorfivæsker i lavtemperatur- og -densitetsregionen
af fasediagrammet. Ydermere, så viser WCA-systemet sig at være
langt fra et inverst potenslovssystem, medens det udviser skjult ska-
leringsinvariant. Det andet system, ASD-systemet, indikerer skjult
skaleringsinvariant i både den flydende og plastiske krystalfase i fasedi-
agrammet, og systemet efterlever isomorfiteorien, hvor forudsigelserne
i den flydende og plastiske krystalfase følges. ASD-plastikkrystallerne



iv Dansk Resumé

er de første plastikkrystaller, der undersøges for skjult skaleringsinvari-
ant. Det præsenterede arbejde udvider den R-simple systemfamilie til
også at omfatte WCA- og ASD-væsken samt ASD-plastikkrystallerne.



Guide to the Reader
This doctoral thesis describes the work done of the Roskilde University
PhD program between July 2019 till September 2022. The work has
been supervised by Ulf R. Pedersen and Jeppe C. Dyre and conducted
during the COVID-19 time within the Glass and Time group. This
work resulted in three research papers reprinted in section ”Reprints
of Articles and Posters.” Only two of the research papers are discussed
in the thesis below as the third had a minor contribution by me. Due
to COVID-19, most of the conferences and scientific gatherings were
canceled. Most talks and presentations were conducted online. My
oral presentations (not included) and posters (included in ”Reprints of
Articles and Posters”) have been presented in the PhD days conducted
by Roskilde University, Glass and Time workshops and the annual
Molecular Dynamics meetings.

Chapter 1 is an introduction to the theory of liquids and the aim
of the work presented, which is hidden scale invariance investigation
in both the WCA and ASD systems. Chapter 2 explains the theory
behind the main motive of this thesis, which is the isomorph theory.
Chapter 3 discusses the method used to generate the research data,
which is computer simulations and molecular dynamics in particular.
Chapter 4 covers in detail the investigation of the Weeks-Chandler-
Andersen system. We follow each finding in the Chapter by a brief
summery and discussion. Chapter 5 covers in detail the investigation
of the asymmetrical dumbbell model. We follow each finding in the
Chapter by a brief summery and discussion. Chapter 6 is the overall
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conclusion of the work done in Chapter 4 and 5. We here summarize
our findings and the achieved goals of this research work presented.
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CHAPTER 1
Introduction

1.1 Liquid State of Matter
In every day experience, we encounter the three well-known states of
matter: the solid, the gas or the liquid. This can be seen in the apple
we eat, the perfume we smell or the water we drink etc. Each state
can be differentiated from the other by the strength of the interactions
between its constituents [2]. In a liquid, the interaction between the
particles is not as weak as it is in the gases or as strong as it is in the
solids. Compared to solids, liquids have less ordered arrangement of
atoms or molecules and no long-range order. This can be seen in the
lab in diffraction experiments. In such experiments, crystalline solids
give sharp Bragg reflections demonstrating an ordered arrangement of
atoms or molecules, unlike liquids [3]. A liquid can flow and change
its shape.

When it comes to differentiating liquids from gasses, the flow,
which is the main characteristic we use to define liquids, doesn’t hold
for liquids only. Liquids so as gases, can flow under constant shear
stress, no matter how small. Both are considered ”fluid.” Thus, this
leads us to a fundamental question: can the liquid be distinguished
from the gas then?

In order to answer the question, we shift to a thermodynamic inter-
pretation. The liquid phase can be interpreted as an equilibrium state
of matter in a limited zone of the thermodynamic space in coexistence
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with the gas phase on the higher volume side and the solid phase in
the lower volume region. These three regions can be represented as a

Figure 1.1. Phase diagram of a single-component system as a function of
Pressure (P) and temperature (T). The two curves starting from the triple
point are the melting line (from the blue region to the purple region) and
the vaporization line (from the purple region to the brown region). Figure
from Ref. [4].

dimensional plot of pressure and temperature called ”phase diagram.”
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In this phase diagram, the triple point (TP) is a point where solid,
liquid and gas have the same pressure and temperature with different
volumes (Fig. 1.1). The coexistence curves of a liquid with solid and
gas start from the TP. The liquid phase is the area between these
coexistence curves till the critical point. Another important point in
the phase diagram is the critical point which is defined by a critical
pressure Pc and critical temperature Tc. This point marks the end
of the gas-liquid coexistence curve, super-critical fluid is formed and
there is no phase boundary (The top point in Fig. 1.1). At temper-
atures below the critical temperature, two fluid phases can coexist in
equilibrium, the liquid is interpreted as the denser phase while the less
dense phase is the gas.

Therefore, a distinction definition of a liquid state may not be
present as one sole definition. Gas and liquid phases can coexist at
the same pressure and temperature with different densities [3]. More-
over, the phase diagram in Fig 1.1 is of a single-component system,
which is the simplest case. For different liquids or multi-component
liquids (atomic or molecular), arise other challenges. It becomes more
complicated to define the liquid state.

Apart from the challenging definition, liquids exhibit other inter-
esting phenomena. Some liquids can go into other metastable states
rather than the conventional phase transitions [3, 5] i.e, they don’t
crystallize upon cooling down below the freezing point. For a liquid
to crystallize, it needs to be slow-cooled so that the system is allowed
to reach equilibrium crystalline phase [3]. If a liquid is cooled fast
instead, it becomes ”supercooled.” The movement of the liquid atoms
or molecules slows down, but won’t reach the slow crystalline phase.
If the movement slows down to nearly a stop, the liquid enters an-
other state. This state is called the ”glass state.” It is not a state of
equilibrium since the crystal is thermodynamically stable by having
a lower free energy. In the glassy state, the dynamics of crystalline
growth is frozen and crystallization is avoided. Figure 1.2 illustrates
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this transition state as a function of volume (V ) and temperature (T ).

Figure 1.2. The liquid, glassy and crystalline states as a function of
volume and temperature. Tg is glass transition temperature and Tm is
melting temperature. Figure from Ref. [6].

1.2 Liquids in Computer Simulations
Liquids can have many phenomena that are interesting to study. They
can avoid crystallization and be super-cooled. They can also reach the
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glassy state and become glass. Thus, understanding the behavior of
liquids becomes a wide research topic in condensed matter.

With the rise of computing power, computer simulations come to
take part in the liquid-state studies as well. More complex calculations
can be executed making it possible to further understand the physics
of liquids and test any theoretical predictions.

Liquids can be represented in computer simulations with various
models. They can be represented as model systems of particles (whether
atoms or molecules) interacting through ”simple” pair potentials or
also through more ”complicated” inter-atomic potentials. Other meth-
ods such as ab initio molecular dynamics can be used. It avoids the
pair potentials and considers the ground state electron calculations
using the density functional (DFT) theory [7]. Simulated systems can
become more complex. Here, we focus only on the simple approach.

1.2.1 Simple Liquids
To simulate a liquid, we need to represent its microscopic state as an
input for a computer simulation program. For any system, atomic
or molecular, the positions and momenta define the current state of
the system. We can describe a system of N particles as a sum of the
kinetic and potential energy functions of the set of coordinates ri and
momenta pi of each particle i such that

R = (r1, r2, .., rN) (1.1)
P = (p1, p2, .., pN) (1.2)

H(R, P) = U(R) + K(P) (1.3)

Here, K is the kinetic energy, U is the potential energy and H is the
Hamiltonian of the system. From the potential energy U , an equation
of motion can be obtained in Newtonian form [8]. The forces fi acting
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on the particles then can be calculated through the gradient of the
potential energy U . If mi is the mass of the particle i, the force acting
on the particle i can be calculated as

fi = −∇ri
U(R) (1.4)

In computer simulations, the potential energy is separated into
terms involving pairs of molecules, triplets, etc. Since we are adapting
the simple approach, the potential energy is represented as a pair-
potential v(rij)

U(R) =
N∑

i>j

v(rij) (1.5)

in which rij is the distance between particle i and j such that rij =
|ri − rj|.

With the simple approach in mind, we introduce four models that
are widely used to simulate simple liquids. The theory of simple liquids
is based on the assumption that the liquid state is governed by the
repulsive part of the interaction potential between its constitutions.
When it comes to simple pair-potential representation, the hard-sphere
(HS) model is perhaps the most simple [2]. It is a simple model that
is still used in simulations and in comparing to liquid state theory [8].
The interaction between the particles which are represented as hard
spheres is the pair potential v(r). The separation distance between
two particles is r such that pair potential approximation gives a good
description of the liquid properties

v(r) =

∞, r < d

0, r > d
(1.6)

where d is the hard sphere diameter. This model has relevance to real,
physical systems. The state-point dependent properties of the system
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depend only on the packing fraction

η = (π/6)ρd3 (1.7)

where ρ is the density [2] and doesn’t depend on temperature as in
real systems (only as a trivial scaling of velocities). So, to relate
the properties of a real system to those of the HS system, a sort of
”matching” is needed. This can be achieved by varying the hard sphere
diameter d that depends on the density and temperature of the real
system in question. The HS system can have many advantages, yet,
it can’t describe a liquid close to the critical point or to the liquid-gas
transition [2].

Based on the same assumption proposed by the theory of simple
liquids that only the repulsive forces determine the behavior of the
liquid phase, another simple potential arises, the inverse power law
potential (IPL). It is defined as

vIP L(r) = ϵ(σ/r)n (1.8)

where σ is the separation the particles reach when v(r) = 0 or the
collision parameter and ϵ is the depth of the potential at the minimum
of v(r). Systems that interact via the IPL are called soft spheres
systems. The HS can be thought of as a special or a limit case of
the IPL when the exponent n → ∞. Similar to HS, Hoover et al. [9]
show that the thermodynamics properties of soft sphere systems can
be scaled by the factor

ρn/3/T (1.9)

where n is the IPL exponent. Alternatively, this factor can be written
as

TV n/3 (1.10)
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With one parameter to control the thermodynamics properties, the
phase diagram of IPL and HS systems become a one-dimensional phase
diagram.

The third system we discuss is one of the most frequently used pair-
potentials. It is simple enough, yet can describe the real interactions
of a system such as Argon. It is the Lennard-Jones (LJ) potential.
Unlike the IPL, it consists of an attractive part and a repulsive part.
This potential was suggested by Sir John Lennard-Jones who gave the

Figure 1.3. The Lennard-Jones potential v(r) represented as a function
of the pair distance between the particles, r. The minimum of the potential
is at r = 21/6σ. Figure from Ref. [10].

description of the potential energy as a function of the separation of
the particles (Fig. 1.3).

v(r) = 4ϵ[(σ/r)12 − (σ/r)6] (1.11)



1.2 Liquids in Computer Simulations 9

Based on van der Waal’s ideas [11], many properties of liquids are de-
pendent on the fact that inter-molecular forces consist of short ranged
harsh repulsions and long ranged weak attractions. This is typically
what we see here. This potential consists of a steep repulsive part at
short distances till distance rc = 1.122σ that rise up to an attractive
tail at longer distances as shown in Fig. 1.3. LJ potential can present
the properties of liquid argon with good approximation in computer
simulations with the parameters σ = 3.4 Å and ϵ/kB = 120 K, kB is
the Boltzmann constant.

With time and more attempts to present pair potentials that can
describe wide variety of systems, the fourth system we discuss here
came to life, the ”Weeks-Chandler Andersen” potential. The Weeks-
Chandler-Andersen (WCA) potential was first proposed by Weeks et
al. in 1971 [12]. The WCA potential is similar to the well-known
standard LJ pair potential. Yet, the main difference is that the WCA
potential is cut at the LJ potential minimum and subsequently shifted
by adding a constant, such that the minimum is lifted to zero (Fig.
1.4). That results in a purely repulsive pair potential given by:

v(r) =

4ε [(r/σ)−12 − (r/σ)−6] + ε (r < 21/6σ)
0 (r > 21/6σ)

(1.12)

where σ is the particle radius and ε is the energy depth of the LJ
potential well at its minimum at r = 21/6σ. Although the total po-
tential is repulsive, it is composed of repulsive r−12 and attractive r−6

components. The WCA system was originally devised as a reference
fluid in perturbation treatment for the LJ fluid, where the repulsion is
to be responsible for the liquid structure and the attraction is treated
as a minor perturbation. It is of a significant importance as it is used
widely for larger systems such a bio-molecules and polymers [14].

When it comes to molecular systems, we can still use the atomic
approach. The chemical bonds can be thought of as an inter-atomic
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Figure 1.4. Comparison of attractive and repulsive Lennard-Jones (LJ)
potential and short-range repulsive Weeks-Chandler-Andersen (WCA) po-
tential. We can see how the WCA is truncated and shifted up. Figure from
Ref. [13].

potential energy term added. The bonds can be either treated as
classic harmonic springs (flexible bonds) or as rigid constraints. The
molecule can be treated as a rigid unit with fixed bond lengths and
fixed angles as well [8]. Later, we study molecules of connected LJ
spheres. The method we use for such calculations is molecular dynam-
ics. It is discussed in Chapter 3.
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1.2.2 Roskilde Simple Liquids

Simulations using simple models show that different systems often
have very similar structure and dynamics [8]. For instance, it is shown
that the structure of the hard-sphere fluid doesn’t differ in any signif-
icant way from that corresponding to more complicated inter-atomic
potentials, at least under conditions close to crystallization [2]. Simple
liquids models then are not just simple, but useful as well. In the sim-
ple HS and IPL, the physical properties, as mentioned earlier, depend
only on one thermodynamic parameter, the density. This leads to a
trivial scaling in which the phase diagram is one-dimensional. In 2008,
the Glass and Time group in Roskilde university started to develop
their own definition of simple liquids. According to the Roskilde group,
simple liquids are liquids that exhibits hidden scale invariance in the
symmetry of the potential energy function U(R) in which the configu-
ration R of a system of N particles in terms of the particle coordinates
is defined by R ≡ (r1, ..., rN). This class of liquids has simpler prop-
erties than other liquids. Hence, with the Roskilde approach, these
liquids are defined as ”Roskilde-simple liquids” or ”R-simple liquids.”

Unlike the HS or IPL systems, in which the thermodynamic prop-
erties exhibit an expected density ”scaling”, this class of liquids ex-
hibits non-trivial ”hidden” scaling. The thermodynamic properties
of Roskilde simple liquids depend on the density and the temperature
combined, not just one of them. R-simple liquids include many atomic
and molecular model systems such as the single-component and multi-
components LJ models [15,16], the rigid-bond flexible LJ chain model
(polymer model) [17], the Yukawa model [1, 18], asymmetric dumb-
bell models [19], the Lewis-Wahnström OTP model [19], and many
metallic systems as well [20].

Figure 1.5 [1] shows that an IPL with the effective inverse power law
exponent n = neff = 18 can match the LJ potential for distances of
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length-scales of typical interactions at a given state point. It deviates
only in the attractive part. Roskilde-simple liquids then take a step
further towards liquid simplicity. Their phase diagram is not a trivial
one-dimensional phase diagram, but an ”effective” one-dimensional
phase diagram.

Figure 1.5. An inverse power law potential with an exponent of n =
18 leading to an “effective inverse power law” potential that matches the
Lennard-Jones potential and its first two derivatives at the point r = σ .
At rm, we can see the separation between the repulsive and attractive parts
of the Lennard-Jones potential. Figure from Ref. [1].
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1.3 Motive and Aims: Expanding
the Hidden Scale Invariance
Systems

This work aims at expanding the class of R-simple liquids or precisely,
the systems that exhibit hidden scale invariance. We check for the
hidden scale invariance in two systems with two different potentials.
We then proceed to investigate the consequences of the hidden scale
invariance in the phase diagram of both systems. The isomorph the-
ory and the consequences of hidden scale invariance are discussed in
Chapter 2.

1.3.1 The Weeks-Chandler-Andersen
System

In 2009, Berthier and Tarjus [21] tried to reproduce the structure and
the viscous dynamics of Kob-Andersen LJ (KABLJ) liquid with the
Kob-Andersen Weeks-Chandler-Andersen (KABWCA) liquid. Since
the structure of dense fluids is to a good a approximation determined
by their repulsive forces based on the liquid-state theory [2, 22], the
KABWCA liquid is expected to give the same structure and dynamics
of the KABLJ liquid. The KABLJ is a binary 80:20 mixture of parti-
cles A and B. Both types of particles have the same mass m. All par-
ticles interact via Lennard-Jones potential. In the KABWCA liquid,
they interact via the standard WCA potential instead. The param-
eters of the various interaction potentials are as follows: ϵAA = 1.0,
σAA = 1.0, ϵAB = 1.5, σAB = 0.8, ϵBB = 0.5 and σBB = 0.88 [23].
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They concluded that, the structure of the two liquids can be the same.
But, the dynamics are different especially at low temperatures.

In 2010, Pedersen et al. [24] reproduced the same results as Berthier
and Tarjus with an additional binary liquid, the Kob-Andersen repul-
sive inverse power (KABIP) liquid where the interaction potential is
IPL. For the IPL liquid, the exponent n is chosen to be = 15.48 to
fit the slope γ = 5.16 of the constant-volume equilibrium fluctuations
of virial W versus potential energy U of the KABLJ liquid at three
state points with same density in the super-cooled regime such that
n = γ × 3 = 15.48. The motivation for this is given later in Chap-
ter 2. Figure 1.6 shows that the three systems almost gives the same

Figure 1.6. The radial distribution functions of the AA, AB, and BB par-
ticle pairs of the KABLJ, KABIP, and KABWCA liquids at ρ = 1.20, T =
0.45. The structure of the three systems is almost the same (the curves are
almost collapsing). Figure from Ref. [24].
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Figure 1.7. Incoherent intermediate self-scattering function for the A
particles of the KABLJ, KABIP, KABWCA and KABWCAIP liquids
along the same density (ρ = 1.20) isochore for five temperatures, T =
0.45, 0.5, 0.6, 0.8, 2.0 in LJ units. The dynamics of the KABWCA liquid
(connected red open circles) doesn’t match with KABLJ’s at low tempera-
tures (connected black open circles), but can be reproduced with the KAB-
WCAIP liquid (connected red stars). Figure from Ref. [24].

structure. The structure is probed by the AA, AB and BB particles
radial distribution functions (RDF) [24]. It is defined as the probabil-
ity of finding a particle at a distance r from another particle. When it
comes to dynamics, Pedersen et al. shows that the KABWCA liquid
dynamics can be reproduced instead when the IPL is used to repre-
sent the repulsive forces. Figure 1.7 shows that the KABWCA give
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the same dynamics as the KABWCAIP liquid at high and low tem-
peratures unlike the KABLJ one. The dynamics are probed via the
A particles incoherent intermediate self-scattering function. The in-
termediate scattering function is defined as the Fourier transform of
the Van Hove function where k is the wave vector or the probability
density of finding particle i in the vicinity of r after time t,

F (k, t) =
∫

drG(r, t)e−ik·r (1.13)

It is a measure of how the structure of a system relaxes. It can be
defined as a self part Fs(k, t) and distinct part Fd(k, t). The self-
intermediate function Fs(k, t) is directly measured in experiments i.e,
Neutron Spin Echo [25]. In simulations, it can be computed from the
particle trajectories as

Fs(k, t) = 1
N

N∑
j=1

⟨exp[ik · (ri(t) − ri(0))]⟩ (1.14)

where N is the number of particles and (ri(t) − ri(0)) is the displace-
ment of particle i after time t. The brackets denote an ensemble
average.

As a widely used potential in the field of condensed matter simula-
tions i.e, in polymers or protein-polymer conjugations [14,26,27], these
findings from Pedersen et al. motivated the investigation of the single-
component Weeks-Chandler-Andersen (SCWCA) system. In Chapter
4, we study the SCWCA system to understand its dynamics and see
whether it is a Roskilde simple liquid. We present the hidden-scale
investigation in the liquid region of the SCWCA phase diagram. In
particular, we show that its density-scaling exponent γ throughout the
phase diagram varies much more than that of most other systems.
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1.3.2 The Asymmetric Dumbbell Model
System

The asymmetric dumbbell system is a simple molecular system that
can be easily super-cooled, i.e., avoid crystallization [19]. This makes
the ASD model suitable for numerical studies as a simple, single-
component glass-forming model of non-spherically symmetric constit-
uents [16, 28–30]. Each molecule consists of two different Lennard-
Jones (LJ) spheres, one big A and one smaller B connected by a rigid
bond. If the rigid bond between the two spheres is of length = 0.584 in
A particle LJ units, the model mimics toluene [31]. The values of the
parameters used are as follow; for particle A, the distance and energy
units are σAA = ϵAA = 1 and the particle mass is mA = 1. While for
particle B, σBB = 0.788, ϵBB = 0.117 and mB = 0.195 (in A particle
units). For AB interaction, σAB = 0.894 and ϵAB = 0.342 [19]. This
system has been shown to have strong virial potential energy WU cor-
relations in the thermal-equilibrium constant-volume fluctuations in
the viscous liquid region [19]. Thus, it exhibits the hidden scale invari-
ance and so-called isomorphs (Chapter 2) can be traced out in that
region of the phase diagram. Ingebrigtsen et al. [19] in Fig. 1.8 show
structure and dynamics invariance along a traced isomorph in the vis-
cous region of the ASD phase diagram. The structure is probed via AA
particle reduced radial distribution function. The dynamics is probed
via the reduced A particle incoherent intermediate scattering function.
In the same reference, the variation of the Pearson correlation coef-
ficient R which is a measure of how strongly UW are correlated is
investigated at the state point ρ = 0.932, T = 0.465 along different
bond lengths (Fig. 1.9). Yet, no further data regarding structure or
dynamics at such different bond lengths is included. Therefore, in this
work, we extend the investigation to the less viscous liquid and plastic
crystalline phases and study the effects of bond-length variation. In
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Chapter 5, we reproduce the same data from literature and present
the hidden scale and the bond-length variation investigation in the
less viscous liquid and plastic-crystalline phases. This work is the first
investigation of the hidden scale invariance in plastic crystals.
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Figure 1.8. (a) The reduced radial AA distribution function of the listed
five state-points along an isomorph (b) the A-particle incoherent intermedi-
ate scattering function of the same state points. The data for all the state
points collapse, showing approximately good invariance in (a) structure and
(b) dynamics. Figure from Ref. [19].
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Figure 1.9. The variation of the Pearson correlation coefficient R as a
function of the ASD bond length at ρ = 0.932, T = 0.465 in LJ units. The
inside figure is the variation of the density scaling exponent γ as a function
of the ASD bond length. Figure from Ref. [19].



CHAPTER 2
Empirical Motivations

for the Isomorph
Theory

2.1 Connecting Entropy Scaling
and Density Scaling

When liquids are super-cooled, they enter a metastable thermody-
namic state as discussed in the previous chapter. The structure and
dynamics of this state is of a great interest as it helps to understand
the inter-atomic behavior of the super-cooled liquids. In various super-
cooled systems, the time to reach the super-cooled phase or for the
structure of the system to ”relax” upon cooling is defined as the struc-
tural relaxation time τα (recall Fig. 1.7). The relaxation time τα is
monitored and linked to the structure and dynamics. It is shown that,
for the structure, there is no much of a change [32], while for the
dynamics, there is a huge change or dependence per say. To further
understand the dynamics link to τα and how it changes with tem-
perature when approaching Tg, many experiments are conducted to
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tackle this question and to figure the control parameters. It is seen
in various systems that, when the temperature decreases, the dynam-
ics slows down. Temperature shows to have the higher impact on
the dynamics more than other variable quantities i.e, density. The
reason can be is that, when the temperature decreases, the energy de-
creases and the movement of molecules is hindered. Moreover, while
the temperature decreases, the volume decreases as well. This can
cause steric constraints or jamming of the motions as well. [33–35].
On the other hand, for van der Waals molecular liquids, temperature
doesn’t seem to be the dominant quantity. It shows that the density
has the stronger effect on the dynamics. For a larger systems like poly-
mers, the near-neighbor interactions among directly-bonded segments
don’t get affected that much by changes in volume or density. On
the other hand, for the molecular systems, with smaller volume, the
density is more affecting as the inte-rmolecular interactions are the
ones dominating the scene [32].

Based on these views, the structural relaxation time τα dependence
on thermodynamic properties such as pressure, density or volume be-
come a research target. Experimental data has shown that τα doesn’t
depends on temperature only, but depends on other variables as well
such as P and V . The relaxation time dependence on density or vol-
ume is empirically shown to follow

τα ∝ f(TV γ) (2.1)

where V is the volume, T is the temperature and γ is a material specific
constant [32,36]. This relation is expected in the IPL systems as seen
previously in chapter one. The exponent here is γ = n/3. This γ is
regarded in experiments as a material constant that differs from one
material to another [5]. This γ conveys dynamic data about the system.
Since the main aim is to understand what happens to the dynamics, γ
becomes an important quantity to study. The relation between γ and
τα is observed and plotted for various materials. Fig. 2.1 shows the
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(TV )γ versus log τα scaling for various polymers. Figure 2.2 shows the
(TV )γ versus log τα data for super-cooled molecular liquids [5, 37].

Figure 2.1. The relaxation times of different polymers as a function of
temperature times the specific volume raised to power of γ of each polymer.
γ varies between 2.9 ≤ γ ≤ 5.0. Figure from Ref. [32].

Driven from the scientific curiosity of whether γ is actually a con-
stant or not, many experiments and computer simulations have been
devoted to study that matter. The Glass and Time group started to
study the density-relaxation time dependence to find the answer. In
2009, Schrøder et al. [38] have shown that γ depends on both density
and temperature. They then defined it as a density-scaling exponent.
Afterwards, Bøhling et al. [39] show with experimental and simulation
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Figure 2.2. The relaxation times of different super-cooled liquids as a
function of temperature times the specific volume raised to power of γ
values listed on the figure. Figure from Ref. [32].

data that the relaxation time is a function of h(ρ) over temperature,
where ρ is the density and the function h(ρ) depends on the system.
When T and ρ data for two van der Waals liquids, dibutylphthalate
(DBP) and decahydroisoquinoline (DHIQ) are plotted in logarithmic
plots (Fig. 2.3), the slope is deviating from the expected power-law
scaling (shown as dashed straight line in Fig. 2.3 (c) and (f)). This is
proposing that γ is not a material constant, but in fact a state-point
dependent exponent. Following on the same line of work, Sanz et
al. [40] confirm these finding. They see that γ may vary with density
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and temperature (Fig. 2.4). The density scaling exponent γ is then
defined as

Figure 2.3. The density dependence of isobaric and isothermal struc-
tural relaxation times τα in reduced units of (a) DBP and (d) DHIQ. The
isochronal dependence of log10 T versus log10 ρ determined at a given τα

for (b) DBP and (e) DHIQ. The isochrones vertically shifted by the fitted
values Aτα for (c) DBP and (f) DHIQ. Figure from Ref. [39].
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Figure 2.4. The density-scaling exponents of the configurational adiabat
for liquid metals. We can see that γ is varying with each metallic system.
Figure from Ref. [40] and based on experimental work from Ref. [37].

γτα(ρ, T ) ≡
(

∂ log T

∂ log ρ

)
τα

(2.2)

Afterwards, the γ is related to configurational adiabats or lines that
can be traced in the phase diagram along which the excess entropy
is constant γSex . Here the excess entropy is defined as the entropy in
excess of the ideal gas contribution, Sex ≡ S − Sid. γ is then defined
as

γSex(ρ, T ) ≡
(

∂ log T

∂ log ρ

)
Sex

(2.3)



2.1 Connecting Entropy Scaling and Density Scaling 27

Where γSex(ρ, T ) is a state-point dependent variable along constant
excess entropy lines rather than a constant value of a material.

With further work, the group links the excess entropy scaling law
proposed by Rosenfeld in 1977 [41–43] to Equation 2.3 [44]. According
to Rosenfeld’s scaling law, the reduced relaxation time and diffusion
constant of a liquid are functions of the excess entropy. The idea of
the scaling came when the reduced-unit properties of the hard sphere
(HS) system are determined by only the packing fraction. One single
parameter or a number here governs the thermodynamic picture (Fig.
2.4). This supported the idea of excess-entropy scaling [45]. The
scaling has seen to withhold in some systems such as nitrogen and
methane [46, 47]. Exceptions also have been seen, such as the water
models and the Gaussian core model [48–53].

Using Rosenfeld’s law with the new formulated density-scaling ex-
ponent led to the discovery of a hidden scale invariance in the potential
energy functions of various systems. These systems are defined now
as Roskilde simple systems as mentioned in Chapter 1 [45]. With such
propositions, the team developed the isomorph theory [45,54]. The iso-
morph theory provides a simpler look at the phase diagram of liquids.
The phase diagram can be seen as a one-dimensional with regard to
several properties. In the coming section, we introduce the isomorph
theory in detail.
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Figure 2.5. Experimental data for the reduced viscosity at different
temperatures and pressures plotted against excess entropy for five non-
associated systems. The metal data are taken along the liquid-vapor equi-
librium line. The dashed line is the exponential entropy dependence Rosen-
feld deduced from his 1977 computer simulations. The figure and caption
from Ref. [45] and [46], respectively.
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2.2 Hidden Scale Invariance
Isomorph Theory is a framework that explores the consequences of the
hidden scale invariance that is shown in Roskilde simple systems. It is
approximate theory, only exact for systems with Euler homogeneous
potential energy function i.e., systems interacting via inverse power
law (IPL) potentials [1, 18, 55]. In the newest 2014 formulation of
isomorph theory, a Roskilde simple system is defined by the property
that whenever two configurations Ra and Rb refer to the same density,
one has

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) (2.4)

This implies that if two configurations have the same potential energy,
their scaled versions also have some potential-energy. Thus, a rigorous
definition of R-simple systems is the property

U(Ra) = U(Rb) ⇔ U(λRa) = U(λRb) (2.5)

This is only rigorously obeyed if U(R) is an Euler-homogeneous func-
tion plus a constant, but it applies to a good approximation for many
other systems, e.g., single- and multi component LJ systems, the
Yukawa pair potential, and the Morse pair potential [45, 54]. This
reflects that the isomorph theory is inherently approximate for all re-
alistic models. Equation 2.5 may also apply for molecular models
like the ASD model, in which case the centers of masses are scaled
uniformly whereas intra-molecular bond lengths and molecular orien-
tations are kept unchanged.

Consider a system in equilibrium at the density ρ and V is the
volume. The entropy S may be written as a sum of the ideal-gas
entropy Sid (at the same density and temperature) and the so-called
excess entropy S = Sid + Sex. For the ideal gas, Sex = 0, but for any



30 Empirical Motivations for the Isomorph Theory

system with interactions Sex < 0. The intuitive explanation is that
no matter what the nature of the interactions is, such a system must
be less disordered than an ideal gas. The microscopic excess entropy
function Sex(R) is defined as the thermodynamics excess entropy of a
system with average potential energy equal to U(R) at the density ρ
of the configuration R, i.e.,

Sex(R) ≡ Sex(ρ, U(R)) (2.6)

It follows from statistical mechanics that Sex(R) is proportional to the
logarithm of the number of configurations with the same density and
potential energy as R . Inverting Eq. 2.6 leads to

U(R) = U(ρ, Sex(R)) (2.7)

in which the right hand side is the thermodynamic equilibrium po-
tential energy as a function of density ρ and thermodynamic excess
entropy Sex, evaluated by substituting Sex = Sex(R).

Let R1 and R2 be two configurations at densities ρ1 and ρ2 respec-
tively. Now, suppose we have configuration R1 at ρ1 with the same
reduced coordinate vector as R2, a configuration at density ρ2 (which
is invariant upon a uniform scaling).

ρ
1
3
1 R1 = ρ

1
3
2 R2 = R̃ (2.8)

It follows from Sex(R) ≡ Sex(ρ, U(R)) and the micro-canonical expres-
sion for the excess entropy [54]

Sex(ρ, U)/kB = −N ln N + ln
(
Vol{R̃|U(ρ−1/3R̃) < U}

)
(2.9)

(where ”Vol” refers to the volume of the set in question, which is the
R̃ integral of the unity function over all configurations R = ρ−1/3R̃
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with potential energy below U , i.e., obeying U(R) < U . If ”Vol” is
reduced coordinate configuration-space volume, one has

Sex(R1)/kB = −N ln N + ln
(
Vol{R̃|U(ρ−1/3

1 R̃) < U(R1)}
)
(2.10)

Sex(R2)/kB = −N ln N + ln
(
Vol{R̃|U(ρ−1/3

2 R̃) < U(R2)}
)
(2.11)

Because R2 = ρ
−1/3
2 ρ

1/3
1 R1, using λ = ρ

−1/3
2 ρ

1/3
1 in Eq. (2.3) to the

inequality of the first set in Eq. 2.10, the two sets become identical.
Thus, Sex(R1) = Sex(R2). Which means, for Roskilde simple systems,
Sex(R) depends only on the configuration’s reduced coordinate

Sex(R) = Sex(R̃) (2.12)

Thus, Eq. U(R) = U(ρ, Sex(R)) becomes

U(R) = U(ρ, Sex(R̃)) (2.13)

Equation 2.13 is a key identity in isomorph theory. All predictions of
the isomorph theory may be derived from it.

2.3 Consequences of Isomorph
Theory

To identify a Roskilde simple liquid, the potential energy landscape
has to be mapped for the hidden scale invariance as we mentioned
above. As a consequence of the hidden scale invariance, Roskilde
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simple liquids exhibit strong correlations between potential energy U
and virial fluctuations W in the NV T ensemble (see below). The
effect of such correlations on the physical properties of the system
have been studied in many of their publications [15,16,18,38]. It also
led to the discovery of curves in the thermodynamic phase diagram of
such liquids along which the structure and the dynamics are invariant.
These curves can also be found in the crystalline phases of Roskilde
simple liquid as well [56]. These curves are called isomorphs. Based on
Eq. 2.13, the dynamics at two isomorphic state points are identical in
the following “same movie” sense. Filming the motion of the molecules
at one state point results in the same movie at a different, isomorphic
state point, except for a uniform scaling of space and time. This
implies several dynamic isomorph invariants and that the reduced-unit
structure is isomorph invariant. We discuss all of the consequences in
the coming sub-sections.

2.3.1 Strong Correlations between Potential
Energy and the Virial

If a system exhibits hidden scale invariance or belong to the Roskilde
simple liquid systems, strong correlations between potential energy
U and virial fluctuations W in the NV T ensemble are expected. In
particular, Eq. 2.13 implies strong correlations between the constant-
volume fluctuations of the virial W and the potential energy U . From
the general equation of state PV = NkBT + W , at any state point
the average of W (R) gives the contribution to the pressure from in-
teractions. The potential energy determines the virial and then which
implies these quantities are strongly correlated. The virial W is then
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defined by

W (R) ≡ −1
3

R · ∇U(R) (2.14)

If we have two configurations, Ra and Rb with same density and same
potential energy, U(Ra) = U(Rb). Since, U(λRa) = U(λRb), taking
the derivative of this with respect to λ results in Ra · ∇U(λRa) =
Rb · ∇U(λRb), which for λ = 1 implies

W (Ra) = W (Rb)

This implies 100% UW correlations. Hidden scale invariance is usu-
ally only approximate, however the degree of correlation is quantified
by the Pearson correlation coefficient R. R is measured through the
averages of both virial ⟨∆W ⟩ and potential energy fluctuations ⟨∆U⟩
from computer simulations. The virial W is obtained from the general
equation of state PV = NkBT + W . At any state point, the average
of W is the contribution to the pressure from interactions and U is the
potential energy of the system. The Pearson correlation coefficient R
is

R(ρ, T ) = ⟨∆W∆U⟩√
⟨(∆W )2(∆U)2⟩

(2.15)

where ∆ denotes the instantaneous deviations from the equilibrium
mean value and the ⟨⟩ denote the NV T ensemble. Figure 2.6(b) shows
the equilibrium fluctuations of potential energy U and virial W for
simulation in the NV T ensemble of the asymmetrical dumbbell system.
The reference state point is ρ = 0.932, T = 0.465 in LJ units. Liquids
are considered strongly correlated when the correlation coefficient R >
0.9. This is usually the case in liquids dominated by van dar Waals or
weakly ionic interactions. In the case for the asymmetrical dumbbell
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system, the viscous-region is highly UW correlated since R = 0.96 at
the reference state point (Fig. 2.6(a)).

Unlike systems with strong Coulomb forces such as hydrogen or
covalent bond, the correlations are weaker resulting in R < 0.9. Also,
the degree of correlation or the value of R depends on where you are
in the phase diagram of the system. It depends on the density ρ and
temperature T of the given state point as well. In isomorph theory,
whenever invariance is mentioned for a quantity, it is defined by us-
ing macroscopic thermodynamics quantities as reference units. The
length unit is defined by the number density (ρ ≡ N/V ) which is the
total number of particles N confined in a system volume V . The en-
ergy unit is defined by the temperature of the system such e0 ≡ kBT
where kB is the Boltzmann constant. The time unit is defined by the
density and the thermal velocity such that t0 ≡ ρ−1/3

√
m/kBT where

m is the particle mass. These units have been used by Rosenfeld in
1977 and referred to as ”reduced units” [41].
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Figure 2.6. (a) The equilibrium fluctuations of potential energy U and
virial W for the simulation in the NV T ensemble of an asymmetrical dumb-
bell system (b) a scatter plot of the instantaneous values of U and W
from the same simulation. The correlation coefficient is seen to be higher
than 0.90 indicating an R-simple liquid in the viscous region. Figure from
Ref. [19].
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2.3.2 Generating Isomorphs: Density
Scaling Exponent

If we look at systems interacting through inverse power law (IPL) po-
tential where v(r) ∝ r−n, the potential energy U and the virial W
are perfectly correlated with a correlation coefficient R = 1 and a con-
stant density exponent γ = n/3. But, for other systems, such as the
Lennard-Jones system for example, U and W are strongly correlated
but not as perfectly as in IPL systems and R < 1. This makes it
crucial to calculate the proportionality constant between the instan-
taneous fluctuations of U and W which can help predict the virial of
different configuration.

The constant of proportionality between the equilibrium virial and
potential-energy fluctuations at a given state point denoted by γ and
referred to as the density scaling exponent is characterized by

∆W (t) ∼= γ∆U(t) (2.16)

and calculated directly in simulations from the general fluctuation
expression

⟨∆W∆U⟩
⟨(∆U)2⟩

= γ(ρ, Sex) (2.17)

Here the angular brackets denote canonical NV T averages [57].
The density scaling exponent γ was thought to be constant from

experimental data. Isomorph theory showed that γ may vary with
temperature. To derive γ as a state-point dependent variable, we start
withe known relation of the excess entropy Sex as a function of volume
V and temperature T . Along an isomorph that is characterized by
dSex = 0, one has(

∂Sex

∂V

)
T
dV +

(
∂Sex

∂T

)
V

dT = 0 (2.18)
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From the Maxwell relation for configurational degrees of freedom and
the virial W which is the configurational contribution to pressure (p =
NkBT + W ) (

∂Sex

∂V

)
T

= 1
V

(
∂W

∂T

)
V

(2.19)

By substituting Eq. (2.19) into Eq. (2.18) then

1
V

(
∂W

∂T

)
V

dV +
(

∂Sex

∂T

)
V

dT = 0 (2.20)

and

1
V

(
∂W

∂T

)
V

dV +
(

∂Sex

∂T

)
V

Td ln T = 0 (2.21)

Since
(

∂U/∂T
)

V
= T

(
∂S/∂T

)
V

and (1/V )dV = d ln V = −d ln ρ,
equation. (2.21) can be rewritten as:

−
(

∂W

∂T

)
V
d ln ρ +

(
∂U

∂T

)
V
d ln T = 0 (2.22)

The slope γ or the density scaling exponent can be calculated as

γ(ρ, Sex) ≡
(

∂ ln T

∂ ln ρ

)
Sex

= ⟨∆W∆U⟩
⟨(∆U)2⟩

(2.23)

Configurational adiabats or curves of constant excess entropy Sex,
can be traced out numerically. Specifically, the last term of Eq. 2.23
specifies how the density-scaling exponent γ may be calculated numer-
ically from an NV T simulation at the state point in question. In this
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way, one avoids the tedious thermodynamic integrations necessary to
determine excess entropy throughout the thermodynamic phase dia-
gram. Integrating the first-order differential equation defined by the
second equality sign in Eq. 2.23, in order to determine how tempera-
ture varies with density along an isomorph, is in principle straightfor-
ward. The highly accurate fourth-order Runge-Kutta (RK4) integra-
tion method is recently implemented for this [58]. In this thesis work,
we only use the RK4 as the main integration method to trace config-
urational adiabats or isomorphs in any system to investigate. RK4
method is discussed in detail in Appendix A. After tracing the con-
figurational adiabats, the dynamics and structure can be checked for
invariance. Invariance is expected in Roskilde simple liquids.

2.3.3 Isomorphs: Lines of Invariant Structure
and Dynamics

Isomorph theory depends on the reduced coordinate R̃ such that R̃ =
ρ1/3R. Configurational adiabats traced with Eq. 2.13 in mind along
the same excess entropy can result in invariant structure and dynamics
curves in the phase diagram of any Roskilde simple liquid system.
These invariant curves are one of the most profound consequences
of isomorph theory and named isomorphs. In reduced coordinates,
Newton’s second law for a system of identical masses is

d2R̃/dt̃2 = F̃ (2.24)

in which the reduced force vector is defined from the full force vector F̃
(all particle forces joined into a single vector) by F̃ ≡ Fρ−1/3/kBT 27.
For Roskilde simple system, the reduced force is a function of the
reduced configuration vector,

F̃ = F̃(R) (2.25)
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Since ∇ = ρ−1/3∇̃,

F̃ = −∇U = −(∂U/∂Sex)ρρ1/3∇̃Sex(R̃) (2.26)

Since (∂U/∂Sex)ρ = T , this means that

F̃ = −∇̃Sex(R̃)/kB (2.27)

Thus, the reduced force is a unique function of the reduced coordi-
nates and as two state points on a given isomorph correspond to the
same reduced coordinate vectors R̃. This shows that the reduced-unit
dynamics and structure are invariant along the isomorphs. Figures
2.7 and 2.8 show the invariance in the structure and the dynamics of
isomorphs traced in the Face-centered-cubic (FCC) crystal Lennard-
Jones system in comparison with isotherms, curves with the same
temperature and isochores, which are curves with the same density.
Figure 2.7 shows the radial distribution (RDF) functions Figure 2.8
shows the mean square displacement (MSD) which is a quantity to
investigate the dynamics of a system. It is the square of distance
a particle has moved in the system

⟨
|r̃(t̃) − r̃(0̃)|2⟩. Here, reduced

units are used and hence referred to with a tilde e.g. r̃ = ρ1/3r and
t̃ = ρ1/3

√
m/T t. For the figures, the word ”reduced” is stated instead

on both axes.
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Figure 2.7. The reduced radial distribution functions of crystalline iso-
morphs in the FCC-crystal LJ crystal system. The state points along the
isomorph in the top panel shows invariance in comparison to the isochore
and the isotherm. Figure from Ref. [56].
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Figure 2.8. The mean square displacement of crystalline isomorphs in the
FCC LJ crystal system with vacancies (defected crystal). The state points
along the isomorph in the top panel shows invariance in comparison to the
isochore and the isotherm. Figure from Ref. [56].
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CHAPTER 3
Methods: Computer

Simulations
3.1 Molecular Dynamics
With the help of computers, tedious analytical calculations that can
take long hours to be done can be carried out faster. The field of
condensed matter has benefited a lot from such numerical computa-
tional method. The study of the physics of liquids has achieved many
successes with computer simulations. There are two main techniques
in simulation, the Monte Carlo method and the molecular dynamics
(MD) method [59]. Molecular dynamics is the main method used
to produce the work in this thesis. From its name, the dynamics of
the system, whether atomic or molecular are described using classical
Newtonian mechanics. To explain this, let us consider a system of N
particles confined in a simulation box. This box is surrounded by other
boxes that are virtual copy of the same box or what we call ”periodic
boundaries” to avoid the problems of interacting with other surfaces
(Fig. 3.1). The surfaces can induce a problem as we are trying to sim-
ulate a finite system and take in consideration the interactions only
within the finite system. With periodic boundaries, we are able to
simulate an finite system and use it to approximate an infinite system.
If a particle leaves the simulation box at one side, an identical parti-
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Figure 3.1. Illustration of the simulation box or unit cell and its virtual
copies around it. The circles inside represent the particles within one box.

cle enters the box at the other. In practice, the interactions between
each particle and the closest periodic image of its neighbors or the
minimum image convention is only considered. With minimum image
convention, if we have particle i and j, above the cutoff rc > L/2,
where L is the box length, the potential between i and the nearest
image of j will be considered instead. This is important as this keeps
the conservation of the system, and allow the calculations of average
macroscopic properties. Now, as we have described the environment,
what about the interaction between the particles. The interaction will
be a pair potential like the Lennard-Jones potential that we have dis-
cussed before or it can also any different potential such as the WCA.
In molecular dynamics, we set an initial configuration of our particles
with initial positions and velocities. From these, we can integrate the
classical equations of motion numerically to update the system. The
integration in this sense will depend greatly on the size of the numeri-
cal time step dt used to solve the equations. The time-step is governed
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by the parameters of the studied point in system (i.e., density) and
the potential used. Then, an algorithms is developed to integrate the
equations of motions. Algorithms vary, but we mention the one we
use, the ”Leap-Frog” algorithm. In simulations, the potential energy
is expressed in terms of the pair potential such that for a system of N
particles

U(R) =
N∑

i>j

v(r) (3.1)

in which r is the distance between particle i and j such that r = |ri−rj|.
Let us choose a pair potential to express the potential energy of the
system, i.e., the Lennard Jones potential (recall Chapter 1)

vLJ(r) = 4ϵ
(

(σ/r)12 − (σ/r)6
)

(3.2)

As seen in chapter 1, the force acting on particle i fi in a system
can be obtained as the gradient of the potential energy which is now
expressed as a pair potential

fi = −∇ri
ULJ(R) (3.3)

where ∇ri
= ∂

∂xi
ı̂ + ∂

∂yi
ȷ̂ + ∂

∂zi
ẑ. Then, through Newton’s equation

of motion, the velocities and positions and velocities can be obtained
numerically

dvi

dt
= fi(t)

mi

(3.4)

and

dri

dt
= vi(t) (3.5)
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To solve the last two equations numerically by MD simulations, time
must be discretion in small steps h. With the Leap-Frog algorithm, the
system is updated by determining the velocities at half-integer time
step h/2 and then using the velocities to compute the new positions.
The velocity at the half time step of particle i is

vi

(
t + h

2

)
= vi

(
t − h

2

)
+ h

fi

mi

(3.6)

The new position based on the old position for particle i is calculated
as

ri

(
t + h

2

)
= ri(t) + hvi

(
t + h

2

)
(3.7)

The Leap-frog algorithm, which is the modified version of the Verlet
algorithm avoids the squaring of the time step to update the system.
Thus it is favored in simulations [60].

In simulations, we know how the equations of motions are inte-
grated and we ensure energy conservation. We have a fixed number
of particles, volume and conserved total energy, therefore such simula-
tion is an NV E ensemble. With the idea of having easier parameters
to control in mind, other algorithms have been developed to keep
the pressure or/and the temperature constant, giving rise to NV T or
NPT simulations. This is usually done by applying a thermostat or
a barostat respectively such as the Nosé-Hoover we use in our NV T
simulations [61–63].

3.2 Simulated Systems
This section, we provide information about the systems we simulated.
Simulations are done with the RUMD and LAMMPS software pack-
ages. LAMMPS [64] is a molecular dynamics code with a focus on
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materials modeling from Sandia National Laboratories, Temple Uni-
versity. It stands for Large-scale Atomic/Mole-cular Massively Paral-
lel Simulator and includes potentials for solid-state materials (metals,
semiconductors) and soft matter (biomolecules, polymers) and coarse-
grained or mesoscopic systems. It can be used to model atoms or,
more generically, as a parallel particle simulator at the atomic, meso,
or continuum scale. It runs on single processors or in parallel using
message-passing techniques and a spatial-decomposition of the simu-
lation domain. Many of its models have versions that provide accel-
erated performance on central processing units (CPUs) and graphics
processing units (GPUs). RUMD [65,66] is another molecular dynam-
ics code developed at Roskilde university in Denmark (2008-present).
It stands for Roskilde University Molecular Dynamics. RUMD uses
CUDA programming library for C++ developed by NVIDIA on many-
core Graphical Processor Units (GPUs) to solve complex computa-
tional problems.
The single-component Lennard Jones (SCLJ) liquid: A liquid
system with 4000 particles LJ particles in cubic box interacting with
the LJ potential. The LJ system is used to compare RK4 method
results of tracing configurational adiabats with the Weeks-Chandler-
Andersen (WCA) system. Results are in appendix A.
The single-component Weeks-Chandler-Andersen (SCWCA)
liquid: A liquid system with 4000 LJ particles in cubic box interact-
ing via the WCA potential. The WCA potential is the same as the
standard LJ pair potential, but cut at its minimum and subsequently
shifts the potential by adding a constant such that the minimum is
lifted to zero [12]. The result is the purely repulsive pair potential.
The WCA system is used in all the simulations in chapter 4.
Asymmetric dumbbells liquid and plastic crystal: A systems
of 4000 asymmetric dumbbells (for the literature comparison, 1000
dumbbells were simulated instead). The ASD system is a toy model
of toluene where a phenyl-group C6H5− and the methyl group −CH3



48 Methods: Computer Simulations

are represented as as Lennard-Jones spheres, one big A and one smaller
B, connected with a rigid bond (Fig. 3.2 (right)). The ASD system is
used in all the simulations in chapter 5.

Figure 3.2. Chemical structure of toluene (left) and the asymmetric dumb-
bell model (right). It consists of two LJ sites with a bond length of 0.58σ
in A particle units.



CHAPTER 4
Hidden Scale

Invariance of the
Weeks-Chandler-
Andersen System

4.1 The Weeks-Chandler-Andersen
System: Definition and Setup

In Chapter 1, we introduce the WCA potential as purely repulsive
potential such that [12].

v(r) =

4ε [(r/σ)−12 − (r/σ)−6] + ε (r < 21/6σ)
0 (r > 21/6σ)

(4.1)

The potential is truncated at the LJ potential minimum and shifted
up by adding a constant, such that the minimum is lifted to zero (Fig.
1.4, P. 10). The phase diagram of WCA system exhibits a solid-liquid
phase diagram with no vapor-liquid co-existence region as far the LJ
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system [12]. In fact, like any system of purely repulsive particles, the
WCA system doesn’t have a critical nor triple points (Fig. 4.1). The
WCA co-existence data has been calculated by the Monte Carlo sim-
ulations [67] and molecular dynamics as well [68]. The co-existence
lines also has been predicted by using an equation of state of the re-
pulsive LJ system with the calculated free energy of the fluid and solid
phases [69]. Recently, Attia et al. in paper III [70] have re-determined
the WCA co-existence lines as the old data from de Kuijper et al. [67],
Ahmed and Sadus [68] and Mizaeinia et al. [69] are inaccurate espe-
cially at low temperatures. Therefore, we use our recent data of the
co-existence lines prom paper III [70] in Fig 4.2. The urely repulsive
potential WCA potential is commonly used for larger systems. It is
computationally cheap due to the short truncation distance. As men-
tioned in the introduction, many publications simulating molecular
fluids such as polymers or protein-polymer conjugation have been us-
ing the WCA potential [14, 26, 27]. For instance, Christopher et al.
modeled the protein–polymer interactions using the WCA potential
to compare with experimental data [71]. Their coarse-grained model
is used for various systems with varying protein–polymer interactions.

In this Chapter, we study the single component Weeks-Chandler-
Andersen (SCWCA) system by molecular dynamics (MD) simulations
in the canonical NV T ensemble using the Nosé-Hoover thermostat [8,
61,62]. The simulated system consists of 4000 particles in a cubic box
with periodic boundaries. The simulations are performed RUMD [65,
66]. The Leapfrog algorithm is used with the time step size dt = 0.0025.
Such small step size is used to carefully update the atomic system. The
simulation runs for 50x106 time steps for equilibration and 25x106 time
steps for runtime for each state point obtained. For the conducted post
analysis of the structure and dynamics, the units used are the isomorph
reduced units (Chapter 2). The reduced quantities are marked by a
tilde i.e, r̃, t̃ and D̃.
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The first step in our investigation is to check whether the SCWCA
system is a Roskilde simple system. Therefore, we aim to identify state
points in the phase diagram where the Pearson correlation coefficient
is high such that R > 0.9

R = ⟨∆U∆W ⟩√
⟨(∆U)2⟩⟨(∆W )2⟩

From these state points, we can then trace out configurational adiabats
in the phase diagram. The integration method used is the fourth-order
Runge Kutta (RK4) integration method. It is implemented to give
higher accuracy than other integration methods, i.e., Euler’s method
(Appendix A discuses the RK4 method).
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Figure 4.1. Comparison between the coexistence pressure as a function
of the temperature from literature and from paper III [70]. The solid black
line shows the reduced coexistence pressure p/kBT as a function of the
temperature and the black dashed line is the T → 0 HS limit. The blue
dashed line shows that at low temperatures, the pressure scales as T 3/2

as expected from HS theories. It is clear that there is deviation at low
temperatures especially for Ahmed and Sadus’s data [68], while the recent
data (red diamonds) from paper III [70] has the correct low temperature
limit. Figure from paper III [70].
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Figure 4.2. A comparison between the the phase diagram of the standard
LJ system showing the liquid-vapor co-existence region (upper figure) and
the phase diagram of the WCA system (lower figure). The co-existence
lines are from paper III [70]. The temperature and density are in LJ units.
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4.2 Density Scaling in the High
Temperature Region

A configurational adiabat is an isomorph only for the state points with
strong virial potential-energy UW correlations, i.e., when R ≥ 0.9. We
start with the state point ρ = 0.84, T = 0.694 (the triple point for
the LJ system) to trace out an isomorph and check for strong UW
correlations. Along with the isomorph, we trace an isotherm (a line
with state points of the same temperature and varying densities) and
an isochore (a line with state points of the same density and varying
temperatures) starting from the same reference state point for struc-
ture and dynamics comparison. It is a significant consequence of the
isomorph theory to have the invariance that can be visibly noticeable
in the figures in comparison with the isotherms and isochores respec-
tively. Figure 4.3 shows a snapshot of how the simulated system looks
like in the liquid phase. Figure 4.4 shows the traced isomorph in the
SCWCA phase diagram along with the isotherm and isochore. Figure
4.5 shows the variation of the correlation coefficient R as a function
of density. It is observed that, for all the state points, R is relatively
high such that R > 0.9. This is evident that the SCWCA exhibits
strong UW correlation in the liquid region of the phase diagram.

4.2.1 Structure and Dynamics Invariance
Next, the structure and the dynamics of the state points along the
isomorph to check for invariance are investigated. The structure is
probed via the radial distribution functions (RDF) of the reduced
pair-distance. The dynamics is probed via the reduced mean squared
displacement (MSD) as a function of the reduced time. So, for further
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Figure 4.3. Snapshot of the WCA configuration consisting of 4000 parti-
cles at ρ = 0.84 and T = 0.695 in LJ units. Each particle is represented as
a red sphere.

investigation, the low density region is explored. The goal is to reach
the lowest density possible through integration along the density to
see what happens to the density scaling exponent γ, which is also the
isomorph slope. In Fig. 4.6 we see that there is good invariance in
the structure along the isomorph compared to the isochore and the
isotherm. It is observed that the height of the first peak increases
as the temperature decreases. This is explained later in the chapter.
Looking at the dynamics, the reduced mean square displacement of
the state points along the isomorph show good invariance compared
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Figure 4.4. The phase diagram of the SCWCA system. The red line is
the traced isomorph from the state point ρ = 0.84 and T = 0.694. The
black lines are the isochore and the isotherm traced out from the same start
point. The co-existence lines are from Ref. [69].

to the isotherm and isochore (Fig. 4.7). Thus, the WCA can be
considered as a Roskilde simple liquid. We check the variation of the
density scaling exponent γ along the isomorph as a function of density
is shown in Fig. 4.8. The range of the density-scaling exponent γ
variation is found not to be significantly different from the LJ system.
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Figure 4.5. The correlation coefficients for all state points as a function
of density. All the state points have high correlation R along the isomorph
in Fig. 4.4.
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Figure 4.6. The radial distribution functions along the state points of the
traced isomorph, isotherm and the isochore respectively in the WCA system
in the density region 0.8 < ρ < 1.35 in Fig. 4.4. We can see invariance in
(a) isomorph unlike (b) the isochore or (c) the isotherm.
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Figure 4.7. The mean square displacement along the state points of the
traced isomorph, isotherm and the isochore respectively in the WCA system
in the density region 0.8 < ρ < 1.35 in Fig. 4.4. We can see invariance in
(a) isomorph unlike (b) the isochore or (c) the isotherm.
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Figure 4.8. The density scaling exponent γ for all state points are plotted
as a function of density along the isomorph plotted in Fig. 4.4. γ increases
as the density decreases.
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4.3 Extreme Density Scaling in the
Low Temperature Region

In the previous section, the density scaling exponent is shown to be
increasing when going lower in density in the high temperature region.
This is similar to what is seen for the LJ system [1]. As a result of this
finding, the low density region is of the main focus. Isomorphs are inte-
grated along the temperature instead to reach the lowest temperature-
density state points possible. This is not possible for the LJ system
due to the gas-liquid co-existence line. Accordingly, four isomorphs are
traced out from different state points by RK4 method (Appendix A).
The state points have the same density ρ = 0.84 and different temper-
atures T = 0.3, 0.6, 1.0, 2.0. The integration goes up to temperature
T ≈ 15. Then, from the highest state point reached of each isomorph,
the integration goes down to reach the lowest densities/temperatures
possible before the simulations become unstable. Three isotherms and
three isochores are traced out as well for structure and dynamics com-
parison. The three isochores start from the densities ρ = 0.84, 1.0, 1.2
respectively with a temperature range 0.2 ≤ T < 15. The three
isotherms start from temperatures T = 0.6, 2.7, 12.1 respectively with
a density range 0.56 ≤ ρ < 1.5.

Figure 4.9 shows the isomorphs traced in the thermodynamic phase
diagram of the WCA system in the low temperature region. The yellow
and orange lines represent the freezing and melting lines [67,68]. The
blue, green, and purple lines marked 1, 2, and 3, respectively, are the
isomorphs of main focus. The red dashed line is a fourth isomorph
(marked 0) is in the liquid-solid coexistence region/the supercooled
liquid phase which is not of our interest. The horizontal lines are
three isotherms and the vertical lines are three isochores. After tracing
the isomorphs, the correlation coefficients are plotted as a function of
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density and temperature to check for strong virial potential-energy
UW correlations. Fig. 4.10 shows high correlation coefficient values
R ≥ 0.9 for all state points simulated.

Surprisingly, a collapse is seen when R is plotted as a function
of temperature. That may indicate that R is merely controlled by
the temperature. Moreover, R is noticed to increases with increasing
density and temperature, approaching unity. This reflects the fact that
the (r/σ)−12 term of the pair potential dominates the interactions in
these limits as an inverse-power-law pair potential has R = 1. This
dominance is explained by a mean-field theory in which we assume
that the interactions at low densities are dominated by single-pair
interactions, see Sub-section 4.3.1.

Figure 4.11 shows the variation of the density scaling exponent
γ along the density, temperature and pressure respectively. It is ob-
served that γ increases monotonically as either density, pressure, or
temperature is lowered. The γ varies by more than two decades in the
low-density of the phase diagram. In comparison, the LJ system has
a density-scaling exponent that varies less than 50% throughout the
phase diagram. Previously, Casalini and Ransom have suggested that
the pressure is the controlling parameter for γ [72]. But, by looking at
the Fig. 4.11(a) and (f), we can conclude that γ is primarily controlled
by the temperature, not the pressure nor density.

After investigating the variations of the correlation coefficients and
the density scaling exponents, the structure and the dynamics along
the isomorphs are the next to check as a part of the hidden scale
invariance investigation. Figure 4.12 shows the reduced RDFs data
along the three isotherms, isochores, and isomorphs. The isotherms
and the isomorphs are almost in the same density range. The iso-
chores, on the other hand, are almost in the same temperature range
as the corresponding isomorphs, i.e, not in the super-cooled regime.
Along the isomorphs, the RDFs show some variation at the first peak
maximum (lowest row), but in comparison to the isotherms and iso-
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chores, there is excellent overall invariance of the RDF. For all of the
three isomorphs, we find that the peak height increases as the temper-
ature decreases. This is an effect of larger γ resulting in a higher first
peak. To understand this difference, we can use the IPL system as a
reference. In IPL system, we can trace perfect isomorphs as γ = n/3.
When n increases, the forces become more repulsive. Therefore, taking
Boltzmann probability in mind, the probability of finding two parti-
cles at the distance r, proportional to exp(−Ar−n/kBT ), decreases as
n → ∞. This limits the RDF at distances below the first peak. Let
us consider the particles in the first coordination shell. If they exhibit
isomorph invariance, some of the RDF are limited to locate particles
at small r i.e, distances below the first peak. Thus, the RDF locates
the particles at larger r instead, resulting in a higher first peak.

For the dynamics, Fig. 4.13 shows data for the reduced MSD as
a function of the reduced time along the three isotherms, isochores,
and isomorphs. It can be seen that, the isomorphs exhibit invariance
in comparison to the isotherms and isochores shown in the first two
rows. Figure 4.14 shows how both the diffusion coefficients D and the
reduced diffusion coefficients D̃ vary along the three isomorphs. The
upper figures demonstrate a large variation in D along each isomorph.
The lower figures show D̃ getting more constant as temperature ap-
proaches zero for each isomorph. In fact, it is not constant as the
WCA system is not a perfect IPL system and the temperatures of the
isomorphs change by more than four order of magnitude. Thus, the
reduced diffusion coefficient is considered almost isomorph invariant.

Now, since the reduced diffusion coefficients D̃ are approaching
T → 0, then the reduced diffusion coefficient when T = 0 should be
of a value that will corresponds to a jammed system, as D̃ → 0 when
the system jams. For the SCWCA system, when the temperatures
decreases, γ increases and the system starts to behave as a hard-sphere
system (HS). The HS system has a maximum density that corresponds
to the random closed-packed (rcp) structure at nearly 64% packing
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fraction. In Fig. 4.15, we see a black star that represents D̃ = 0
density which is following the same expected empirical fitted curve
plotted (dashed line).
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Figure 4.9. (a) The phase diagram of the WCA with the isomorphs
traced. The horizontal lines are three isotherms and the vertical lines are
three isochores that will be used for comparison of structure and dynamics
variations to those along the isomorphs. The freezing and melting lines
are shown as yellow and orange lines. (b) The four isomorphs shown in a
logarithmic temperature-density phase diagram.
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Figure 4.10. The correlation coefficients plotted (a) against density (b)
against temperature. The R0 is the R limit at low temperature region
T → 0. This is discussed in Sub-section (4.3.1).
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Figure 4.11. The density scaling exponent γ plotted for the state points
studied as (a) linear plot as a function of density (b) logarithmic plot as a
function of density (c) linear plot as a function of pressure (d) logarithmic
plot as a function of pressure (e) linear plot as a function of temperature
(f) logarithmic plot as a function of temperature. Full symbols are iso-
morph state-point data, half open circles are isochore and isotherm data.
The dashed line is the low-temperature limit of the mean-field theory in
Subsection 4.3.1.
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Figure 4.12. The radial distribution functions (RDF) for the three
isotherms, isochores, and isomorphs. The green curves give the lowest tem-
perature/density, the orange curves give the mid temperature/density, and
the blue curves give the highest temperature/density. We can see visible in-
variance along the isomorphs in comparison to the isotherms and isochores.
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Figure 4.13. The mean-squared displacement (MSD) plotted against time
for the three isotherms, isochores, and isomorphs. The state points and
colors are the same as in Fig. 4.12. We can see visible invariance along the
isomorphs in comparison to the isotherms and isochores.
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close-packing (rcp) density (ρ = 0.864).



72 Hidden Scale Invariance of the Weeks-Chandler-Andersen System

4.3.1 Mean-field Theory for the Density
Scaling Exponent Extreme Variation at
Low Temperatures

This section briefly presents a mean-field theory for estimating the
virial potential-energy correlation coefficient R and the density-scaling
exponent γ. Details are given in paper I [58].

Based on Refs [73–76], we assume that the individual pair inter-
actions are statistically independent. This is expected to be a good
approximation at relatively low densities. At low densities it is rea-
sonable to regard the pair distances as uncorrelated, i.e., to treat the
interactions in a mean-field way. In the low-density limit, almost none
of the frozen particles overlap. Thus, free volume in the low-density
limit approaches the entire volume V . Based on that view, we cal-
culate the single-particle partition function and make the following
predictions. At the low-density limit, the γ and R at low densities
depend only of T , which explains the observation in Fig. 4.11. The γ
and R in the low-density limit are from these assumptions given by

γ0 = 4rc

√
2k2

9
√

πT
= 16

3
√

πT
(T → 0) (4.2)

and

R0 =
√

8
3π

= 0.921 . . . (T → 0) . (4.3)

k2 is obtained from the second term of tailor-expanding the WCA
pair potential with the assumption that the probability distribution
p(r) concentrates around rc at low temperature such that k1 = 0 and
k2 = 36 3

√
4.
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Figure 4.16 compares the predictions of the mean-field theory to
data along isomorphs and isochores. There is good overall agreement.
Systematic deviations are visible in (b) and (d), however, which focus
on densities that are now low enough to avoid frozen-particle overlap.
Along with Fig. 4.16, Fig. 4.17 shows the mean-field predictions for γ
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Figure 4.16. Comparing the predictions of the mean-field theory for
γ and R as functions of the temperature (dashed lines) to simulation
results. (a) and (c) show results along the three isomorphs in the low-
temperature region (b) and (d) show results along the three isochores in
the high-temperature region where the mean-field theory is not expected
to be accurate.
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and R at T = 0.01 plotted as a function of the density. As expected,
the theory works well at low densities, even though one is here still
not quite at the T → 0 limit marked by the horizontal lines.
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the simulations.
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CHAPTER 5
Hidden Scale

Invariance in the
Asymmetrical

Dumbbell System
5.1 The Asymmetrical Dumbbell

System: Definition and Setup

The asymmetrical dumbbell (ASD) is designed to be a constrained
simple molecular model. Because of the asymmetry, the model is
easily super-cooled, i.e., avoids crystallization [19]. In Chapter 1, the
ASD system is detailed (P.17). This system is studied by molecular
dynamics (MD) simulations in the canonical NV T ensemble using the
Nosé-Hoover thermostat [8]. The simulated system consists of 8000
particles (4000 molecules) in a cubic box with periodic boundaries.
The simulations are performed using the open-source RUMD [65, 66].
The Leapfrog algorithm is used with the time step size dt = 0.001.
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Such small step size is used to carefully update the constraint system.
The simulation runs for 106 time steps for equilibration and 106 time
steps for runtime for each state point obtained. For the conducted
post analysis of the structure and dynamics, the units used are the
isomorph reduced units. These units are defined as such, the energy
unit e0 ≡ kBT , the length unit l0 ≡ ρ−1/3, and the time unit t0 ≡
ρ−1/3

√
mA/kBT in which T is the temperature, ρ is the density defined

as the total number of atoms confined in the simulation box (N/V ),
mA is the particle A mass and kB is the Boltzmann constant. These
units vary with each state point. Exceptions to the use of isomorphic
reduced units apply for density and temperature that are by definition
both unity in reduced units. The density and temperature are reported
in LJ units. After setting up the system, the hidden scale invariance
is investigated in both the liquid and plastic crystalline phases of the
ASD phase diagram. A systematic numerical investigation is run by
tracing out configurational adiabats or isomorphs in both of the two
regions. The first section covers the liquid region of the phase diagram
as the first part of the investigation. The second section covers the
investigation in the crystalline region.

5.2 Validating Against Literature
Viscous Data

The first step of the investigation in the liquid phase is to trace out an
isomorph starting from the reference state point ρ = 0.932, T = 0.465
and bond length of 0.58 in A particle units from literature [19]. Figure
5.1 shows a snapshot of how the ASD simulated system looks like in
the liquid phase. Afterwards, four different isomorphs are traced out
with different bond lengths between A and B particles of the ASD



5.2 Validating Against Literature Viscous Data 79

Figure 5.1. Snapshot from the liquid configuration at st the liquid state
point ρ = 0.8, T = 0.8. Particles A are the red, particles B are the blue.
The bond length between particle A and B in this configuration is 0.58 in
A particle units.

molecule. In terms of the largest A particle radius, data for the bond
lengths 0.05, 0.1, 0.2 and 0.5 is reported. All isomorphs start from
the same density and temperature ρ = 1.5, T = 1.5. Each isomorph
is traced out with an isotherm starting from the same reference state
point for structure and dynamics comparison. Then, the structure and
the dynamics of the state points along each isomorph and isotherm of
the same bond length respectively are investigated. The structure,
is probed by the radial distribution functions (RDF) of the reduced
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pair-distance. The dynamics are probed by the reduced mean square
displacements (MSD) as functions of reduced time and the rotational
auto-correlation (RAC) functions.

Figure 5.2 shows the traced isomorph from the reference state point
ρ = 0.932, T = 0.465 [19] in the ASD phase diagram. It is traced
up to ρ = 1.007 using the fourth-order Runge Kutta (RK4) method
with density step size h = 0.2. Then, it is traced down with the same
method and step size h = 0.2 to ρ = 0.871. This isomorph is referred to
in Figs. as RK4 traced isomorph. Unlike the literature isomorphs, all
isomorphs in this thesis are traced out by the RK4 method for accuracy
(check Appendix A for more details). Isomorph from Ref. [19] is traced
by Euler’s integration method. Isomorph from Ref. [77] is traced by
the atomic force method. In Fig. 5.3, the correlation coefficients of
the state points along the RK4 traced isomorph are plotted. The
correlation coefficient R is higher than 0.99 for all of the state points.

The structure and dynamics along the RK4 traced isomorph are
shown in Fig. 5.4 and compared to literature [19, 77]. For structure,
the reduced AA radial distribution functions are compared. For the
dynamics, the A particle intermediate -scattering functions with the q
vector calculated based on the position of the first peak are compared.
The end-to-end vector ⟨n⃗(0) · n⃗(t̃)⟩ rotational auto-correlation of the
unit vector n⃗ from A to B plotted as a function of the reduced time t̃
are also compared. Because of the normalization this quantity always
starts in unity at time zero. In Fig. 5.4, invariance along the structure
and dynamics of the RK4 traced isomorph is seen as in literature.
Both of the rotational auto-correlation functions show the behavior
expected in the viscous regime, with a small damp then a complete
long decay around t̃ ≈ 103.
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Figure 5.2. A liquid isomorph traced out using fourth-order Runge Kutta
(RK4) method with density step size 0.2 in the ASD thermodynamic phase
diagram. The reference state point is ρ = 0.932, T = 0.465. The isomorph
is traceed up to ρ = 1.007, then down to ρ = 0.871. The bond length
between the A and B particle of the molecule is 0.58 in A particle units.
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Figure 5.3. The correlation coefficient R of each state point as a function
of density along the traced liquid isomorph of Fig. 5.2. All the points have
high correlation such, R ≥ 0.99 which is proposed by isomorph theory to
define an isomorphic state point.
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Figure 5.4. The AA radial distribution functions for the state points along
(a) the RK4 traced isomorph (b) the isomorph from ref [19]. The density
increase along the two isomorphs is comparable (16% and 19%). The A-
particle intermediate scattering functions for the state points along (c) the
RK4 traced isomorph (d) the isomorph from Ref. [19]. The end-to-end
vector rotational auto-correlation function of (e) the RK4 traced isomorph
(f) the isomorph from Ref. [77] in which R is the unit vector.
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5.3 Systematic Numerical
Investigation in the
Asymmetrical Dumbbell System

5.3.1 Isomorphs in the Liquid Phase
After comparing to literature, we proceed with tracing the other iso-
morphs for our systematic investigation. Fig. 5.5 shows the four
isomorphs traced out in the ASD liquid phase diagram. They all start
at the same reference start point, ρ = 1.5, T = 1.5. The thermody-
namic values of the reference state point of each isomorph is listed in
Table 5.1. A systematic increase is seen in the temperature of the last

Table 5.1. Thermodynamic values of the reference state point of each
liquid isomorph along with the bond length in LJ units.

Bond length [1/σ] T [ε/k] ρ [1/σ3] p [σ3ε] γ R
0.050 1.500 1.500 1.089 5.474 0.850
0.100 1.500 1.000 1.049 5.548 0.850
0.200 1.500 1.500 1.606 5.941 0.894
0.500 1.500 1.500 7.496 6.116 0.961

traced state point with increasing the bond length. Looking at the
correlation coefficients R of the state points along the isomorphs and
isotherms (Fig. 5.6), the correlation coefficient R is noted to be below
0.9 at the reference state point. Since some Roskilde simple systems
can have high correlations in only some of regions or higher than other
regions in phase diagram, the criteria of R > 0.9 is arbitrary. Thus,



5.3 Systematic Numerical Investigation in the Asymmetrical Dumbbell System 85

1.50 1.55 1.60 1.65 1.70 1.75 1.80
3

0

1

2

3

4

5

k B
T/

Isomorph, Bond length = 0.05
Isomorph, Bond length = 0.1
Isomorph, Bond length = 0.2
Isomorph, Bond length = 0.5
Reference state point

Figure 5.5. Four isomorphs traced out in the liquid regime of ASD ther-
modynamic phase diagram using the RK4 method with density step size
0.01. Each isomorph is traced with a different bond length between particle
A and B, starting from 0.05 till 0.5 in LJ units.

this is still defined as high correlation. Moreover, the “good-isomorph”
property depends on the quantity in question because in practice some
reduced unit quantities are more isomorph invariant than others. How
invariant a given property appears to depend on how large a density
range is being explored. For the bond length 0.5, the correlation coeffi-
cient is relatively high for all the state points. For the density scaling
exponent γ, the values are comparable and in range 5.0 ≤ γ ≤ 6,
which is typical for LJ liquid (Fig. 5.7).

Looking at the reference state point only, the correlation coefficient
R and the density scaling exponent γ are plotted in Figs. 5.8(a) and
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5.8(b) as functions of the bond length. Some extra values of R and
γ of bond lengths (0.15, 0.25, 0.3, 0.4, 0.6, 0.7) are added at the same
reference state point ρ = 1.5, T = 1.5 in order to have a better view of
the γ variation. Looking at the correlation coefficient R (Fig. 5.8(a)),
R tends to increase with increasing bond length then starts to drop
slightly, but still above 0.9. Looking at γ (Fig. 5.8(b)), the values
range between 5.0 ≤ γ ≤ 6.0. A small decrease is seen though after
bond length 0.4, but still with in the range stated above for typical LJ
liquid. For the γ at the final state point of each isomorph at ρ = 1.796,
a slight increase from the smallest bond length 0.05 till the highest 0.5
is observed (Fig. 5.9 (a)). As the temperature increases (Fig. 5.9(b)),
the repulsive part of the potential is dominating and resulting in γ
increasing.

Continuing with the investigation at the reference state point, the
structure and the dynamics are checked. Fig. 5.10 shows the AA, AB
and BB reduced radial distribution functions of the state point ρ =
1.5, T = 1.5 of each isomorph with different bond lengths 0.05, 0.1, 0.2, 0.5.
Similar behavior along the AA reduced radial distribution function for
the four isomorphs is observed. For the AB and BB reduced radial
distribution functions, the first peak changes significantly. At bond
length 0.5, the BB RDF is almost constant. The observed variation of
the AB and BB RDFs can be interpreted as a consequence of the near
invariance of the AA particle RDF as the bond length is increased. The
structure of the ASD liquid may be thought of as primarily determined
by the large A particles, which behave like standard LJ particles that
are not bothered much by existence of the B particles. This is because
the B particles are smaller and have significantly lower interaction en-
ergy parameters. The B particles are to a significant degree “slaves”
of the A particles and constrained to be close to the A particle of the
same molecule. When the bond length increases, the B particles place
themselves in many possible positions around the A particles, which
for all bond lengths have almost the RDF of a single-component LJ
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liquid. The “B slaving A” picture is confirmed by the AB RDF, which
(except for the vertical line coming from the intra-molecular AB bond
correlation) gives data for the AB correlations between different ASD
molecules. The AB RDF is diminishing as the bond length increases,
but less than the BB RDF because the relative order of the A particles
is partly inherited by the AB RDF.

For the dynamics, Fig. 5.11 shows data for the reduced-time de-
pendence of the reduced-unit mean-square displacement of the A and
B particles for the four isomorphs. The A particle motion shows to
be pretty similar at all bond lengths, which is consistent with the A
particles to a significant extent behaving as if the B particles were
not present, as i.e. as a single-component LJ liquid. At short times,
the longer the bond, the longer the ballistic regime. The B particles
move faster than the A particles as they have lower mass. At long
times for both A and B particle, the longer the bond, the slower the
movement as the particles enter the diffusion regime. This results in
lower diffusion coefficient as the bond length increases (Fig. 5.12).



88 Hidden Scale Invariance in the Asymmetrical Dumbbell System

1.50 1.55 1.60 1.65 1.70 1.75 1.80
3

0.80

0.85

0.90

0.95

1.00

R

(a)

Isomorph, Bond length = 0.05
Isomorph, Bond length = 0.1
Isomorph, Bond length = 0.2
Isomorph, Bond length = 0.5

1.50 1.55 1.60 1.65 1.70 1.75 1.80
3

0.80

0.85

0.90

0.95

1.00

R

(b)

Isotherm, Bond length = 0.05
Isotherm, Bond length = 0.1
Isotherm, Bond length = 0.2
Isotherm, Bond length = 0.5

Figure 5.6. (a) The variation of correlation coefficient R along the state
points of each isomorph of different bond lengths (b) The variation of cor-
relation coefficient R along the state points of each isotherm of different
bond lengths.
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Figure 5.7. (a) The variation of the density scaling exponent coefficient
γ along the state points of each isomorph of different bond lengths (b) The
variation of the density scaling exponent coefficient γ along the state points
of each isotherm of different bond lengths.



90 Hidden Scale Invariance in the Asymmetrical Dumbbell System

0.0 0.2 0.4 0.6 0.8
Bond Length

0.80

0.85

0.90

0.95

1.00

R

= 1.5, T = 1.5(a)

0.0 0.2 0.4 0.6 0.8
Bond Length

0

2

4

6

8

ga
m

m
a,

 

= 1.5, T = 1.5(b)

Figure 5.8. (a) The variation of R at the initial start point ρ = 1.5, T = 1.5
of each isomorph with different bond lengths. (b) The variation of γ at the
initial start point ρ = 1.5, T = 1.5 of each isomorph with different bond
lengths.
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Figure 5.9. (a) γ at the final state point ρ = 1.796 of each isomorph
plotted as a function of the bond length. (b) The temperature, T at the final
state point ρ = 1.796 of each isomorph plotted as a function of the bond
length. An increase can be seen as with each state point, the temperature
increases with increasing the bond length, thus bigger γ. While at the
reference start point the temperature is fixed at T = 1.5 for each bond
length.
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Figure 5.10. (a) The reduced AA radial distribution functions of the
state point ρ = 1.5, T = 1.5 of each isomorph in the bond lengths range of
0.05, 0.1, 0.2, 0.5. (b) The reduced AB radial distribution functions (c) The
reduced BB radial distribution functions.
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Figure 5.11. (a) The mean square displacement of particle A of the state
point ρ = 1.5, T = 1.5 of each isomorph with different bond lengths of
0.05, 0.1, 0.2, 0.5. (b) The mean square displacement of particle B of the
state point ρ = 1.5, T = 1.5.
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Figure 5.12. The diffusion coefficient calculated at the state point ρ =
1.5, T = 1.5 of each isomorph with different bond lengths of 0.05, 0.1, 0.2, 0.5.
It is clearly seen that with plotting the diffusion constants against the bond
length that the longer the bond, the smaller the diffusion constant due to
slow movements of the particles. The behavior is similar for the A particle
by comparison from Fig. 5.11
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5.3.1.1 Structure and Dynamics Invariance
In this sub-section, we continue with the investigation of the other
state points along the isomorphs. The structure and dynamics are
checked for the isomorphs starting from the lowest bond length 0.05 till
the longest 0.5. Figures 5.13, 5.14, 5.15 and 5.16 show that along the
reduced AA, AB, BB radial distribution functions, better invariance
is observed in all of the isomorphs compared to the isotherms plotted
next to them, especially in the first peak. The thick vertical line in the
AB RDF comes from the fixed bond length, which in reduced units
varies with density. When the bond length is relatively small i.e., 0.05,
there is no much change in the AA, AB and BB radial distribution
functions. As the bond length increases, variations start to appear
in the width of the first peak. It gets broader. For the longest bond
length in the range 0.5, the first peak almost diminishes and splits
into two peaks (Fig. 5.16). This follows as a consequence of the small
B particles acting as ”slaves” to the large A particles. At small bond
length i.e., 0.05, the structure of the ASD particles is similar to LJ
particles governed by the A particles and not bothered much by the
existence of the B particles. When the bond gets longer, the peak gets
broader as the B particles place themselves in many possible positions
around the A particles. The same behavior is seen Fig. 5.10 at the
reference state point.

For the dynamics, Figs. 5.17, 5.18, 5.19 and 5.20 show data for the
reduced mean square displacement of the A and B particles of each
isomorph and isotherm of the same bond length respectively. The data
are isomorph-invariant to a good approximation, but not isotherm-
invariant. The A particle motion is pretty similar for all bond lengths
i.e., as in a single-component LJ liquid. The same behavior is seen in
Fig. 5.11 at the reference state point. At long times, the A and B
particles follow each other resulting in the same long-time MSD for all
bond lengths. This also applies along the isotherms. An interesting
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Figure 5.13. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.05 along with the isotherm of the same bond length
0.05 respectively.

feature appears at intermediate times for the B particle MSD in short
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bond lengths i.e., 0.05. At such short bond length, there is a slight kink
that at longer bond lengths develops into an indication of a plateau.
We interpret this as an effect of the fact that the fast ballistic motion
of the B particles in their motion around the A particles eventually
“saturates”. This is confirmed in Fig. 5.21 (discussed next), showing
that the rotational auto-correlation function for bond length 0.05 has
a (negative) minimum in this range around t̃ ≈ 0.1.

Next for dynamics, the normalized end-to-end vector ⟨n⃗(0)·n⃗(t̃)⟩ ro-
tational auto-correlation (RACs) functions are investigated. We don’t
expect the state points reduced rotational auto-correlation functions
to have perfect collapse as in reduced radial distribution functions or
the mean square displacement. This is because the moment of iner-
tia is not isomorph invariant because the bond length along each iso-
morph is fixed and not scaled with the density. The reduced rotational
auto-correlation functions give an indication of the system phase, the
orientation of the molecules and the effect of each bond length on the
rotation of the molecules. Figures 5.21 and 5.22 show the RACs of
each isomorph and isotherm of the same bond length. Comparing the
RACs of the isomorphs and isotherms, we see much smaller variance
along the RACs of the isomorphs showing more invariant rotation
along the isomorphs, especially in bond length 0.5. We can see how
the reduced rotational auto-correlation functions change from fast de-
cay to slower smooth decay. The damping or the negative minimum
mirrors the fast rotation of the molecules at the small bond lengths.
It signals a more than 90 degree rotation of the molecule, while in the
longer bond length, the molecules rotate slower with longer decay and
no negative minimum. In Fig. 5.21(a), at bond length 0.05, the two
particles moves as one. The rotation of the molecule happens vigor-
ously and it rests at short time around t̃ < 0.1. When bond length is
0.5 (Fig. 5.22), the molecules rotate slower and relaxes at t̃ ≥ 1.0. As a
consequence of the short bond length 0.05, the B particle mean square
displacement of the same isomorph shows the small kink mentioned
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earlier. Comparing the reduced time t̃ at which this kink happens with
the time of the negative minimum of the rotational auto-correlation
(RAC) function of the same isomorph, we can see it is occurs at al-
most the the same time τroc ≈ 0.1. Finally, in Fig. 5.22(h), along
the isotherm of bond length 0.5, larger variation along the isotherm is
seen compared to the isomorph (5.22(g)). This is because the density
decoupling is higher in bond length 0.5 as the density increases while
the temperature is still the same T = 1.5.
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Figure 5.14. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.1 along with the isotherm of the same bond length
0.1 respectively. The first peak in the BB radial distribution function starts
to get broader as the bond increases and B particle start to move away from
A. Invariance is seen along the isomorph compared to the the isotherm.
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Figure 5.15. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.2 along with the isotherm of the same bond length
0.2 respectively. The first peak of the BB radial distribution function is
getting even lower while the invariance withhold along the isomorph.
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Figure 5.16. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.5 along with the isotherm of the same bond length
0.5 respectively. Here the first peak of the AB radial distribution function
is broader than the above and almost no second peak. There is still also
invariance along the isomorph.
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Figure 5.17. The A and B reduced mean square displacement along
isomorph of bond length 0.05 and the isotherm of the same bond length
0.05 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement.
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Figure 5.18. The A and B reduced mean square displacement along
isomorph of bond length 0.1 and the isotherm of the same bond length
0.1 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement.
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Figure 5.19. The A and B reduced mean square displacement along
isomorph of bond length 0.5 and the isotherm of the same bond length
0.5 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement.
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Figure 5.20. The A and B reduced mean square displacement along
isomorph of bond length 0.5 and the isotherm of the same bond length
0.5 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement.



106 Hidden Scale Invariance in the Asymmetrical Dumbbell System

0.0 0.2 0.4 0.6 0.8 1.0
t = 1/3 T/m  t 

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

n(
0)

n(
t)

(a)

rot

Isomorph
 Bond length = 0.05

=1.500,T=1.500
=1.593,T=2.098
=1.691,T=2.921
=1.796,T=4.007

0.0 0.2 0.4 0.6 0.8 1.0
t = 1/3 T/m  t 

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

n(
0)

n(
t)

(b)

Isotherm
 Bond length = 0.05

=1.500,T=1.500
=1.593,T=1.500
=1.691,T=1.500
=1.796,T=1.500

0.0 0.2 0.4 0.6 0.8 1.0
t = 1/3 T/m  t 

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

n(
0)

n(
t)

(c)

Isomorph
 Bond length = 0.1

=1.500,T=1.500
=1.593,T=2.112
=1.691,T=2.952
=1.796,T=4.070

0.0 0.2 0.4 0.6 0.8 1.0
t = 1/3 T/m  t 

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

n(
0)

n(
t)

(d)

Isotherm
 Bond length = 0.1

=1.500,T=1.500
=1.593,T=1.500
=1.691,T=1.500
=1.796,T=1.500

Figure 5.21. (a) The rotational auto-correlation of isomorph of bond
length 0.05 and (b) of isotherm of bond length 0.05. We can see a fast decay
to zero at time t̃ > 0.1. (c) The rotational auto-correlation of isomorph of
bond length 0.1 and (d) of isotherm of bond length 0.1. The decay starts
to be a bit slower, at time t̃ ≥ 0.2
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Figure 5.22. (e) The rotational auto-correlation of isomorph of bond
length 0.2 and (f) of isotherm of bond length 0.2. We can see a fast decay
to zero at time t̃ > 0.3, but not as fast as in bond length 0.05 and 0.1 (g)
The rotational auto-correlation of isomorph of bond length 0.5 and (h) of
isotherm of bond length 0.5. The decay is much slower t̃ ≥ 1.0 and it is
smoother, doesn’t go below zero as we see in all other bond lengths.
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5.3.2 Isomorphs in the Plastic-Crystalline
Phase

Moving to the crystalline phase, we trace out four isomorphs starting
from the same reference state point ρ = 2.2, T = 0.5. The simulation
runs with the same parameters including the same system size and
time step as in the liquid phase. Results for the plastic crystalline
phase for the bond lengths 0.05, 0.1, 0.2, and 0.3. re reported For
bond lengths larger than 0.3, the systems were liquid at the reference
state point. A typical crystal configuration is shown in Fig. 5.23. We
clearly see that the system is ordered comparing to Fig. 5.1. The order
is not perfect, however, because the bond directions are disordered.
This is the signal of a plastic crystal in which the center of masses
order on a crystalline lattice (in this case a face-centered cubic lattice)
while the molecular orientations vary more or less randomly because
the molecules are free to rotate. At a higher densities with relatively
low temperature, there is a transition to the less ordered glassy phase
in which the bond orientations are restricted as seen in Sub-section
5.3.2.2.

In Fig. 5.24, the four isomorphs traced out are shown in the crys-
talline region of the ASD phase diagram. The thermodynamic values
of the reference state point of each isomorph is listed in Table 5.2.
The temperature of the final state point is decreasing till bond length
0.2, then afterwards increases for bond length 0.3. The correlation
coefficients R along the four isomorphs and isotherms are shown in
Fig. 5.25(a) and (b)respectively. For all of the state points along
the isomorphs and the isotherms, unlike the liquid phase, the corre-
lation coefficient R is high such that R > 0.95. That is evident for
strong UW correlation in the plastic crystalline region of ASD phase
diagram. It decreases slightly though when the bond increases, but
still above 0.95. Shifting to the density scaling exponent γ, the values
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Figure 5.23. Snapshot from the plastic crystal configuration at the state
point ρ = 2.2, T = 0.5 and bond length = 0.2 in LJ units. Particles A are
the red, the B particles are the blue.

are comparable and around 5 ≤ γ < 6 (Fig. 5.26). Figure 5.27
shows the correlation coefficient R and the density scaling exponent γ
at the reference state point only of each isomorph. The R is high all
the bond lengths such that R > 0.99 and the γ is 5.0 ≤ γ ≤ 6.0. At
the final state point ρ = 2.634, the same variation of γ is seen as in
the reference state point, but when the bond length is 0.3, γ value is
much higher (Fig. 5.28).

Figure 5.29 shows the AA, AB and BB radial distribution functions
at the reference state point. In Fig. 5.29(a), the AA reduced RDFs
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Figure 5.24. Four isomorphs traced out in the crystalline regime of ASD
thermodynamic phase diagram using the RK4 method with density step
size 0.01. Each isomorph is traced with a different bond length between
particle A and B, starting from 0.05 till 0.3 in LJ units.

show well-defined order due to the almost crystalline ordering of the
A particles for all bond lengths. In contrast, the AB and BB RDFs
vary significantly because of the rotation of the B particles around the
A particles. In these cases, the most ordered RDFs are those of the
shortest bonds, which reflects the slaving of the B particles to the A
particles that are well ordered. Looking at the mean square displace-
ment (MSD) on the other hand, the A particle mean square displace-
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Table 5.2. Thermodynamic values of the reference state points of each
isomorph along with the bond length in LJ units.

Bond length [1/σ] T [ε/k] ρ [1/σ3] p [σ3ε] γ R
0.050 0.500 2.200 0.497 5.497 0.997
0.100 0.500 2.200 1.173 5.503 0.996
0.200 0.500 2.200 5.191 5.191 0.992
0.300 0.500 2.200 15.279 5.579 0.990

ment shows the same time for the ballistic regime of all isomorphs.
For the A particles, the results are very similar for the different bond
lengths, although bond length 0.3 deviates from the three smaller ones
by having a somewhat larger long-time plateau. We have no good ex-
planation for this, but deviations for the longest bond length from the
three others are also noted in some of the later figures. For the B par-
ticles, long-time plateaus vary considerably. When the bond is larger,
the plateau gets larger. This is because the B particles rotate around
the A particles and a larger bond length gives them more freedom to
do so, resulting in a larger long-time plateau. Moreover, the B parti-
cles move faster compared to A particles. When the bond get longer,
the long-time plateau showing the elastic constant of the crystal gets
higher, in a more systematic way (Fig. 5.30(b)). As the bond gets
longer, the crystal can be seen as ”less hard” or ordered, especially
through B particles displacement. That indicates the important role
the B particles in the dynamics of the plastic crystals obtained.

5.3.2.1 Structure and Dynamics Invariance
Moving from the reference state point to other state points along the
isomorphs, we investigate the structure and the dynamics starting
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from the lowest bond length 0.05 till the longest 0.5. Figures 5.31,
5.32, 5.33 and 5.34 show the reduced AA, AB, BB radial distribution
functions for all isomorphs and isotherms, respectively. Better invari-
ance in all of the isomorphs is observed compared to the isotherms
plotted next to them, especially in the first peak. For the relatively
small bond length of 0.05, there is no much change in the AA, AB and
BB radial distribution functions. This is a consequence of the fact
that all B particles are constrained to be very close to an A particle.
As the bond length increases, very good isomorph collapse is seen in
all cases, but variations in the height of the first AB and BB peak com-
pared to the AA particle RDF start to be seen. As seen in the liquid
phase, this is interpreted as deriving from rotations of the molecules.
To investigate the dynamics of the plastic-crystal systems, the A and
B particle mean square displacements are checked. Figs. 5.35, 5.36,
5.37 and 5.38 show visible invariance along all of the isomorphs com-
pared to the isotherms. In contrast, there is a notable variation along
the corresponding isotherms for both A and B particles. Only at short
times (in the ballistic regime), invariance along the isotherms is ob-
served, but this is as mentioned a consequence of the definition of the
reduced units.

Moving to the normalized end-to-end vector ⟨n⃗(0) · n⃗(t̃)⟩ rotational
auto-correlation (RACs) functions, we can have an indication about
the system phase and how the molecules rotate in the plastic crystals
of different bond lengths. Figures 5.39 and 5.40 show the rotational
auto-correlation function of each isomorph and isotherm of the same
bend length. Comparing the RACs of the isomorphs and isotherms,
we see much smaller variance along the RACs of the isomorphs showing
more invariant rotation along the isomorphs, especially in bond length
0.3. We can see how the reduced rotational auto-correlation functions
change from fast decay to slower smooth decay. The damping or the
negative minimum mirrors the fast rotation of the molecules at the
small bond lengths. It signals a more than 90 degree rotation of the
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molecule. In the longer bond length, the molecules rotate slower with
longer decay and no negative minimum in the RAC. In Fig. 5.39(a),
at bond length 0.05, the two particles moves as one and the rotation
of the molecule happens vigorously and it rests at short time around
t̃ < 0.1. With bond length 0.5 (Fig. 5.40), the molecules rotate slower
and relaxes at t̃ ≥ 1.0. In Fig. 5.40(g) and (h), along the isomorph of
bond length 0.3, we can see much larger variation along the isotherm
compared to the isomorph. This is because the density decoupling is
higher along bond length 0.5 as the density increases while the tem-
perature is relatively low T = 0.5. The rotation gets slower and slower
as the system starts to exit the plastic crystalline phase.
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Figure 5.25. (a) The variation of correlation coefficient R along the state
points of each isomorph of different bond lengths (b) The variation of cor-
relation coefficient R along the state points of each isotherm of different
bond lengths.
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Figure 5.26. (a) The variation of the density scaling exponent γ along the
state points of each isomorph of different bond lengths (b) The variation of
the density scaling exponent γ along the state points of each isotherm of
different bond lengths.
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Figure 5.27. (a) The variation of the correlation coefficient R at the ref-
erence state point ρ = 2.20, T = 0.5 of each isomorph plotted as a function
of the bond length. (b) The variation of the density scaling exponent γ at
the reference state point ρ = 2.20, T = 0.5 of each isomorph plotted as a
function of the bond length.
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Figure 5.28. (a) The variation of the density scaling exponent γ at the
final state point ρ = 2.634 of each isomorph plotted as a function of the
bond length (b) the temperature, T at the final state point ρ = 2.634 of
each isomorph plotted as a function of the bond length.
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Figure 5.29. (a) The radial distribution functions g(r)AA of the state
point ρ = 2.2, T = 0.5 of each isomorph with different bond lengths of
0.05, 0.1, 0.2, 0.3. (b) The radial distribution functions g(r)AB of the state
point ρ = 2.2, T = 0.5 (c) The radial distribution functions g(r)BB of the
state point ρ = 2.2, T = 0.5.
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Figure 5.30. (a) The mean square displacement of particle A of the state
point ρ = 2.2, T = 0.5 of each isomorph with different bond lengths of
0.05, 0.1, 0.2, 0.3. (b) The mean square displacement of particle B of the
state point ρ = 2.2, T = 0.5.
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Figure 5.31. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.05 along with the isotherm of the same bond length
0.05 respectively. Invariance is seen along the isomorph.
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Figure 5.32. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.1 along with the isotherm of the same bond length
0.1 respectively. Invariance is seen along the isomorph.
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Figure 5.33. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.2 along with the isotherm of the same bond length
0.2 respectively. Invariance is seen along the isomorph.
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Figure 5.34. The AA, AB and BB radial distribution functions of iso-
morph of bond length 0.3 along with the isotherm of the same bond length
0.3 respectively. We can see the flattening of the first peak. Invariance is
seen along the isomorph.
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Figure 5.35. The A and B reduced mean square displacement along
isomorph of bond length 0.05 and the isotherm of the same bond length
0.05 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement unlike along the isotherm.
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Figure 5.36. The A and B reduced mean square displacement along
isomorph of bond length 0.1 and the isotherm of the same bond length
0.1 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement unlike along the isotherm.
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Figure 5.37. The A and B reduced mean square displacement along
isomorph of bond length 0.2 and the isotherm of the same bond length
0.2 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement better than along the isotherm.
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Figure 5.38. The A and B reduced mean square displacement along
isomorph of bond length 0.3 and the isotherm of the same bond length
0.3 respectively. There is invariance along the isomorph in both A and B
reduced mean square displacement unlike along the isotherm. For B particle
MSD of the isotherm, the variation is mainly in the time of entering the
long-time MSD plateau.
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Figure 5.39. (a) The rotational auto-correlation of isomorph of bond
length 0.05 and (b) of isotherm of bond length 0.05. A fast decay to zero
is seen at time t̃ ≥ 0.1. (c) The rotational auto-correlation of isomorph of
bond length 0.1 and (d) of isotherm of bond length 0.1. The decay starts
to be a bit slower, at time t̃ ≥ 0.2.
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Figure 5.40. (e) The rotational auto-correlation of isomorph of bond
length 0.2 and (f) of isotherm of bond length of 0.2. We can see decay
around t̃ ≥ 0.4 to zero. We still see damping below zero that indicates fast
rotation. (g) The reduced rotational auto-correlation of isomorph of bond
length 0.3 and (h) of isotherm of bond length 0.3. Here, the decay is slower.
As the bond length is getting longer, the B particles rotate slower. In the
isotherm, we see higher decoupling as the density increases with the fixed
low temperature T = 0.5 and the rotation starts to be hindered.
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5.3.2.2 Transition: From Plastic-Crystalline State to
Glassy State

As more density decoupling is seen along the isotherm of the longest
bond 0.3, the state points at higher density along the same isotherm
are investigated. Figure 5.41 shows the AA, AB, BB reduced radial
distribution functions of the state points of density 2.634 ≥ ρ ≥ 3.485.
Temperature is fixed at T = 0.5. The A particles seem not have the
same crystalline-behaviour, while the AB and BB RDFs show visible
variations. As the density increases, it is clear from the BB reduced
radial distribution function that, the structure gets towards a more
restricted mobility state. The B particles have random arrangements
at low-densities, but starts to have more preferred arrangements at
high densities. This shift can be a glassy state transition. The mean
square displacement of both particles A and B show the same finding.
In Fig. 5.42, we can see that the long-time MSD gets lower and lower
as the density increases. The rotation auto-correlation function also
shows that in Fig. 5.43. Above ρ = 2.970, there is no decay or rotation,
showing more restricted mobility or glassy state.
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Figure 5.41. The AA, AB and BB radial distribution functions along
higher density state points of the isotherm of bond length 0.3. The AB and
BB RDFs show that B particles start to have more preferred arrangements
at high densities. This shift can be seen as a glassy state transition.
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Figure 5.42. The A and B reduced mean square displacement along
isotherm of bond length 0.3 at higher densities. We can observe the change
to much lower movement which can indicate the transition to the glassy
state.
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Figure 5.43. The rotational auto-correlation of higher density state points
along the isotherm of bond length 0.3. At ρ = 2.797, We can see a slow
decay t̃ ≈ 0.3 in the function to zero. As the density is increasing with
the same temperature T = 0.5, the movement of B particle is restricted
and it can’t rotate easier. We can see then a plateau and no decay of the
rotational auto-correlation functions at ρ ≥ 3.153 which can indicate the
transition to the glassy state.
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CHAPTER 6
Conclusion

Coming to the end of this work, we conclude the following based on
the data presented in Chapter 4 and 5. The investigation of the single-
component Weeks-Chandler-Andersen (SCWCA) system and the sym-
metrical dumbbell (ASD) system shows that both systems exhibit hid-
den scale invariance. As a consequence, the isomorph theory applies
in both systems. The SCWCA system is shown to be deviant from
the IPL system. In fact, it is an R-simple liquid. For a single bond
length, the ASD system has been shown previously by Ingebrigtsen
et al. [19] to be an R-simple system in the viscous region. We show
for a range of bond lengths that the liquid and the plastic-crystalline
phases join as well. The ASD plastic crystals are the first application
of Isomorph theory in plastic crystals.

The Weeks-Chandler-Andersen system is unlike any other Roskilde
simple liquid. While R-simple systems follow density scaling in iso-
morph theory with density scaling exponents that range from 1-8 and
often with relatively small variations throughout the phase diagram,
something else interesting is observed in the WCA system. The den-
sity scaling exponent is shown to rapidly increase way above 8 in the
low temperature/density region of the phase diagram. Along an iso-
morph, we have found a variation of more than a factor of hundred
of the density-scaling exponent. We refer to this huge variation as
”extreme density scaling.” Moreover, the WCA shows high UW cor-
relations with R > 0.9 throughout the whole phase diagram. This
makes it stand out from the rest of the Roskilde simple liquids in
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which correlations are high only in some of the regions in the phase
diagram. Invariance is observed in the structure and dynamics along
the isomorphs in comparison to isotherms or isochores. The WCA
system therefore obeys density scaling and shows an extreme density
scaling in the low density/temperature region.

The asymmetrical dumbbell system is an R-simple liquid that ex-
hibits hidden scale invariance in the viscous liquid region. We show
that it exhibits hidden scale invariance as well in the less viscous-
region for a range of bond lengths with relatively high UW correla-
tions R > 0.85. It also exhibits the hidden scale invariance in the
plastic-crystalline phase for a range of bond lengths with higher UW
correlations R > 0.95. Since the criteria R > 0.90 is arbitrary, we con-
sider both regions to have strong correlations. Isomorphs are traced
out in both of the regions in the phase diagram. Invariance is observed
in the structure and dynamics along the isomorphs in comparison to
the isotherms. We also investigated the limit of the bond-length varia-
tion in the liquid and the plastic-crystalline phase. At relatively small
bonds i.e., 0.5, we have seen the A particles dominating the struc-
ture scene. As the bond length increases and the B particles place
themselves in many possible positions around the A particles, A parti-
cles still dominate the scene. We introduce the ”B slaving A” picture
that is confirmed by the AA, AB and BB radial distribution functions
along with the A and B particles mean square displacements of the
ASD molecules.

We started the thesis with the liquid state and how it can be defined
in terms of thermodynamics. As complex as the liquid state can be,
a simple approach is always sought to understand its physics. The
isomorph theory explores a class of systems with simple properties
that can help navigate through this complexity. Expanding the class of
R-simple systems is a step closer toward simplicity. We have achieved
the research goal that we set for the thesis presented. The further
research that can be conducted to build on this work is: to investigate
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the hidden scale invariance in other plastic-crystal forming systems to
expand the R-simple systems. Also, other techniques such as the ab
initio calculations can be introduced to include more realistic view of
the organic molecular systems i.e., ASD, OTP etc. to have a broader
picture of the R-simplicity in such systems.
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APPENDIXA
Fourth-Order Runge

Kutta Method:
Tracing Better

Isomorphs
The density scaling exponent γ is the slope of the lines of constant Sex

in the (ln T, ln ρ) plane which are isomorphs for any Roskilde simple
system. The density scaling exponent γ as we have shown before in
chapter two is required for the integration can be calculated from the
thermal equilibrium virial potential-energy fluctuations in an NV T
simulation

γ(ρ, Sex) = ⟨∆W∆U⟩
⟨(∆U)2⟩

=
(

∂ ln T

∂ ln ρ

)
Sex

(A.1)

In the following, we denote the theoretical slope by f , i.e., the slope
without the unavoidable statistical noise of any MD simulation. Let
(x, y) be (ln ρ, ln T ) (occasionally it is better to choose instead (x, y) =
(ln T, ln ρ)). Then, accordingly let

dy

dx
= f(x, y) (A.2)
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be the slopes γ and T
ρ
γ. h is the change in x, where x and y are either

ln ρ and ln T or ρ and T . Using the general formula for Euler method,
the next point from (xi, yi) as

xi+1 = xi + h (A.3)

yi+1 = yi + hf(xi, yi) + O(h2) (A.4)

The RK4 method requires four evaluations per integration step. Let

k1 = hf(xi, yi) (A.5)

k2 = hf(xi + 1
2

h, yi + 1
2

k1) (A.6)

k3 = hf(xi + 1
2

h, yi + 1
2

k2) (A.7)

k4 = hf(xi + h, yi + k3) (A.8)

Then, (xi+1,yi+1) is computed as

xi+1 = xi + h (A.9)

yi+1 = yi + k1/6 + k2/3 + k3/3 + k4/6 + O(h5) (A.10)

In case of configurational adiabats such that, slope = γ, x = ln ρ and,
y = ln T , the RK4 step can also be written as

yi+1 = yia
(γ1+2γ2+2γ3+γ4)/6 (A.11)
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with γ1 = γ(xi, yi), γ2 = γ(xi

√
a, yia

γ1/2), γ3 = γ(xi

√
a, yia

γ2/2) and
γ4 = γ(xia, yia

γ3) where a is a fixed ratio a = xi+1/xi [78]. In Euler,
the error term is O(h2), while RK4 method reduces the error to O(h5)
[79]. In addition to this truncation error, the quality of the integration
also depend on the statistical error on the estimated slopes. The
interpolation between the state points is done with a cubic Hermite
spline as follows. We define xϕ as a point between the two adjacent
points xi, xi+1 such that xi ≤ xϕ < xi+1 and 0 ≤ ϕ ≤ 1 is between
0 and 1. We interpolate by fitting a third degree polynomial y =
Ax3

ϕ + Bx2
ϕ + Cxϕ + D. By introducing reduced coordinates , ỹ =

[y − yi]/[yi+1 − yi], the polynomial of the reduced coordinates is ỹϕ =
aϕ3 + bϕ2 + cϕ Then the yϕ equals

yϕ = yi + [yi+1 − yi][aϕ3 + bϕ2 + cϕ] (A.12)

The reduced slopes are f̃i = fi
xi+1−xi

yi+1−yi
and f̃i+1 = fi+1

xi+1−xi

yi+1−yi
, f̃i, f̃i+1

are the slopes at xi, xi+1 respectively. The coefficients are then a =
f̃i + f̃i+1 − 2, b = 3 − 2f̃i − f̃i+1 and c = f̃i. While the simple Euler
method has a truncation error scaling as O(h2), the truncation error
of RK4 scales as O(h5). This allows for significantly larger steps along
x and thus smaller number of steps.

To compare the Euler and RK4 methods, we use each method to
integrate a configurational adiabat from the same state point ρ = 0.84
and T = 0.694, up to density ρ = 1.30. The final temperature at the
highest density reached is recorded. Then, we integrate backward till
ρ = 0.84 as seen in Fig. A.1 The difference in temperature from the
two integration at the initial state point is calculated and denoted, tem-
perature error, ∆T . This quantity provides a convenient accuracy test
of the two methods because if the method is 100% accurate, ∆T = 0.
Comparing the logarithmic attempts individually, it is clearly shown
that the RK4 method gives smaller temperature error, ∆T , compared
to Euler (Fig. A.2). The change in density or the step size h is 0.1 for
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Euler and 0.4 for RK4 which counts for the same simulation time. As
a further investigation of the error on the RK4 method, we take the
full step h as two half steps h/2. The truncation error is then raised
to the sixth order, one order higher than RK4. Figure A.3 shows the
difference between the total error as a function of the logarithmic dif-
ference in the temperature from using full step h = 0.4 and the two
half steps h = 0.2 (log T0.2 − log T0.4) at different simulation time steps.
Comparing the total error of the two methods indicates the accuracy
of RK4 as the two methods converges to an error of 10−2 due to the
truncation of higher order terms. At smaller simulation time steps,
the statistical error dominates and the data are scattered. When the
simulation time increases, the truncation error is dominating and the
statistical error decreases. The truncation error can be reduced by
making h smaller. When the user chooses the simulation time that is
long enough to minimize the statistical error, the RK4 has comparable
truncation error to double step RK at each step size. Expensive longer
simulations and extra calculations of higher order methods can be
avoided by choosing the small h and long simulation time. To confirm
that the state points are on adiabats or configurational adiabat, the
equation of state (EOS) of the LJ fluid is used as a reference. Several
functional forms of the EOS for the Lennard Jones fluid system can be
found in literature [80–83]. Here we use the one formulated by Thol et
al. [84]. Helmholtz energy α consists of 6 polynomial, 6 exponential,
and, 11 Gaussian bell-shaped terms. Thermodynamic properties can
be calculated and its derivatives. The excess entropy of each state
point then is calculated and plotted against the state point’s density
(Fig. A.4). The state points of the configurational adiabat are pro-
duced by RK4, h = 0.04 which yields sufficient number of state points
to demonstrate the consistency of the excess entropy values obtained.
As shown in Fig. A.4, the excess entropy values are almost constant,
indicating that the two approaches of computing configurational adia-
bats are consistent. The average was then calculated of all the excess
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entropy values, (Sex)avg = −3.610 and the deviation from the average
is shown in Fig. A.4. The agreement with the configurational adiabat
of this EOS is excellent.
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Figure A.1. Configurational adiabat of the WCA system traced out in
the thermodynamic phase diagram. (a) The Euler method; (b) the RK4
method. The Euler integration uses a log-density step of size h = 0.1 (steps
in density of e0.1 − 1 ≃ 10%), while the RK4 uses h = 0.4, corresponding
to density variation of e0.4 − 1 ≃ 50%. The temperature difference of
the here presented combined forward-backwards integration ∆T provides
a convenient measure of the maximum error of the predicted temperature.
We find ∆T ∼= 0.186 for the Euler algorithm and ∆T ∼= 0.002 for the RK4
algorithm. The solid lines are interpolations using a cubic Hermite spline.
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Figure A.2. (a) The temperature difference ∆T of the forward-backward
integration in Fig. A.1, for different steps sizes h. The blue dots show
results for Euler integration and the orange dots show results for RK4
integration. The temperature difference measures the maximum error in the
integration interval 0.84 ≤ ρ ≤ 1.30. The RK4 is significantly more accurate
than the Euler algorithm, which allows for larger h steps. The dashed lines
indicate the expected scaling of the global error from truncation – deviations
stem from statistical errors on the estimated slopes (slopes are evaluated
using simulations lengths of τ = 655). The arrow connects Euler and RK4
calculations with approximately the same computational cost (see F.g A1).
(b) Same analysis for the integration interval 0.58 ≤ ρ ≤ 0.84.
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Figure A.3. The difference in temperature between using a full step of
h = 0.4 and two half steps of h = 0.2 when integrating from ρ = 0.84 up
to ρ = 1.25, plotted against the simulation time per slope evaluation. The
desired h can change and the simulation time changes accordingly. The red
× marks the simulation time used in the paper.
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Figure A.4. The excess entropy values plotted against the densities of
the state points on the configurational adiabat traced out for the single-
component LJ system starting from the triple point (ρ = 0.84, T = 0.694)
using RK4 with h = 0.04. The values are zoomed in to see the deviation
from the average value, the black dotted line.
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APPENDIX B
Data Analysis Tools for

LAMMPS: Useful
Home-made Scripts

1 #The first two functions are to extract data from the data
2 #files using LAMMPS package (Recall chapter 3 in simulated

systems).
3 #If the user is using file format, the first two functions
4 #should be altered accordingly.
5

6 !/usr/bin/env python3
7

8 import numpy as np
9 import matplotlib.pyplot as plt

10 import numba
11 from math import floor
12 from numpy import sqrt, pi, histogram
13

14 #Function 1
15 def find_index_of_column(columns, name_of_column):
16 for i, name in enumerate(columns):
17 if name == name_of_column:
18 return i
19 return None
20
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21 #Function 2
22 def read_data(filename):
23 number_of_atoms = 0
24 box_length = np.array([1.0, 1.0, 1.0], dtype=np.float32)
25 frames = []
26 with open(filename) as file:
27 l = file.readline()
28 while l:
29 spl = l.split(':')
30 sp = l.split()
31 if spl[0] == 'ITEM' and len(spl) > 1:
32 if spl[1] == ' NUMBER OF ATOMS\n':
33 l = file.readline()
34 number_of_atoms = int(l)
35 if spl[1] == ' BOX BOUNDS pp pp pp\n':
36 for i in range(3):
37 l = file.readline().split()
38 lbox = float(l[1]) - float(l[0])
39 box_length[i] = lbox
40 if sp[1] == 'ATOMS':
41 columns = sp[2:]
42 data = np.zeros((number_of_atoms , len(columns)),
43 dtype=float)
44 for n in range(number_of_atoms):
45 l = file.readline().split()
46 for c in range(len(columns)):
47 data[n, c] = float(l[c])
48 id_index = find_index_of_column(columns, 'id')
49 data = data[np.argsort(data[:,id_index])]
50 frames.append(data)
51 l = file.readline()
52 return columns, np.array(frames), box_length ,

number_of_atoms
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B.1 Calculations of the Mean
Square Displacement (MSD)

1 @numba.jit(parallel=True)
2 def get_msd(columns, frames,
3 number_of_atoms , box_length , rho, max_lag=np.inf, stride

=1):
4 id_xs = columns[0]
5 id_ys = columns[1]
6 id_zs = columns[2]
7 id_ix = columns[3]
8 id_iy = columns[4]
9 id_iz = columns[5]

10 lx = box_length[0]
11 ly = box_length[1]
12 lz = box_length[2]
13 msd = np.zeros(len(frames)-1, dtype=np.float32)
14 norm = np.zeros(len(frames)-1, dtype=np.int32)
15 max_lag = min(len(frames)-1, max_lag)
16 print(max_lag)
17 for lag in range(1, max_lag):
18 for f0 in range(0, len(frames)-lag, stride):
19 f1 = f0+lag
20 data_0 = frames[f0]
21 data_1 = frames[f1]
22 for n in range(len(data_0)):
23 xs_0 = data_0[n, id_xs]
24 ys_0 = data_0[n, id_ys]
25 zs_0 = data_0[n, id_zs]
26 #print (f' xs_0 is {xs_0}')
27 ix_0 = data_0[n, id_ix]
28 iy_0 = data_0[n, id_iy]
29 iz_0 = data_0[n, id_iz]
30

31 xs_1 = data_1[n, id_xs]
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32 ys_1 = data_1[n, id_ys]
33 zs_1 = data_1[n, id_zs]
34

35 iy_1 = data_1[n, id_iy]
36 ix_1 = data_1[n, id_ix]
37 iz_1 = data_1[n, id_iz]
38

39 new_x_0 = lx*(xs_0 + ix_0)
40 #print (new_x_0 ,(xs_0 - ix_0) )
41 new_y_0 = ly*(ys_0 + iy_0)
42 new_z_0 = lz*(zs_0 + iz_0)
43

44 new_x_1 = lx*(xs_1 + ix_1)
45 new_y_1 = ly*(ys_1 + iy_1)
46 new_z_1 = lz*(zs_1 + iz_1)
47 dr_2 = (new_x_1-new_x_0)**2
48 +(new_y_1-new_y_0)**2 +
49 (new_z_1-new_z_0)**2
50 msd[lag] = msd[lag] + dr_2
51 norm[lag] = norm[lag] + 1
52 msd=msd/norm
53 return(msd)
54

55 #Getting the figure
56 columns, frames, box_length , number_of_atoms = read_data(

filename)
57 id_sx = find_index_of_column(columns, 'xs')
58 id_sy = find_index_of_column(columns, 'ys')
59 id_sz = find_index_of_column(columns, 'zs')
60 id_ix = find_index_of_column(columns, 'ix')
61 id_iy = find_index_of_column(columns, 'iy')
62 id_iz = find_index_of_column(columns, 'iz')
63 id_index = find_index_of_column(columns, 'id')
64 columns = id_sx, id_sy, id_sz, id_ix, id_iy, id_iz,

id_index
65 msd = get_msd(columns, frames, number_of_atoms , box_length ,

rho=rho, stride=1)
66
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67 t= np.arange(0, len(msd))*0.001 #time between frames
68 plt.loglog(t, msd, '-', label=keyword)
69 plt.ylabel(r'MSD')
70 plt.xlabel(r'$t$')
71 plt.legend(fontsize=15)
72 plt.savefig('msd.pdf')
73 plt.legend()
74 plt.show()

B.2 Calculation of the Radial
Distribution Function (RDF)

1

2 def rdf(datafile , d_r=0.05):
3 columns, frames, box_length ,
4 number_of_atoms = read_data(datafile)
5 n=number_of_atoms
6 box=box_length[0]
7

8 for i in range(len(frames)-1):
9 r=frames[i]

10 r=r/box
11

12 dr= d_r
13 dr = dr / box_length[0]
14 nk = floor(0.5/dr)
15

16 r_max = nk*dr
17 h= np.zeros(nk,dtype=np.int_)
18 #nstep = 0
19 # Counts configurations (incase you are using RUMD)
20
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21 # Simple approach calculating all pairs at once
22 rij = r[:,np.newaxis ,:] - r[np.newaxis ,:,:]
23 rij = rij - np.rint(rij)
24

25 # Apply periodic boundaries
26 rij_mag = np.sqrt(np.sum(rij**2,axis=-1))
27 rij_mag = rij_mag[np.triu_indices_from(rij_mag,k=1)]
28 hist,edges = np.histogram(rij_mag,bins=nk,
29 range=(0.0,r_max))
30 h = h + 2*hist
31

32 rho = float(n)
33 h_id = ( 4.0 * np.pi * rho / 3.0) * ( edges[1:nk+1]**3
34 - edges[0:nk]**3 ) # Ideal number
35 g = h / h_id / (n)
36 if i ==0:
37 n_g=g
38 else:
39 n_g += g
40

41 edges = edges*box # Convert bin edges back to sigma=1
units

42 r_mid = 0.5*(edges[0:nk]+edges[1:nk+1]) # Mid points of
bins

43 print ('Writing the rdf file')
44 np.savetxt(f'rdf.dat',np.c_[r_mid,n_g/(len(frames)-1)]
45 ,fmt="%15.8f")
46

47 rdf('traj.atom') #this is the file name you get from
LAMMPs

48

49 def plot_fig(file):
50 file= np.loadtxt(main_directory + file)
51 x=file[:,0]
52 y=file[:,1]
53 plt.plot(x, y, '-')
54

55 plot_fig('rdf.dat')
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56

57 plt.xlabel(r'Pair Distance')
58 plt.ylabel(r'Radial Distribution Function')
59 plt.ylim(0,4)
60 plt.xlim(0, 6)
61 plt.savefig('rdf.pdf')
62 plt.show()

B.3 Calculations of the Velocity
Auto-correlation (VAC) Function

1 #Numba is optomizing the python script, yet it
2 #has some restricitions , it prefers arrays and
3 #knowing the type of data right away.
4 #You can use it when the script takes too long to compile

.
5

6 @numba.jit(parallel=True)
7 # Getting the Velocity autocorelation
8 def get_VACF(vel_columns , frames, number_of_atoms , rho, T,
9 max_lag=np.inf, stride=1):

10 id_vx = vel_columns[0]
11 id_vy = vel_columns[1]
12 id_vz = vel_columns[2]
13 cvv = np.zeros(len(frames)-1, dtype=np.float32)
14 norm = np.zeros(len(frames)-1, dtype=np.int32)
15 max_lag = min(len(frames)-1, max_lag)
16 print(max_lag)
17 for lag in range(0, max_lag):
18 for f0 in range(0, len(frames)-lag, stride):
19 f1 = f0+lag
20 data_0 = frames[f0]
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21 data_1 = frames[f1]
22 for n in range(len(data_0)):
23 vx_0 = data_0[n, id_vx]
24 vy_0 = data_0[n, id_vy]
25 vz_0 = data_0[n, id_vz]
26 vx_1 = data_1[n, id_vx]
27 vy_1 = data_1[n, id_vy]
28 vz_1 = data_1[n, id_vz]
29 dot_product = vx_0*vx_1 +
30 vy_0*vy_1 + vz_0*vz_1
31 cvv[lag] = cvv[lag] + dot_product
32 norm[lag] = norm[lag] + 1
33 return cvv/norm
34

35 #Getting the Figure
36

37 columns, frames, box_length , number_of_atoms =
38 read_data(datafile)
39 id_vx = find_index_of_column(columns, 'vx')
40 id_vy = find_index_of_column(columns, 'vy')
41 id_vz = find_index_of_column(columns, 'vz')
42 vel_columns = id_vx, id_vy, id_vz
43 time_between_frames = 0.001
44 cvv= get_VACF(vel_columns , frames,
45 number_of_atoms , rho, T, stride=1)
46 t = np.arange(0, len(cvv))*time_between_frames
47 plt.plot(t, cvv/cvv[0], '-')
48

49 #Figure paramters
50 plt.ylim(0, 1.0)
51 plt.xlim(0, 1.0)
52 plt.ylabel('$c_{vv}(t)$')
53 plt.xlabel(r'Time, $t$')
54 plt.legend()
55 plt.savefig('cvv.png')
56 plt.show()
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B.4 Calculations of the Rotational
Auto-correlation (RAC) Function

1

2 #Getting the RACF
3 @numba.jit(parallel=True)
4 def get_RACF(columns, frames, number_of_atoms ,
5 box_length , max_lag=np.inf, stride=1):
6 id_xs = columns[0]
7 id_ys = columns[1]
8 id_zs = columns[2]
9 id_ix = columns[3]

10 id_iy = columns[4]
11 id_iz = columns[5]
12 #id_index= columns[6]
13 lx = box_length[0]
14 ly = box_length[1]
15 lz = box_length[2]
16 RACF = np.zeros(len(frames)-1, dtype=np.float32)
17 norm = np.zeros(len(frames)-1, dtype=np.int32)
18 max_lag = min(len(frames)-1, max_lag)
19 for lag in range(0, max_lag):
20 for f0 in range(0, len(frames)-lag, stride):
21 f1 = f0+lag
22 data_0 = frames[f0]
23 data_1 = frames[f1]
24 for n in range (0, len(data_0), 2):
25 xs_0= data_0[n, id_xs]
26 ys_0 = data_0[n, id_ys]
27 zs_0 = data_0[n, id_zs]
28 ix_0 = data_0[n, id_ix]
29 iy_0 = data_0[n, id_iy]
30 iz_0 = data_0[n, id_iz]
31 xs_1 = data_0[n+1, id_xs]
32 ix_1 = data_0[n+1, id_ix]
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33 ys_1 = data_0[n+1, id_ys]
34 iy_1 = data_0[n+1, id_iy]
35 zs_1 = data_0[n+1, id_zs]
36 iz_1 = data_0[n+1, id_iz]
37 new_x_0 = lx*(xs_0 + ix_0)
38 new_y_0 = ly*(ys_0 + iy_0)
39 new_z_0 = lz*(zs_0 + iz_0)
40 new_x_1 = lx*(xs_1 + ix_1)
41 new_y_1 = ly*(ys_1 + iy_1)
42 new_z_1 = lz*(zs_1 + iz_1)
43 v1_x = (new_x_1 - new_x_0)
44 v1_y = (new_y_1 - new_y_0)
45 v1_z = (new_z_1 - new_z_0)
46 xs_2= data_1[n, id_xs]
47 ys_2 = data_1[n, id_ys]
48 zs_2 = data_1[n, id_zs]
49 ix_2 = data_1[n, id_ix]
50 iy_2 = data_1[n, id_iy]
51 iz_2 = data_1[n, id_iz]
52 new_x_2 = lx*(xs_2 + ix_2)
53 new_y_2 = ly*(ys_2 + iy_2)
54 new_z_2 = lz*(zs_2 + iz_2)
55 xs_3 = data_1[n+1, id_xs]
56 ys_3 = data_1[n+1, id_ys]
57 zs_3 = data_1[n+1, id_zs]
58 ix_3 = data_1[n+1, id_ix]
59 iy_3 = data_1[n+1, id_iy]
60 iz_3 = data_1[n+1, id_iz]
61 new_x_3 = lx*(xs_3 + ix_3)
62 new_y_3 = ly*(ys_3 + iy_3)
63 new_z_3 = lz*(zs_3 + iz_3)
64 v2_x = (new_x_3 - new_x_2)
65 v2_y = (new_y_3 - new_y_2)
66 v2_z = (new_z_3 - new_z_2)
67 dotproduct = v1_x* v2_x + v1_y*v2_y + v1_z*v2_z
68 RACF[lag] = RACF[lag] + dotproduct
69 norm[lag] = norm[lag] + 1
70 return (RACF/norm)
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71

72 columns, frames, box_length , number_of_atoms = read_data(
datafile)

73

74 #Getting the figure
75 id_sx = find_index_of_column(columns, 'xs')
76 id_sy = find_index_of_column(columns, 'ys')
77 id_sz = find_index_of_column(columns, 'zs')
78 id_ix = find_index_of_column(columns, 'ix')
79 id_iy = find_index_of_column(columns, 'iy')
80 id_iz = find_index_of_column(columns, 'iz')
81 columns = id_sx, id_sy, id_sz, id_ix, id_iy, id_iz
82 output = get_RACF(columns, frames, number_of_atoms ,

box_length)
83 t= np.arange(0, len(output))*0.001 #time between frames
84 plt.plot(t, output/output[0], '-')
85 plt.ylabel(r'$\langle \vec n(0) \cdot \vec n(\tilde t) \

rangle$')
86 plt.xlabel(r'Time, $t$')
87 plt.legend(fontsize=15)
88 plt.savefig('rac.png')
89 plt.show()
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Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures
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This paper studies numerically the Weeks-Chandler-Andersen system, which is shown to obey hidden scale
invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation
makes it advantageous to use the fourth-order Runge-Kutta algorithm for tracing out isomorphs. Good isomorph
invariance of structure and dynamics is observed over more than three orders of magnitude temperature variation.
For all state points studied, the virial potential-energy correlation coefficient and the density-scaling exponent
are controlled mainly by the temperature. Based on the assumption of statistically independent pair interactions,
a mean-field theory is developed that rationalizes this finding and provides an excellent fit to data at low
temperatures.

DOI: 10.1103/PhysRevE.103.062140

I. INTRODUCTION

Density scaling is an important experimental discovery
of the past 20 years’ liquid-state research, which by now
has been demonstrated for high-pressure data of hundreds of
systems [1–4]. The crucial insight is that, in order to char-
acterize a thermodynamic state point, the relevant variable
supplementing the temperature T is not the pressure p, but
the number density ρ ≡ N/V (considering N particles in vol-
ume V ) [1–6]. If γ is the so-called density-scaling exponent,
plotting data for the dynamics as a function of ργ /T results
in a collapse [1–4]. In other words, the dynamics depends
on the two variables of the thermodynamic phase diagram
only via the single variable ργ /T . This provides a significant
rationalization of data, as well as an important hint for theory
development. It should be noted, though, that density scaling
does not apply universally; for instance, it usually works better
for van der Waals liquids than for hydrogen-bonded liquids
[2,4].

Some time after these developments were initiated, a
framework for density scaling was provided in terms of the
isomorph theory [7,8], which links density scaling to Rosen-
feld’s excess-entropy scaling method [9,10]. According to
isomorph theory, any system with strong correlations between
the fixed-volume virial and potential-energy equilibrium fluc-
tuations has curves of invariant structure and dynamics in the
thermodynamic phase diagram. These “isomorphs” [7,11] are
defined as curves of constant excess entropy Sex, which is the
entropy minus that of an ideal gas at the same temperature and
density (Sex < 0 because any system is more ordered than an
ideal gas).

*attia@ruc.dk
†dyre@ruc.dk
‡urp@ruc.dk

If the potential energy is denoted by U and the virial by W ,
their Pearson correlation coefficient R is defined by

R = 〈�U�W 〉√
〈(�U )2〉〈(�W )2〉

. (1)

Here � denotes the deviation from the thermal average and
the angular brackets are canonical (NV T ) averages. The prag-
matic criterion defining strong correlation is R > 0.9 [12,13].
Systems with strong correlations have good isomorphs, i.e.,
approximate invariance of structure and dynamics along the
configurational adiabats [7]. Such systems are termed R-
simple, signaling the simplification of having an effectively
one-dimensional thermodynamic phase diagram in regard to
structure and dynamics when these are given in so-called
reduced units (discussed below). Hydrogen-bonded systems
usually have R < 0.9 and are thus not R-simple [12]; this
explains why density scaling does not apply universally.

Isomorph theory is only rigorously correct in the unreal-
istic case of an Euler-homogeneous potential-energy function
that is realized, for instance, in systems with inverse-power-
law (IPL) pair potentials [14]. Nevertheless, isomorph-theory
predictions apply to a good approximation for many systems,
e.g., Lennard-Jones-type liquids [7,15–17], the exponential
pair-potential system at low temperatures [18,19], simple
molecular models [20–22], polydisperse systems [23], crys-
tals [24], nanoconfined liquids [25], polymerlike flexible
molecules [26], metals [27,28], and Yukawa plasmas [29,30].

In some cases, isomorphs are well described by the
equation ργ /T = const with a constant γ [31], which as
mentioned accounts for density scaling as discussed in most
experimental contexts [2]. Isomorph theory, however, does
not require γ to be constant throughout the thermodynamic
phase diagram, and γ indeed does vary in most simulations
[16,32–34]. The general isomorph-theory definition of the
density-scaling exponent γ at a given state point [7,10] is

γ ≡
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�U�W 〉
〈(�U )2〉 . (2)
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The second equality gives the statistical-mechanical expres-
sion of γ in terms of the constant-volume canonical-ensemble
fluctuations of potential energy and virial.

The question whether experimental density-scaling expo-
nents are strictly constant throughout the phase diagram has
recently come into focus [35,36]. In simulations, isomorphs
are in many cases described by the equation [1,8,32,37]

h(ρ)

T
= const, (3)

in which h(ρ) is a function of the density. For the Lennard-
Jones (LJ) system, for instance, one has h(ρ) ∝ (γ0/2 −
1)(ρ/ρ0)4 − (γ0/2 − 2)(ρ/ρ0)2, in which γ0 is the density-
scaling exponent at a reference state point of density ρ0

[32,37]. For isomorphs given by Eq. (3), Eq. (2) implies

γ = d ln h(ρ)

d ln ρ
. (4)

We see that unless h(ρ) is a power-law function, the density-
scaling exponent depends on the density. More generally, γ

also depends on the temperature [33]. This is the case, for in-
stance, for the LJ system approaching very high temperatures:
For T → ∞ at a fixed density, the LJ system is dominated by
the repulsive r−12 term of the pair potential, implying that γ

approaches 12
3 = 4 in this limit and that Eq. (3) cannot apply.

A likely reason that many experiments are well described
by a constant γ is the fact that density often does not vary
much. As shown by Casalini and co-workers [36,38], when
extreme pressure is applied, the density-scaling exponent is
no longer constant. Although it is now clear that γ is not
a material constant [35,36], its variation is as mentioned
often insignificant in experiments. This paper gives an ex-
ample in which γ varies dramatically. We present a study of
the noted Weeks-Chandler-Andersen (WCA) system [39,40]
that 50 years ago introduced the idea of a cutoff at the
potential-energy minimum of the LJ system [41–46]. This
idea is still very popular and used in many different contexts
[47–53].

We show below that the WCA system has strong virial
potential-energy correlations and thus is R-simple. We find
that γ varies by more than two decades in the investigated
part of the phase diagram. In comparison, the LJ system has a
density-scaling exponent that varies less than 50% throughout
the phase diagram. To the best of our knowledge, the γ vari-
ation of the WCA system is much larger than has so far been
reported for any system in simulations or experiments. For all
state points studied, we find that γ depends primarily on the
temperature. A mean-field theory is presented that explains
this observation and accounts well for the low-temperature
and low-density behavior of the system.

After providing a few technical details in Sec. II, we
present the thermodynamic phase diagram with the state
points studied numerically in Sec. III. The paper’s focus is on
three isomorphs, numbered 1–3. Each of these is associated
with an isotherm and an isochore, the purpose of which is
to put into perspective the isomorph variation of structure
and dynamics by comparing it to what happens when a sim-
ilar density or temperature variation is studied, keeping the
other variable constant. In Sec. III we also give data for
the virial potential-energy correlation coefficient R and the

density-scaling exponent γ , demonstrating that all state points
studied have strong correlations (R > 0.9) while γ varies from
about 5 to above 500. A mean-field theory is developed in
Sec. IV, predicting that R and γ both depend primarily on the
temperature. Section V presents simulations of the structure
and dynamics along the isotherms, isochores, and isomorphs.
Despite the extreme γ variation, which implies that an approx-
imate inverse-power-law description fails entirely, we find
good isomorph invariance of the reduced-unit structure and
excellent isomorph invariance of the reduced-unit dynamics.
Section VI gives a brief discussion. The Appendix details the
implementation of the fourth-order Runge-Kutta method for
tracing out isomorphs and compares its predictions to those of
the previously used simple Euler method.

II. MODEL AND SIMULATION DETAILS

Liquid model systems are often defined in terms of a pair
potential v(r). If ri j = |ri − r j | is the distance between parti-
cles i and j, the potential energy U as a function of all particle
coordinates R ≡ (r1, r2, . . . , rN ) is given by

U (R) =
∑
i< j

v(ri j ). (5)

We study in this paper the single-component WCA system
[39], which cuts the standard LJ pair potential at its minimum
and subsequently shifts the potential by adding a constant such
that the minimum is lifted to zero [39,54]. The result is the
purely repulsive pair potential given by

v(r) =
{

4ε
[(

r
σ

)−12 − (
r
σ

)−6] + ε (r < 21/6σ )

0 (r > 21/6σ ).
(6)

Like the LJ pair potential, v(r) involves two parameters: σ that
reflects the particle radius and ε that is the numerical value of
the energy of the LJ potential at its minimum at r = 21/6σ .

The WCA system was studied by molecular dynamics
(MD) simulations in the canonical (NV T ) ensemble using the
Nosé-Hoover thermostat [55]. The simulated system consisted
of 4000 particles in a cubic box with periodic boundaries. The
simulations were performed using the open-source Roskilde
University molecular dynamics software (RUMD) that runs
on GPUs (graphics processing units) [56,57]. For updating
the system state, the leapfrog algorithm was employed with
a reduced-unit time step of 0.0025. At each state point, a
simulation first ran for 25×106 time steps for equilibration.
This was followed by 50×106 time steps for the production
run.

The simulations were conducted in the reduced-unit sys-
tem of isomorph theory in which the energy unit is e0 ≡
kBT , the length unit is l0 ≡ ρ−1/3, and the time unit is t0 ≡
ρ−1/3√m/kBT , where m is the particle mass [7]. A few
simulations were also carried out in MD units to check for
consistency. Using reduced units in a simulation implies that
density and temperature are both equal to unity; the state point
is changed by varying σ and ε, i.e., by changing the pair
potential. In contrast, performing simulations in MD units
implies setting σ = ε = 1, i.e., fixing the pair potential and
varying ρ and T in order to change the state point. The two
methods are mathematically equivalent, of course. Simulating
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FIG. 1. (a) The three isomorphs in focus (denoted by 1–3) shown as full curves in the temperature-density thermodynamic phase diagram.
Each isomorph was generated as described in the text and in the Appendix, starting from the reference state point (ρ0, T0 ) with ρ0 = 0.84 and
T0 equal to 0.6, 1.0, and 2.0, respectively. A fourth isomorph (denoted by 0) marked by the red dashed line is in the supercooled liquid phase.
The horizontal lines are three isotherms and the vertical lines are three isochores, which are studied in order to compare their structure and
dynamics variation to those along the isomorphs. The freezing and melting lines are shown as yellow and orange lines, respectively [41,45];
note that these are parallel to the isomorphs. (b) The four isomorphs shown in a logarithmic temperature-density phase diagram. The slope γ

[Eq. (2)] increases significantly as the temperature is lowered along an isomorph. The stars mark the lowest simulated temperature and density
on each isomorph; these state points are used in Fig. 9 below.

in reduced units is convenient because the time step is then au-
tomatically adjusted to take into account the thermal velocity.

Reduced quantities are generally marked by a tilde, for
instance, r̃ ≡ r/l0 = ρ1/3r. These units are used below for all
quantities except for the density and the temperature; ther-
modynamic state points are reported by giving density and
temperature in standard MD units, i.e., ρ is given in units of
σ−3 and T in units of ε/kB.

III. SIMULATED STATE POINTS

Figure 1(a) shows the thermodynamic phase diagram of the
WCA system. The yellow and orange lines are the freezing
and melting lines [41,45]. The blue, green, and purple lines
marked 1, 2, and 3, respectively, are the isomorphs of main
focus below, while the red dashed line is a fourth isomorph
marked 0, which is in the liquid-solid coexistence region.
Note that the freezing and melting lines are both approximate
isomorphs [7,58].

Each isomorph was traced out starting from a reference
state point of density 0.84. Isomorphs are often identified by
integrating Eq. (2) using the simple first-order Euler integra-
tion scheme for density changes of order 1% [7,16,20]. The
extreme variation of γ found for the WCA system, however,
means that Euler integration can only be used reliably for
very small density changes and a more accurate integration
scheme is called for. We used the fourth-order Runge-Kutta
integration (RK4) as detailed in the Appendix, where it is
demonstrated that RK4 is 10–100 times more computationally
efficient than Euler integration for tracing out isomorphs with
a given accuracy. Data for selected state points of the four
isomorphs are listed in Table I.

In order to investigate the degree of isomorph invariance
of the reduced-unit structure and dynamics (Sec. V), for each
isomorph we also performed simulations along an isotherm
and an isochore, limiting all simulations to state points in the

equilibrium liquid phase. Figure 1(b) shows the isomorphs
and the melting and freezing lines in a diagram with log-
arithmic density and temperature axes. In this diagram the
density-scaling exponent γ is the isomorph slopes [compare
Eq. (2)], which increases significantly along each isomorph as
the density is lowered.

A configurational adiabat is an isomorph only for state
points with strong virial potential-energy correlations, i.e.,
when R � 0.9 at the relevant state points in which R is
given by Eq. (1). This condition is validated in Fig. 2, which
shows R for all state points simulated. Figure 2(a) shows R
as a function of the density, while Fig. 2(b) shows R as a
function of the temperature. We see that R increases with
increasing density and temperature, approaching unity. This
reflects the fact that the (r/σ )−12 term of the pair poten-
tial dominates the interactions in these limits and that an
IPL pair potential has R = 1. An important observation from
Fig. 2 is that strong correlations are maintained even at the
lowest densities and temperatures studied. A comparison of
Figs. 2(a) and 2(b) reveals that R is primarily controlled by
the temperature. This may be understood from a mean-field
theory, which assumes that the interactions at low tempera-
tures and densities are dominated by single-pair interactions
(Sec. IV).

Figure 3 gives data for the density-scaling exponent γ at
the state points simulated, plotted in different ways using the
same symbols as in Fig. 2. We see that γ increases monoton-
ically as either density, pressure, or temperature is lowered,
eventually reaching values above 500. Figure 3(a) shows γ

as a function of the density ρ. Clearly, knowledge of ρ is
not enough to determine γ , implying that Eq. (4) does not
apply for the WCA system. It has been suggested that γ is
controlled by the pressure [59]. This works better than the
density for collapsing data, but there is still some scatter
[Fig. 3(b)]. Figure 3(c) plots γ as a function of the temper-
ature. We here observe a quite good collapse, concluding that
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TABLE I. State-point data for (a) isomorph 0, (b) isomorph 1, (c) isomorph 2, and (d) isomorph 3 (see Fig. 1).

ρσ 3 kBT/ε Pσ 3/ε γ R U/Nε W/Nε

(a)
1.714 13.41 464.2 4.288 0.9995 50.67 257.5
1.636 10.98 357.7 4.329 0.9993 39.92 207.7
1.493 7.360 211.9 4.435 0.9988 24.52 134.6
1.366 4.933 125.2 4.582 0.9978 14.84 86.70
1.254 3.307 73.86 4.787 0.9961 8.841 55.59
1.156 2.217 43.60 5.068 0.9936 5.190 35.49
1.071 1.486 25.81 5.445 0.9902 3.007 22.60
0.9985 0.9960 15.35 5.939 0.9860 1.721 14.38
0.9364 0.6677 9.200 6.571 0.9808 1.298 9.157
0.9091 0.5466 7.145 6.945 0.9782 0.7332 7.313
0.8610 0.3664 4.341 7.835 0.9726 0.4117 4.675
0.8400 0.3000 3.396 8.353 0.9698 0.3079 3.743
0.8207 0.2456 2.664 8.932 0.9671 0.2300 2.100
0.7592 0.1104 1.034 11.94 0.9566 0.0711 1.251
0.7168 0.04960 0.4159 16.42 0.9475 0.0218 0.5306
0.6877 0.02230 0.1725 23.09 0.9402 0.006653 0.2285
0.6680 0.009059 0.06587 33.06 0.9349 0.001742 0.08984
0.6546 0.004972 0.03509 47.83 0.9304 0.0007115 0.04379
0.6456 0.002021 0.01382 69.90 0.9277 0.0001853 0.01938
0.6353 0.0004081 0.002703 152.0 0.9243 0.00001690 0.003846

(b)

1.565 14.72 340.4 4.337 0.9993 39.48 202.9
1.495 12.05 262.7 4.385 0.9991 31.11 163.7
1.366 8.078 156.1 4.506 0.9983 19.14 106.2
1.252 5.415 92.69 4.671 0.9971 11.61 68.63
1.151 3.630 55.03 4.893 0.9954 6.956 44.18
1.024 1.992 25.27 5.366 0.9913 3.149 22.70
0.9527 1.335 15.12 5.799 0.9875 1.830 14.53
0.8916 0.8951 9.101 6.351 0.9831 1.053 9.310
0.8400 0.6000 5.520 7.041 0.9782 0.6015 5.972
0.7961 0.4022 3.377 7.899 0.9730 0.3412 3.840
0.7590 0.2696 2.085 8.955 0.9677 0.1925 2.477
0.7280 0.1807 1.299 10.25 0.9624 0.1081 1.603
0.7019 0.1211 0.8161 11.84 0.9574 0.06048 1.041
0.6708 0.06648 0.4129 14.88 0.9504 0.02517 0.5491
0.6543 0.04456 0.2646 17.48 0.9465 0.01399 0.3598
0.6245 0.01639 0.08940 26.75 0.9380 0.003198 0.1268
0.6060 0.006031 0.03111 42.01 0.9319 0.0007245 0.04532
0.5945 0.002219 0.01105 67.19 0.9282 0.0001632 0.01637
0.5787 0.00002724 0.0001290 579.6 0.9222 0.0000002251 0.0001957

(c)

1.403 13.46 219.9 4.415 0.9989 27.20 143.3
1.341 11.02 169.8 4.474 0.9985 21.39 115.6
1.228 7.389 101.2 4.620 0.9976 13.12 75.04
1.128 4.953 60.34 4.814 0.9961 7.946 48.53
1.040 3.320 36.01 5.070 0.9940 4.756 31.30
1.001 2.718 27.85 5.225 0.9926 3.664 25.11
0.9637 2.226 21.56 5.399 0.9919 2.814 20.14
0.8972 1.492 12.96 5.820 0.9876 1.648 12.95
0.8675 1.221 10.07 6.071 0.9856 1.256 10.39
0.8400 1.000 7.837 6.350 0.9834 0.9557 8.330
0.8146 0.8187 6.110 6.663 0.9811 0.7256 6.683
0.7494 0.4493 2.930 7.828 0.9737 0.3141 3.461
0.6987 0.2466 1.432 9.411 0.9659 0.1342 1.803
0.6295 0.07427 0.3613 14.45 0.9515 0.02378 0.4998
0.5945 0.02734 0.1204 21.64 0.9420 0.005505 0.1752
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TABLE I. (Continued.)

ρσ 3 kBT/ε Pσ 3/ε γ R U/Nε W/Nε

0.5694 0.008230 0.03360 36.68 0.9337 0.0009355 0.05084
0.5591 0.003698 0.01464 53.01 0.9300 0.0002851 0.02248
0.5507 0.001360 0.005242 85.02 0.9268 0.00006423 0.008158
0.5436 0.0002747 0.001034 185.1 0.9238 0.000005878 0.001628

(d)

1.261 14.79 160.7 4.468 0.9986 21.25 112.7
1.206 12.10 124.4 4.531 0.9982 91.04 16.73
1.106 8.110 74.47 4.687 0.9971 10.30 59.25
1.060 6.640 57.64 4.781 0.996 8.044 47.75
0.9766 4.451 34.57 5.011 0.9946 4.870 30.95
0.9389 3.644 26.80 5.148 0.9934 3.774 24.90
0.9036 2.984 20.79 5.304 0.9922 2.917 20.03
0.8400 2.000 12.55 5.675 0.9890 1.730 12.94
0.8114 1.638 9.771 5.892 0.9873 1.327 10.41
0.7603 1.098 5.947 6.410 0.9833 0.7760 6.725
0.6787 0.4932 2.248 7.836 0.9741 0.2592 2.820
0.6196 0.2216 0.8762 9.977 0.9641 0.08440 1.192
0.5776 0.0996 0.3520 13.15 0.9548 0.02690 0.5098
0.5481 0.04474 0.1453 17.89 0.9466 0.008466 0.2204
0.5276 0.02010 0.06135 24.92 0.9395 0.002630 0.09617
0.5135 0.009033 0.02636 35.42 0.9347 0.0008093 0.04231
0.5038 0.004059 0.01148 50.9571 0.9305 0.0002475 0.01873
0.4973 0.001824 0.005048 74.1566 0.9278 0.00007535 0.008328
0.4920 0.0006709 0.001824 119.9858 0.9254 0.00001656 0.003037

γ is primarily controlled by the temperature. Figures 3(d)–3(f)
show data for all the state points simulated in logarith-
mic plots as functions of density, pressure, and temperature,
respectively.

IV. MEAN-FIELD THEORY FOR R
AND γ AT LOW DENSITIES

This section presents a mean-field theory for estimat-
ing the virial potential-energy correlation coefficient R
and the density-scaling exponent γ . Along the lines of

Refs. [18,33,60,61], we assume that the individual pair inter-
actions are statistically independent; this is expected to be a
good approximation at relatively low densities.

In MD units the truncated WCA pair potential (6) is

v(r) = 4r−12 − 4r−6 + 1 for r < rc ≡ 21/6 = 1.122 . . .

(7)

and zero otherwise. The virial of the configuration R is given
by W (R) = ∑N

i> j w(ri j ), in which the pair virial is defined
as w(r) ≡ −(r/3)v′(r) [55]. Although the WCA potential is

FIG. 2. Virial potential-energy correlation coefficient R [Eq. (1)] for all state points studied (Fig. 1): (a) R as a function of the density,
(b) R as a function of the temperature. There are strong correlations everywhere (R > 0.9). The horizontal dash-dotted lines mark the low-
temperature low-density limit of the mean-field-theory prediction R0 = √

8/3π = 0.921 [Eq. (20)]. The correlations are mainly controlled by
the temperature.
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FIG. 3. Density-scaling exponent γ defined in Eq. (2) for the state points studied (Fig. 1). Closed symbols are isomorph state-point data
and half open circles are isochore and isotherm data. Data are given for (a)–(c) state points with γ below 50 and (d)–(f) all state points: (a) γ

as a function of the density, (b) γ as a function of the pressure, (c) γ as a function of the temperature, (d) γ as a function of the density in
a log-log plot, (e) γ as a function of the pressure in a log-log plot, and (f) γ as a function of the temperature in a log-log plot. γ is clearly
primarily a function of the temperature. The dashed line in (f) marks the low-temperature limit of the mean-field theory [Eq. (19)].

our primary focus, the arguments given below apply to any
truncated purely repulsive potential.

In general, the partition function of the con-
figurational degrees of freedom is given by Z ∝∫

V N dr1 · · · drN exp[−∑
i< j v(ri j )/kBT ]. At low densities it

is reasonable to regard the pair distances as uncorrelated,
i.e., to treat the interactions in a mean-field way.
This leads to the approximation Z ∝ ZN

s , in which
Zs = ∫

V dr exp[−vs(r)/kBT ] is the partition function of
a single particle moving in the potential vs(r) of all other
particles frozen in space. In the low-density limit, none of the
frozen particles overlap and Zs has two contributions, one for
the positions for which v(r) = 0 and one for the positions at
which the particle interacts with one of the frozen particles.
The former is the free volume that in the low-density limit
approaches the entire volume V . The latter is N times the
following integral (putting, for simplicity, kB = 1 in this
section):

Z1(T ) =
∫ rc

0
4πr2 exp

(
−v(r)

T

)
dr. (8)

In terms of Z1(T ) the single-particle partition function is thus
in the thermodynamic limit given by

Zs(ρ, T )

N
= Z1(T ) + 1

ρ
. (9)

Based on the above, any pair-defined quantity A(r) that
is zero for r > rc has an expectation value that is computed
as (in which p(r) = 4πr2 exp[−v(r)/T ] is the unnormalized

probability)

〈A〉 =
∫ rc

0

A(r)p(r)dr

Zs(ρ, T )
. (10)

Based on Eqs. (2) and (1), one gets

γ (ρ, T ) = 〈wv〉 − 〈w〉〈v〉
〈v2〉 − 〈v〉2

(11)

and

R(ρ, T ) = 〈wv〉 − 〈w〉〈v〉√
(〈w2〉 − 〈w〉2)(〈v2〉 − 〈v〉2)

. (12)

Figure 4 compares the predictions of the mean-field
theory (lines) to data along isomorphs and isochores. There
is good overall agreement. Systematic deviations are visible
in Figs. 4(b) and 4(d), however, which focus on densities that
are not low enough to avoid frozen-particle overlap.

We proceed to discuss the low-density limit in which Zs →
∞. Terms that involve a single expectation value (〈v2〉, 〈w2〉,
and 〈wu〉) scale as 1/Zs, while terms that involve a multi-
plication of expectation values, i.e., 〈v〉2, 〈w〉2, and 〈v〉〈w〉,
scale as 1/Z2

s . Consequently, at low densities one can ne-
glect terms that involve multiplications of expectation values
[18,33,60,61], leading to

γ (T ) = 〈wv〉/〈v2〉 (13)

and

R(T ) = 〈wv〉/
√

〈w2〉〈v2〉. (14)
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FIG. 4. Comparison of the predictions of the mean-field theory for γ and R as functions of the temperature (lines) to simulation results.
(a) and (c) Results along the three isomorphs. (b) and (d) Results along the three isochores, focusing on higher densities where the mean-field
theory is not expected to be accurate.

Note that these averages do not depend on Zs since both
numerators and denominators scale as 1/Zs. This implies that
γ and R at low densities depend only of T , which explains the
observation in Fig. 3.

Consider now the further assumption of a low temperature.
In that case the probability distribution p(r) concentrates near
rc and one can expand around x ≡ rc − r = 0 by writing the
pair potential as

v(x) = k1x + k2x2

2
+ k3x3

6
+ · · · . (15)

The pair virial then becomes [15]

w(x) = (rc − x)

(
k1

3
+ k2x

3

)
+ k3rcx2

6
+ O(x3). (16)

For the WCA potential k1 = 0 and k2 = 36 3
√

4. Since p(x) is
concentrated near x = 0, the upper limit of the integral (17)
may be extended to infinity, leading to

〈A〉 =
∫ ∞

0

A(x)p(x)dx

Z
(T → 0), (17)

in which

p(x) = 4π (rc − x)2 exp

(
−k2x2

2T

)
. (18)

The Gaussian integrals can be evaluated by hand or, e.g., using
the SYMPY PYTHON library for symbolic mathematics. We find

that γ and R are given by

γ0 = 4rc
√

2k2

9
√

πT
= 16

3
√

πT
(T → 0) (19)

and

R0 =
√

8

3π
= 0.921 . . . (T → 0). (20)

Figure 5 shows the mean-field predictions for γ and R at
T = 0.01 plotted as a function of the density. As expected, the
theory works well at low densities, even though one is here
still not quite at the T → 0 limit marked by the horizontal
lines.

V. VARIATION OF STRUCTURE AND DYNAMICS ALONG
ISOTHERMS, ISOCHORES, AND ISOMORPHS

The considerable γ variation of the WCA system
means that it cannot be described approximately by an
Euler-homogeneous potential-energy function. This section
investigates to which degree the reduced-unit structure and
dynamics are, nevertheless, invariant along isomorphs 1–3.
Isomorph invariance is rarely exact, so in order to put the
simulation results into perspective, we present also results
for the variation of the reduced-unit structure and dynamics
along isotherms and isochores. As a measure of the structure,
we look at the radial distribution function (RDF) as a function
of the radial distance. As a measure of the dynamics, we
look at the mean-square displacement (MSD) as a function
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FIG. 5. Density dependence of (a) γ and (b) R at T = 0.01. The full blue lines are the mean-field theory predictions. The horizontal black
dashed lines mark the low-temperature limits of the mean-field theory. Results are also shown for high-density samples that crystallized during
the simulations.

FIG. 6. Reduced-unit radial distribution functions for the three isotherms, isochores, and isomorphs (Fig. 1). The green curves give
the lowest temperature and density, the orange curves give the intermediate temperature and density, and the blue curves give the highest
temperature and density. Although the first-peak maximum is not entirely isomorph invariant, in comparison to isotherms and isochores
we see an excellent RDF invariance along the isomorphs. This is the case even though the density variation of the isotherms and the
temperature variation of the isochores are somewhat smaller than those of the isomorphs (compare Fig. 1). For the isotherms, the green
curves give data for (ρ, T ) = (0.56, 0.60), (0.82, 2.72), and (0.81, 12.1); the orange curves for (ρ, T ) = (0.69, 0.60), (1.0, 2.72), and
(1.21, 12.1); and the blue curves for (ρ, T ) = (0.84, 0.60), (1.22, 2.72), and (1.47, 12.1). For the isochores, the green curves give data for
(ρ, T ) = (0.84, 0.33), (1.00, 0.82), and (1.21, 2.44); the orange curves for (ρ, T ) = (0.84, 1.99), (1.00, 3.32), and (1.21, 6.64); and the blue
curves for (ρ, T ) = (0.84, 14.72), (1.00, 13.46), and (1.21, 14.78). For the isomorphs, the green curves give data for the reference state points
(ρ, T ) = (0.84, 0.60), (0.84, 1.00), and (0.84, 2.00); the orange curves for (ρ, T ) = (1.06, 2.43), (1.04, 3.32), and (0.94, 3.64); and the blue
curves for (ρ, T ) = (1.57, 14.72), (1.40, 13.46), and (1.26, 14.78).
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FIG. 7. Reduced-unit radial mean-square displacement plotted against time for the three isotherms, isochores, and isomorphs (Fig. 1). The
state points and color codings are the same as in Fig. 6. The dynamics is isomorph invariant to a very good approximation.

of the time, as well as of the reduced diffusion coefficient D̃
identified from the long-time MSD.

Starting with structure, Fig. 6 shows reduced-unit RDF
data along the three isotherms, isochores, and isomorphs of
Fig. 1. The isotherms span almost the same density range
and the isochores span almost the same temperature range
as the corresponding isomorphs (restricted to the equilibrium
liquid phase, i.e., to data above the freezing line). Along the
isomorphs the RDFs show some variation at the first peak
maximum (bottom row), but in comparison to the isotherms
and isochores, there is excellent overall isomorph invariance
of the RDF.

For all three isomorphs we find that the peak height in-
creases as the temperature decreases. This is an effect of
larger γ resulting in a higher first peak, which may be un-
derstood as follows. Consider the IPL pair-potential system
with v(r) ∝ r−n, which has γ = n/3 and perfect isomorphs
[62]. The larger n is, the more harshly repulsive the forces
are. From the Boltzmann probability of finding two particles
at the distance r, proportional to exp[−v(r)/kBT ], it follows
that particle near encounters become less likely as n → ∞,
thus suppressing the RDF at distances below the first peak.
If there is isomorph invariance of the number of particles
within the first coordination shell, as n increases some of the
RDF must therefore move from small r to larger r within
the first coordination shell, resulting in a higher first peak.
This argument has recently been confirmed by the observation
that the bridge function, a fundamental quantity of liquid-state
theory [54], is isomorph invariant to a very good approxima-

tion [63]. A similar increase of the height of the first RDF
peak with increasing γ has been observed for the exponential
system (Fig. 5 in Ref. [33]). In that case it was a much less
dramatic effect, however, because the exponential system’s
γ variation at the investigated state points covered less than
a factor of 3 compared to more than a factor of 100 for the
WCA state points studied here. Interestingly, for both systems
the data imply that γ → ∞ as T → 0 along an isomorph, i.e.,
both systems become more and more hard-sphere-like as the
temperature is lowered.

Proceeding to investigate the dynamics, Fig. 7 shows data
for the reduced-unit MSD as a function of the reduced time
along the three isotherms, isochores, and isomorphs. There
is only invariance along the isomorphs. Along the isotherms,
the lowest density (green) gives rise to the largest reduced
diffusion coefficient. This is because the mean collision length
increases when the density is decreased. Along the isochores,
the lowest temperature (green) has the smallest reduced dif-
fusion coefficient. This is because the effective hard-sphere
radius increases when temperature is decreased, leading to a
smaller mean-collision length. In MD units, the MSDs are
also not invariant along the isotherms or isochores (data not
shown); thus the lack of invariance for the isotherms and
isochores is not a consequence of the use of reduced units. In
regard to the isomorph data, with Fig. 6 in mind we conclude
that the noninvariant first-peak heights of the RDFs along
the isomorphs have little influence on the dynamics. This
is consistent with expectations from liquid-state quasiuniver-
sality, according to which many systems have structure and
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FIG. 8. Diffusion coefficients along isomorphs 1–3 in MD units
(top row) and in reduced units (bottom row), plotted as functions
of the logarithm of the temperature. When given in MD units, the
diffusion coefficients vary significantly along the isomorphs, while
they are fairly constant in reduced units. This illustrates the impor-
tance of using reduced units when checking for isomorph invariance.
From end point to end point of the isomorphs, the variation in the
reduced diffusion coefficient D̃ is, respectively, 39%, 23%, and 14%.
The corresponding numbers are 1000%, 880%, and 549% along the
isochores and 214%, 893%, and 305% along the isotherms.

dynamics similar to those of the exponential generic liquid
system, which as mentioned also exhibits varying first-peak
heights along its isomorphs [33].

The reduced diffusion coefficient D̃ ≡ ρ1/3√m/kBT D is
extracted from the data in Fig. 7 by making use of the fact
that the long-time reduced MSD is 6D̃t̃ . Figure 8 shows how
both D and D̃ vary along the three isomorphs. The top row
demonstrates a large variation in D along each isomorph. The
bottom row shows D̃, which is rigorously invariant for a sys-
tem with perfect isomorphs (R = 1). This is not the case for
the WCA system, but the variation is below 40% for all three
isomorphs in situations where the temperature varies by more
than four orders of magnitude. Thus the reduced diffusion
coefficient is isomorph invariant to a good approximation.

Figure 8 suggests that D̃ stabilizes as T → 0, and for each
isomorph one can tentatively identify this low-temperature
limit. Figure 9 plots estimates of these limiting values ob-
tained at the lowest density simulated on each isomorph.
An obvious question is which density corresponds to D̃ = 0.
At very low temperature, because γ becomes very large the
WCA system behaves increasingly as a system of hard spheres
(HSs). The disordered HS system has a maximum density
corresponding to the random closed-packed structure at
roughly 64% packing fraction. In Fig. 9, the black star at
D̃ = 0 marks the corresponding density. Our data are consis-
tent with a convergence to this point.

VI. DISCUSSION

We have studied three isomorphs of the WCA system and
showed that along them the density-scaling exponent varies
by more than a factor of 100. This extreme variation means
that the WCA system cannot be considered as an effective

FIG. 9. Reduced diffusion coefficients at the lowest temperature
and density for isomorphs 1–3 supplemented by data for isomorph
0, plotted versus the density of the lowest-temperature state point
simulated on the isomorph in question. The points are fitted by a
cubic spline function (dashed curve), which by construction goes
through the random close packing (rcp) density (ρ = 0.864) marked
by the half black star on the y axis. As rcp is approached, one expects
D̃ → 0 because the system jams. This is consistent with our data.
The rcp density is calculated as follows. With rc = 21/6 one finds
Vsphere = πr3

c /6 = 0.740. The rcp volume fraction is roughly 64%;
setting this equal to ρVsphere, one arrives at ρ = 0.864.

IPL system [15]. In the LJ case, the pair potential may be
approximated by the so-called extended IPL pair potential,
which is a sum of an IPL term ∼r−18, a constant, and a term
proportional to r [15]. The latter two terms contribute little
to the fluctuations of virial and potential energy [15], which
explains the strong correlations of the LJ system as well as
why γ is close to 6 (not to 4 as one might guess from the
repulsive r−12 term of the potential). The WCA situation is
very different. Because the WCA system is purely repulsive,
it has no liquid-gas phase transition and no liquid-gas
coexistence region. This means that isomorphs may be
studied over several orders of magnitude of temperature and,
in particular, followed to very low temperatures. Interestingly,
even here the strong-correlation property is maintained. At
the same time, γ increases dramatically. Despite this, the
reduced-unit structure and dynamics are both invariant to
a good approximation along the isomorphs. The significant
difference between the LJ and WCA systems in regard to
isomorph properties is also emphasized by the fact that the
density-scaling exponent γ of the LJ system is primarily a
function of the density and well described by Eq. (3). This is
explained by the above-mentioned approximate extended IPL
pair-potential argument [15].

The finding that R and γ of the WCA system are both
primarily functions of the temperature is accounted for by a
mean-field theory based on the assumption of statistically in-
dependent pair interactions. The same feature is observed for
the exponential pair-potential system [33], and also here both
R and γ at low densities primarily depend on the temperature.
Another situation where this is expected to apply is for the re-
pulsive Yukawa pair-potential system at low densities [29,30].
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In summary, the WCA systems presents a striking case
where the density-scaling exponent is very far from being con-
stant throughout the thermodynamic phase diagram [35,36].
Nevertheless, the system is R-simple and has good isomorph
invariance of the structure and dynamics.
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APPENDIX: USING THE RUNGE-KUTTA METHOD
FOR TRACING OUT ISOMORPHS EFFICIENTLY

The density-scaling exponent γ is the slope of the lines of
constant Sex in the (ln T, ln ρ) plane [Eq. (2)]. By numerical
integration one can, from Eq. (2), compute the lines of con-
stant Sex, the configurational adiabats, which are isomorphs
for any R-simple system. The density-scaling exponents re-
quired for the integration are determined from the thermal
equilibrium virial potential-energy fluctuations in an NV T
simulation [Eq. (2)]. In the following we denote the theoretical
slope by f , i.e., the slope without the unavoidable statistical
noise of any MD simulation. Let (x, y) be (ln ρ, ln T ) [occa-
sionally it is better to choose instead (x, y) = (ln T, ln ρ)]. In
this notation, let

dy

dx
= f (x, y) (A1)

be the first-order differential equation to be integrated. Sev-
eral methods have been developed to do this numerically
[64]. The simplest one is Euler’s method. Imagine that one
has estimated the slope at some point (xi, yi ) by computing
γ = f (xi, yi ) from the virial potential-energy fluctuations by
means of Eq. (2). The point (xi+1, yi+1) is then calculated from

xi+1 = xi + h,

yi+1 = yi + h f (xi, yi ) + O(h2). (A2)

Here h is the size of the numerical integration step along
x. The truncation error on the estimated yi+1 scales as h2.

The statistical error on the numerical calculation of the slope
f scales as 1/

√
τ , where τ is the simulation time. Thus,

the statistical error on yi+1 scales as h/
√

τ (rounding er-
rors from the finite machine precision are not relevant for
the h’s investigated here). The scaling of the total error is
thus proportional to h2 + ch/

√
τ , in which c is a constant.

We are interested, however, in the global truncation error,
i.e., the accumulated error for some integration length �x.
Let N = �x/h be the number of steps needed to complete
the integration. The total simulation time is t = N (τ + τeq),
where τeq is the time it takes for the system to come into
equilibrium when temperature and density are changed. Thus
τ = t/N − τeq, and with h = �x/N the statistical error on y is
ch/

√
τ = c�x/

√
Nt − N2τeq. The global error from trunca-

tion scales as N since it is systematic, while the statistical error
scales as

√
N due to its randomness. Thus, the total global

error is proportional to (�x)2/N + c�x/
√

t − Nτeq. The first
term is lowered by making N large, while the second term
favors small N’s and diverges as N → t/τeq. Thus, since c is
in general unknown, the optimal choice of N for a given t
and �x is not straightforward to determine. We give below
a recipe for the optimal parameter choice. First, however,
we show how to reduce the truncation error significantly by
adopting a higher-order integration method, using the often
favored fourth-order Runge-Kutta (RK4) method: For a given
point (xi, yi ), if one defines

k1 = h f (xi, yi ),

k2 = h f

(
xi + h

2
, yi + k1

2

)
,

k3 = h f

(
xi + h

2
, yi + k2

2

)
,

k4 = h f (xi + h, yi + k3), (A3)

the next point (xi+1, yi+1) is computed as

xi+1 = xi + h,

yi+1 = yi + k1

6
+ k2

3
+ k3

3
+ k4

6
+ O(h5). (A4)

FIG. 10. Configurational adiabat of the WCA system traced out in the thermodynamic phase diagram for (a) the Euler method and (b) the
RK4 method. The Euler integration uses a log-density step of size h = 0.1 (steps in density of e0.1 − 1 � 10%), while the RK4 uses h =
0.4, corresponding to a density variation of e0.4 − 1 � 50%. The temperature difference of the here presented combined forward-backward
integration �T provides a convenient measure of the maximum error of the predicted temperature. We find �T ∼= 0.186 for the Euler algorithm
and �T ∼= 0.002 for the RK4 algorithm. The solid lines are interpolations using a cubic Hermite spline.
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FIG. 11. (a) Temperature difference �T of the forward-backward integration in Fig. 10, for different steps sizes h. The blue circles show
results for Euler integration and the orange circles show results for RK4 integration. The temperature difference measures the maximum error
in the integration interval 0.84 � ρ � 1.30. The RK4 is significantly more accurate than the Euler algorithm, which allows for larger h steps.
The dashed lines indicate the expected scaling of the global error from truncation; deviations stem from statistical errors on the estimated
slopes (slopes are evaluated using simulations lengths of τ = 655). The arrow connects Euler and RK4 calculations with approximately the
same computational cost (see Fig. 10). (b) Same analysis for the integration interval 0.58 � ρ � 0.84.

While the simple Euler method has a truncation error scaling
as O(h2), the truncation error of RK4 scales as O(h5). This
allows for significantly larger steps along x and thus smaller
N . From the same type of arguments as given above for the
Euler method, the global error of the RK4 method scales
approximately as (�x)5/N4 + c�x/

√
t − Nτeq, where c is a

(new) unknown constant.
To compare the Euler and RK4 methods, we use each

of them for integrating from the initial state point (ρ, T ) =
(0.84, 0.694) to density 1.25 and back again to the initial
density of 0.84 (see Fig. 10). This involves a γ variation
from 6.825 at the initial density to 4.539 at ρ = 1.25. The
difference between the final temperature of the down integra-
tion and the initial temperature, denoted by �T , provides a
measure of the maximum temperature error. Ideally �T = 0.
Since the RK4 involves four simulations per step, we com-
pare its accuracy where h is four times larger than for the
Euler method, which corresponds to approximately the same
wall-clock time for the computation. With this constraint, the
RK4 is still about two orders of magnitude more accurate: We
find �T = 0.186 for the Euler algorithm and �T ∼= 0.002 for
RK4. Figure 11 shows estimates of the maximum error �T for
several values of h. To focus on the truncation error, we per-
formed long-time simulations with τ ∼= 650. Nonetheless, this
analysis demonstrates that a significantly smaller N (larger h)
is allowed for with the RK4.

Since the RK4 algorithm allows for large h, it can be
necessary to interpolate in order to identify additional state
points on the isomorph. The solid lines in Fig. 10 show such
interpolations using a cubic Hermite spline. Define xφ as a
point between the two adjacent points xi and xi+1, i.e., let
xi � xφ < xi+1, where xφ = xi + φ[xi+1 − xi] and 0 � φ � 1.
The interpolated yφ is given by the third-degree polynomial
yφ = Ax3

φ + Bx2
φ + Cxφ + D, where yφ = yi + [yi+1 − yi]

[aφ3 + bφ2 + cφ]. For simplicity, we introduce the notation
y′
φ = [yφ − yi]/[yi+1 − yi] and write the polynomial as

y′
φ = aφ3 + bφ2 + cφ. The coefficients yielding smooth

first derivative are a = f ′
i + f ′

i+1 − 2, b = 3 − 2 f ′
i − f ′

i+1,

and c = f ′
i , in which f ′

i = fi(xi+1 − xi )/(yi+1 − yi ) and
f ′
i+1 = fi+1(xi+1 − xi )/(yi+1 − yi ) are reduced slopes at the

start and end points, respectively. The f ′ slopes are given by
known γ ’s along the configurational adiabat; thus no extra
simulations are needed to evaluate the interpolation.

We investigated the local error by comparing a full h step
to two half steps of size h/2. The small black circle near
the middle of Fig. 10(b) shows the results of two such half
steps. The truncation error for the half-step approach is then
raised to the sixth order [64], one order higher than RK4
(the consequence is that one must perform twice as many
simulations for each integration step). The triangles in Fig. 12
show the resulting Ti+1 starting from the reference state point
(ρ, T ) = (0.84, 0.694), using a full step with h = 0.4 and

FIG. 12. Difference in temperature between using a full step of
h = 0.4 and two half steps of h = 0.2 when integrating from ρ =
0.84 up to ρ = 1.25, plotted against the simulation time per slope
evaluation. The desired h can change and the simulation time changes
accordingly. The error bar indicates the bad statistics with few blocks
mentioned in the text, computed from Eq. (28) in Ref. [65]. The red
× marks the simulation time used in the paper.
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FIG. 13. Estimate of the statistical error on γ from the blocking
method. The analysis indicates that NB = 128 is a good choice for
the number of blocks. This gives SE(γ ) = 0.03 on the estimated
γ = 6.82.

varying τ ’s. For comparison, the dashed line results from
long-time simulations using the half-step algorithm. The dis-
tance from triangles to the dashed line provides an estimate
of the total error. For short simulation times (small τ ’s)
the statistical error dominates, as shown by the scatter. The
truncation error dominates at long simulation times, as
shown by the triangles’ systematic deviation from the dashed
line. For efficient calculation we suggest choosing h and
τ such that the statistical and truncation errors are of the
same order of magnitude. The red cross in Fig. 12 in-
dicates the simulation time τ used for the figures in the
paper.

The above analysis to arrive at the optimal computation
time τ is tedious and involves computationally expensive
simulations. We proceed to suggest an efficient optimization
recipe that utilizes the fact that the local statistical error of
the slopes can be estimated by dividing a given simulation
into blocks. If the simulation time for each block is suf-
ficiently long, the blocks are statistically independent. The
67% confidence standard error is then given by SE(γ ) =√

Var(γ )/(NB − 1), where Var(γ ) is the variance of the γ ’s
using NB blocks [65]. If the blocks are independent, Var(γ )
scales as NB and SE(γ ) will be independent of the num-
ber of blocks. If we divide the simulation into few blocks,
Var(γ ) may give a bad estimate of the underlying distribu-
tion’s theoretical variance. On the other hand, if one divides
the simulation into many blocks, the simulation time for each
block (τ/NB) may be brief and the blocks are not independent.
In effect, the above formula for SE(γ ) gives an overestimate.
The optimal NB is determined by tests of several different NB,
as shown in Fig. 13 (the red cross corresponds to a good
choice of NB = 128). The statistical error on yi+1 can now
be estimated as SE(yi+1) = SE(γ )h/2. Here 2 = √

4 enters
since the RK4 algorithm includes four independent estimates

FIG. 14. Excess entropy values plotted against the densities of
the state points on the configurational adiabat traced out for the
single-component LJ system starting from the triple point (ρ =
0.84, T = 0.694) using RK4 with h = 0.04. The view is zoomed in
on the values to see the deviation from the average value, the black
dotted line.

of slopes (the factor is unity for the Euler algorithm and
√

8
for the double-step RK4).

Based on the above analysis, we propose the following
recipe for efficient and accurate computation of a configura-
tional adiabat.

(i) Make an NV T simulation at a reference state point of
temperature T0 and density ρ0. The simulation time τ should
be sufficiently long that the equilibration time τeq can be
determined using any standard method (e.g., as the time when
the mean-square displacement has reached the diffusive limit).
Use the block method to determine SE(γ ), using only the
equilibrated part of the trajectory.

(ii) Choose h. Make a full RK4 step and estimate the local
statistical error using SE(yi+1) = h SE(γ )/

√
4. Use the RK4

two–half-step approach to estimate the total local error. If the
total local error is unacceptably large, then either (a) increase
τ if the statistical error is of the same magnitude as the total
error or (b) decrease h if the total error is larger than the
statistical error. Small errors suggest that the simulation time
τ could be decreased or that h can be increased to make
the calculation more efficient; h may safely be increased or
τ decreased if the statistical and total errors are of similar
magnitude.

(iii) Compute adiabatic state points using the RK4 algo-
rithm with the parameters determined in the above steps.
Based on these, a continuous curve can be produced by in-
terpolation using a cubic spline.

(iv) Estimate the maximum error by integrating backward.
This error estimate quantifies the accuracy of the computed
adiabat.

As a consistency check of this recipe, Fig. 14 shows the
excess entropy from the equation of state (EOS) of the single-
component LJ system in Ref. [66]. The agreement with the
configurational adiabat of this EOS is excellent.
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This paper presents a numerical study of the asymmetric dumbbell model consisting of “molecules”
constructed as two different Lennard-Jones spheres connected by a rigid bond. In terms of the
largest (A) particle radius, we report data for the structure and dynamics of the liquid phase for
the bond lengths 0.05, 0.1, 0.2, and 0.5, and analogous data for the plastic crystalline phase for the
bond lengths 0.05, 0.1, 0.2, and 0.3. Structure is probed by means of the AA, AB, and BB radial
distribution functions. Dynamics is probed via the A and B particle mean-square displacement as
functions of time and via the rotational time-autocorrelation function. Consistent with the systems’
strong virial potential-energy correlations, the structure and dynamics are both found to be isomorph
invariant to a good approximation in reduced units, while they generally vary considerably along
isotherms of the same (20%) density variation. Our findings provide the first validation of isomorph-
theory predictions for plastic crystals for which isomorph invariance, in fact, is found to apply even
better than in the liquid phase of asymmetric dumbbells.
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I. INTRODUCTION

This paper presents a systematic study of the asymmetric dumbbell model (ASD) consisting of two different-sized
Lennard-Jones (LJ) spheres connected by a rigid bond. The ASD model is designed to be a simple molecular model
[1–3]. Because of the asymmetry, the liquid phase of the model is easily supercooled, i.e., the model does not readily
crystallize [2]. This makes it suitable for numerical studies as a simple, single-component glass-forming model of
non-spherically symmetric constituents [2, 4–8].

The focus here is not on supercooling and glass formation, however, but on investigating what happens when the
bond length is varied in the less viscous liquid and plastic-crystalline phases. It was previously shown that for the
bond length 0.58 (in units of the largest (A) particle’s radius used henceforth for reporting bond lengths), the ASD
model obeys the hidden-scale invariance symmetry; this manifests itself in strong virial potential-energy correlations in
the thermal-equilibrium constant-volume fluctuations [2]. This implies the existence of so-called isomorphs, which are
lines in the thermodynamic phase diagram along which structure and dynamics in proper reduced units are invariant
to a good approximation [2, 9, 10]. We confirm this below and demonstrate that the existence of isomorphs is robust
to bond-length changes. This is done by simulating the ASD model in the liquid phase with bond lengths 0.05, 0.1,
0.2, and 0.5. We also investigate the model’s plastic crystalline phase with a focus on the existence of isomorphs; here
the largest bond length simulated is 0.3 because for larger bond lengths the system was liquid at the chosen reference
state point.

Our investigation reports data illuminating the degree of isomorph invariance of structure and dynamics. This is
done by comparing results along isomorphs with results along isotherms of the same density variation. Specifically,
the structure is investigated by monitoring radial distribution functions (RDF), while the dynamics is investigated
by the mean-square displacement (MSD) as functions of time as well as the rotational time-autocorrelation function
(RAC). We find good isomorph invariance of both structure and dynamics.

The present paper presents the first investigation of the consequences of hidden scale invariance for a system of
molecules forming plastic crystals. In the plastic crystalline phase the molecules are free to rotate at their lattice
positions. We find excellent isomorph invariance here, in fact somewhat better than in the liquid phase.

II. MODEL AND SIMULATION DETAILS

The asymmetrical dumbbell is a constrained molecular model. It consists of two different Lennard Jones (LJ)
spheres, one big (A) and one smaller (B). If the two spheres are connected by a rigid bond of length = 0.584 in
A particle LJ units, the model mimics toluene [2, 11]. The values of the parameters used below are as follow. For
particle A the distance and energy parameters are σAA = εAA = 1 and the particle mass is mA = 1; for particle B
one has σBB = 0.788, εBB = 0.117 and mB = 0.195 (in A particle units); for the AB interaction one hs σAB = 0.894
and εAB = 0.342 [11].

The system is studied by molecular dynamics simulations in the canonical NV T ensemble using the Nosé-Hoover
thermostat [12]. The simulated system consists of 4000 molecules in a cubic box with periodic boundaries. Simulations
are performed using the open-source Roskilde University molecular dynamics software (RUMD) that runs on GPUs
(graphics processing units) [13]. The leapfrog algorithm is used with time step dt = 0.001 (in LJ units). First, NV E
simulations were carried out for 106 time steps for equilibration and 106 time steps for production runs with time
step sizes 0.0005, 0.005, 0.001, 0.002, and 0.01 in order to investigate how constant the energy is at the reference state
point defined by ρ = 1.5 and T = 1.5 (ρ is the density defined as the total number of atoms (8000) divided by the
simulation box volume V , T is the temperature). The bond lengths chosen for these NV E simulations were 0.05 and
0.5. We concluded that the time step 0.001 in both cases shows good energy conservation; in the limit of zero time
step rigorous energy conservation is ensured, so the “best” time step is a compromise between efficiency and energy
conservation. For the subsequent NV T simulations used for generating the data presented below, at each state point
the simulations again ran for 106 time steps for equilibration and 106 time steps for production runs.

For the post analysis of the structure and dynamics, the units used are the isomorph-theory’s reduced units defined
as follows: energy unit: e0 ≡ kBT , length unit: l0 ≡ ρ−1/3, time unit: t0 ≡ ρ−1/3

√
mA/kBT . Note that these units

vary with state point. Exceptions to the use of reduced units apply for density and temperature that are by definition
both unity in reduced units; these quantities are reported in the above LJ units.

III. ESSENTIAL ISOMORPH THEORY

Hidden scale invariance is a symmetry of the potential energy function U(R) in which the configuration R in terms
of the particle coordinates is defined by R ≡ (r1, ..., rN ). If Ra and Rb are two same-density configurations, hidden
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scale invariance is defined by the following scale-invariance mathematical implication (in which λ is a uniform-scaling
parameter)

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) . (1)

This symmetry is only rigorously obeyed if U(R) is an Euler-homogeneous function plus a constant, but it applies to a
good approximation for many other systems, e.g., single- and multicomponent LJ systems, the Yukawa pair potential,
and the Morse pair potential [2, 9, 10, 14]. Equation (1) may also apply for molecular models like the ASD model, in
which case the centers of masses are scaled uniformly whereas intramolecular bond lengths and molecular orientations
are kept unchanged.

Consider a system in equilibrium at the (number) density ρ ≡ N/V where N is the number of atoms (in our case
8000) and V is the volume. The excess entropy Sex is defined as the entropy minus that of an ideal gas at the same
density and temperature. Any state point of the thermodynamic phase diagram is fully characterized by the two
thermodynamic variables ρ and T , but other variables may of course also be used to characterize a state point. We
define the microscopic excess-entropy function Sex(R) by [14]

Sex(R) ≡ Sex(ρ, U(R)) . (2)

Here Sex(ρ, U) is the excess entropy of the state point (ρ, U) in which U is the average potential energy. It follows
from statistical mechanics that Sex(R) is proportional to the logarithm of the number of configurations with the same
density and potential energy as R [15]. Inverting Eq. (2) leads to

U(R) = U(ρ, Sex(R)) . (3)

Here, U(ρ, Sex) is the average potential energy of the state point of density ρ and excess entropy Sex.
It can be shown that Eq. (1) implies the function Sex(R) is scale invariant, i.e., Sex(λR) = Sex(R) [14]. In this

case, Sex(R) depends only on the configuration’s so-called reduced coordinate vector R̃ ≡ ρ1/3R (which is invariant
upon a uniform scaling):

Sex(R) = Sex(R̃) . (4)

Consequently, Eq. (3) becomes

U(R) = U(ρ, Sex(R̃)) . (5)

All identities of the isomorph theory may be derived from Eq. (5) [14]. In particular, Eq. (5) implies strong correlations
between the constant-volume fluctuations of the virial W and the potential energy U . Thus the equilibrium deviations
from the average of these two variables, ∆W and ∆U , obey [16–18]

∆W ∼= γ∆U . (6)

Here the so-called density-scaling exponent γ is defined and characterized by [9]

γ ≡
(
∂ lnT

∂ ln ρ

)
Sex

=
〈∆U∆W 〉
〈(∆U)2〉

. (7)

The second equality sign allows one to calculate γ from the constant-volume thermal-equilibrium canonical-ensemble
fluctuations at the state point in question.

Using the identity T = (∂U/∂Sex)ρ, a first-order Taylor expansion of Eq. (5) leads [14] to

U(R) ∼= U(ρ, Sex) + T (ρ, Sex)
(
Sex(R̃)− Sex

)
. (8)

Consider two state points (ρ1, T1) and (ρ2, T2) with average potential energies U1 and U2 and same excess entropy Sex,
and suppose that R1 and R2 are equilibrium configurations of the two state points with the same reduced coordinates,
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i.e., ρ
1/3
1 R1 = ρ

1/3
2 R2 ≡ R̃. In that case, by elimination of Sex(R̃) − Sex, Eq. (8) implies that with T1 ≡ T (ρ1, Sex)

and T2 ≡ T (ρ2, Sex) one has

U(R1)− U1

kBT1
∼=

U(R2)− U2

kBT2
. (9)

This implies that

e−U(R1)/kBT1 ∼= C12 e
−U(R2)/kBT2 (10)

in which C12 is a constant. Equation (10) is the original 2009 definition of isomorphic state points [9], which stated
that the canonical probabilities of configurations that scale uniformly into one another are identical along an isomorph
(the value of the constant C12 is irrelevant because probabilities are normalized). This identity of the probabilities of
scaled configurations implies that the Sex is constant along an isomorph. In fact, the 2014 version of the isomorph
theory, which introduced Eq. (1), defined isomorphs as lines of constant excess entropy in the thermodynamic phase
diagram [14].

It can be shown, either from Eq. (10) [9] or from Eq. (5) [14], that the dynamics at two isomorphic state points are
identical in the following “same movie” sense: Filming the molecules’ motion at one state point results in the same
movie at a different, isomorphic state point – except for a uniform scaling of space and time. This implies several
dynamic isomorph invariants and that the reduced-unit structure is isomorph invariant.

How does one decide whether a given system is expected to have good isomorphs? According to Eq. (6) this is the
case when the virial and potential-energy fluctuations are highly correlated, which can be investigated by evaluating
their Pearson correlation coefficient defined by

R =
〈∆U∆W 〉√

〈(∆U)2〉〈(∆W )2〉
. (11)

A system is “R-simple”, i.e., simple in the sense of having good isomorphs and thus an essentially one-dimensional
thermodynamic phase diagram, if R > 0.9 at the state points of interest [14, 16, 17]. This is a somewhat arbitrary
criterion, though, in the sense that the “good-isomorph” property depends on the quantity in question because in
practice some reduced-unit quantities are more isomorph invariant than others. Note also that how invariant a given
property appears to be, of course, depends on how large a density range is being explored.
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FIG. 1. (a) Snapshot of a liquid configuration at ρ = 0.8, T = 0.8. The bond length between particle A (red) and B (blue) in
this configuration is 0.58 in A particle units [2]. (b) Four isomorphs traced out in the liquid regime of the ASD thermodynamic
phase diagram using the fourth-order Runge-Kutta (RK4) method with density step size 0.01. Each isomorph is traced out
with a different bond length, going from 0.05 till 0.5. The isomorphs are qualitatively similar, but we observe a slight increase
in the temperatures of the traced state points with increasing bond length. (c) The variation of the density-scaling exponent
γ (Eq. (7)) at the reference state point ρ = 1.5, T = 1.5 of each isomorph for the different bond lengths. Data for a few extra
bond lengths have been added in order to have a better view of the γ variation. We see that γ has a maximum around bond
length 0.3-0.4, indicating a change of physics here.
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TABLE I. Thermodynamic parameters of the liquid reference state point, giving temperature, density, and pressure (in A
particle LJ units), as well as the density-scaling exponent γ and the virial potential-energy correlation coefficient R.

Bond length [1/σAA] ρ [1/σ3
AA] T [εAA/k] p [σ3

AAεAA] γ R

0.05 1.5 1.5 1.089 5.474 0.850

0.10 1.5 1.5 1.049 5.548 0.850

0.20 1.5 1.5 1.606 5.941 0.894

0.50 1.5 1.5 7.496 6.116 0.961

IV. RESULTS FOR THE LIQUID PHASE

In this section we investigate the liquid phase for the bond lengths 0.05, 0.1, 0.2, and 0.5. First, however, Figure 1(a)
shows a snapshot of the ASD liquid at the bond length previously studied by Ingebrigtsen et al. [2] (0.58 in A particle
LJ units) [2] at a liquid state point. The larger A particles are red, the smaller B particles are blue. We see the typical
disorder of a liquid configuration. Reducing the bond length results in a system that is increasingly like the atomic
LJ liquid, but even for the smallest bond length studied below (0.05) we still find typical molecular-liquid behavior
(see below).

Isomorphs, i.e., curves of constant excess entropy Sex, are traced out by numerically integrating Eq. (7). In this
way one avoids the tedious thermodynamic integrations necessary to determine Sex throughout the thermodynamic
phase diagram. Specifically, the last term of Eq. (7) specifies how the density-scaling exponent γ may be calculated
numerically from an NV T simulation at the state point in question. Integrating the first-order differential equation
defined by the second equality sign in Eq. (7), in order to determine how temperature varies with density along an
isomorph, is in principle straightforward. The highly accurate fourth-order Runge-Kutta (RK4) integration method
was recently implemented for this [19]. We used that method here with a density change of 1%. For all four bond
lengths we start the integration at the reference state point (ρ, T ) = (1.5, 1.5). Thus all four isomorphs have this
state point in common. Table I gives the pressure, density-scaling exponent, and virial potential-energy correlation
coefficient for the four bond lengths at the reference state point.

The isomorphs are not very different (Fig. 1(b)), but we note in that larger bond lengths result in somewhat larger
temperatures at a given density. This reflects larger density-scaling exponents γ for the larger bond lengths, as is
evident from Fig. 1(c) which shows γ at the reference state point for several bond lengths. A value of γ between 5 and
6 is typical for atomic LJ system [17, 18] so these results are not unexpected. We note a slight drop of γ at the largest
bond length studied, but the overall γ variation is just 15% while, as we shall see, the physics varies considerably
when the bond length is changed from 0.05 to 0.5.
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FIG. 2. (a) Variation of the virial potential-energy correlation coefficient R along each isomorph plotted for the four bond
lengths. (b) The variation of R plotted as a function of density along along the T = 1.5 isotherms for the four bond lengths.

As mentioned, the isomorph theory only applies for systems with strong virial potential-energy correlations. To
ensure that this requirement is obeyed, we evaluated the correlation coefficient R (Eq. (11)) along the isomorphs
and along the T = 1.5 isotherms. The results are shown in Fig. 2 as functions of the density in which the R = 0.9
pragmatic limit for isomorph theory to apply is marked by horizontal dashed lines. We see that the majority of state
points are above this line, suggesting that isomorph invariance applies. The strongest correlations are found for the
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largest bond length (0.5).
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FIG. 3. (a) AA, AB and BB radial distribution functions (RDF) at the reduced pair distance ρ1/3r where r is the pair distance
in non-reduced units. The RDFs are shown along the isomorph for the bond length 0.05, and for comparison the same RDFs
are shown along a reference-state-point temperature isotherm of the same (20%) density variation. We see good, but not
perfect invariance along the isomorph, unlike along the isotherm. The thick vertical line in the AB RDF comes from the fixed
bond length, which in reduced units varies with density. (b), (c), and (d) show similar plots for bond lengths 0.1, 0.2, and 0.5,
respectively. There is good isomorph invariance of all three RDFs in comparison to their isotherm variation. We note that the
first peak of the BB RDF gets lower as the bond length increases. This reflects an increased spread of the B particle positions
relative to each other. At the same time the AB RDFs become lower and their second peak almost disappears.

To investigate to which degree isomorph invariance of the reduced-unit structure applies, we performed simulations
of the three radial distribution function (RDF) g(r) defined by the AA, AB, and BB particle pairs along the isomorphs.
The results are shown in Fig. 3, which for comparison also shows data for simulations carried out at reference-state
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point isotherms of the same density variation, i.e., for densities between that of the reference state point (1.5) and 1.8.
All three RDFs are nicely invariant along the isomorphs compared to their variation along the isotherms. Focusing
henceforth on the isomorph RDFs, we note that the AA RDF does not change very much as the bond length is
increased. In fact, this RDF looks much like that of the standard single-component LJ liquid, which is also very
similar to that of, e.g., the hard-sphere, Yukawa, and inverse-power-law liquids’ RDFs [20].

The observed variation of the AB and BB RDFs can be interpreted as a consequence of the near invariance of the
AA particle RDF as the bond length is increased: The structure of the ASD liquid may be thought of as primarily
determined by the large A particles, which behave like standard LJ particles that are not bothered much by existence
of the B particles. This is because the B particles are smaller and, in particular, have significantly lower interaction
energy parameters. In this picture, the B particles are to a significant degree “slaves” of the A particles, and one
expects what is observed in Fig. 3: The BB RDF changes significantly with increasing bond length, and at bond
length 0.5 it is almost constant. This is because the B particles place themselves in many possible positions around
the A particles, which as mentioned for all bond lengths more or less have the RDF of a single-component LJ liquid.
This effect is present at all bond lengths, but for the smaller bond lengths it does not give rise to any significant spread
of the BB RDF because the B particles are constrained to be close to the A particle of the same molecule. Indeed,
the BB particle RDF is very similar to the AA RDF for the small bond length 0.05. This “B slaving A” picture is
confirmed by the AB RDF, which (except for the vertical line coming from the intramolecular AB bond correlation)
gives data for the AB correlations between different ASD molecules. This RDF is also significantly smeared out as the
bond length increases, but less so than the BB RDF because the relative order of the A particles is partly inherited
by the AB RDF.

Figure 4 shows data for the (reduced) time dependence of the reduced-unit mean-square displacement of the A and
B particles in a log-log plot. The data are isomorph invariant to a good approximation, but not invariant along the
isotherm except in the short-time ballistic regime where the invariance is a rigorous consequence of the use of reduced
units (which implies unity thermal velocities). Focusing on the behavior along the isomorphs, we note that the A
particle motion is pretty similar for all bond lengths. This is consistent with the above picture according to which
the A particles to a significant extent behave as if the B particles were not present, i.e., as in a single-component LJ
liquid. In the ballistic regime, the B particles move faster than the A particles because of their lower mass. At long
times, the A and B particles are constrained to follow each other, resulting in the same long-time MSD for all bond
lengths (this, of course, also applies along the isotherms). An interesting feature appears at intermediate times for
the B particle MSD, which for short bond lengths have a slight kink that at longer bond lengths develops into an
indication of a plateau. We interpret this as an effect of the fact that the fast ballistic motion of the B particles in
their motion around the A particles eventually “saturates”. This is confirmed in Fig. 5 discussed next, showing that
the rotational time-autocorrelation function for short bond lengths has a (negative) minimum in this range of the
reduced times (around 0.1).

Figure 5 shows data for the rotational time-autocorrelation function (RAC) defined as the autocorrelation of the
unit vector from particle A to particle B, n, plotted as a function of the reduced time. Because of the normalization,
this quantity always starts in unity at time zero. The upper row shows data for the isotherms, the lower for the
isomorphs. There is little difference and good collapse in both cases, except at the largest bond length 0.5 for which
the data are significantly less invariant along the isotherm. At this bond length there is also a change of behavior
in the sense that the RAC never becomes negative as it does at intermediate times for the lower bond lengths. This
negative value of the RAC signals a more than 90 degree rotation of the molecule. This finding for bond length 0.5
is consistent with the above observation that a change of physics appears to set in around bond length 0.3-0.4. Note
that, in contrast to the RDF and the MSD, the RAC is not predicted to be isomorph invariant because the moment
of inertia is not isomorph invariant (the bond length is fixed and not scaled with the density by the factor ρ−1/3

required for a constant reduced-unit moment of inertia).

V. RESULTS FOR THE PLASTIC CRYSTALLINE PHASE

We proceed to report results for the plastic crystalline phase for the bond lengths 0.05, 0.1, 0.2, and 0.3 (for bond
lengths larger than 0.3 the systems were liquid at the reference state point). As reference state point we chose that
of density 2.2 and temperature 0.5, which is in the solid phase for all four bond lengths. Table II gives the pressure,
density-scaling exponent, and virial potential-energy correlation coefficient for the four bond-length models at the
reference state point. A typical crystal configuration is shown in Fig. 6. We clearly see that the system is ordered
(compare Fig. 1(a)). The order is not perfect, however, because the bond directions are disordered. This is the signal
of a plastic crystal in which the center-of-masses order on a crystalline lattice (in this case a face-centered cubic
lattice) while the molecular orientations vary more or less randomly because the molecules are free to rotate [21–25].
At a lower temperature, there is a phase transition to a perfectly ordered phase in which the bond orientations are
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FIG. 4. (a) The A and B reduced-unit mean-square displacement (MSD) along the isomorph and the isotherm for bond length
0.05. There is invariance along the isomorph for both the A and B reduced MSD, but not along the corresponding isotherm.
(b), (c), and (d) show similar plots for bond lengths 0.1, 0.2, and 0.5, respectively. Also here is there invariance along the
isomorphs for both MSDs, but not along the corresponding isochores.

also ordered, but we did not investigate that transition.

Before proceeding to probe the extent of isomorph invariance, we first look at the properties of the reference state
point. Figure 7(a) shows the AA particle RDFs for the four bond lengths. These show a well-defined order due to the
(almost) crystalline ordering of the A particles; the AA particle RDFs are moreover very similar for all bond lengths.
In contrast, the AB and BB RDFs vary significantly because of the rotation of the B particles around the A particles.
In these cases, the most ordered RDFs are those of the shortest bonds, which reflects the slaving of the B particles to
the A particles that are well ordered.
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FIG. 5. The rotational time-autocorrelation function (RAC) along the isotherms (upper row) and the isomorphs (lower row)
for the four different bond lengths. As the bond length increases, the decay to zero becomes significantly slower, reflecting the
increased moment of inertia. The largest bond length (0.5) behaves differently from the others by never going below zero.

TABLE II. Thermodynamic parameters of the plastic-crystal reference state point, giving temperature, density, and pressure
in LJ units, as well as the density-scaling exponent γ and the virial potential-energy correlation coefficient R.

Bond length [1/σAA] ρ [1/σ3
AA] T [εAA/k] p [σ3

AAεAA] γ R

0.05 2.2 0.5 0.497 5.497 0.997

0.10 2.2 0.5 1.173 5.503 0.996

0.20 2.2 0.5 5.191 5.191 0.992

0.30 2.2 0.5 15.279 5.579 0.990

FIG. 6. Snapshot of a plastic crystal configuration at the reference state point (ρ, T ) = (2.2, 0.5). The bond length between
particles A (red) and B (blue) is in this case 0.2.

Figure 8 shows the MSDs of the A and B particles as functions of (reduced) time. For the A particles the results are
very similar for the different bond lengths, although bond length 0.3 deviates from the three smaller ones by having a
somewhat larger long-time plateau. We have no good explanation for this, but deviations for the longest bond length
from the three others are also noted in some of the later figures. The B particle plateaus vary considerably, with
larger plateaus observed for larger bond lengths. This is because the B particles rotate around the A particles and a
larger bond length gives them more freedom to do so, resulting in a larger long-time plateau.

Figure 9 shows γ and R at the reference state point as a function of the bond length (with data for a few more).
We see that γ is almost independent of the bond length and has the typical LJ value between 5 and 6 [17]. The
correlation coefficient drops somewhat with increasing bond length, but stays comfortably above 0.9.

As in the liquid phase, we generated isomorphs from the reference state point by integrating Eq. (7) using the RK4
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FIG. 7. (a) AA particle RDFs at the reference state point ρ = 2.2, T = 0.5 for each of the bond lengths 0.05, 0.1, 0.2, 0.3. (b),
(c) AB and BB particle RDFs, respectively, at the same state point.
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(We can add the dash line but we can’t have more bond length after 0.3, I can try with 0.35 and 0.4,but I will first check that
the system stays as plastic crystal. Update: At density 2.20, they dont stay as plastic crystals with 0.4 as a bond length as

well.)

algorithm [19] for density steps of magnitude 0.01. Also as in the liquid case, we chose to increase the density by 20%
from the reference state-point density (2.2). This corresponds roughly to realistic density changes of high-pressure
experiments. The four isomorphs are shown in Fig. 10. We see that they are quite similar.

Figure 11 shows the reduced RDFs along the isomorphs and, for comparison, along reference-temperature isotherms
of the same density variation. For the smallest bond length (0.05), we see a very good collapse of all three RDFs
along the isomorph, but not along the isotherm. Moreover, the three RDFs are quite similar, which is a consequence
of the fact that all B particles are constrained to be very close to an A particle. Moving to larger bond lengths, we see
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FIG. 10. Four isomorphs traced out in the plastic crystalline regime of ASD thermodynamic phase diagram using the RK4
method with density step size 0.01. The isomorphs are traced for bond lengths 0.05, 0.1, 0.2, and 0.3.

in all cases a very good isomorph collapse and note that, with increasing bond length, the AB and BB particle RDFs
become increasingly smeared out compared to the AA particle RDF. The same was seen in the liquid phase (Fig. 3),
and as in the liquid phase we interpret this as deriving from rotations of the molecules. In particular, it confirms that
the crystals are plastic. Interestingly, the AA particle RDF becomes more invariant along the isotherm as the bond
length is increased, but for all bond lengths this quantity is still less isotherm than isomorph invariant.

For the MSDs as functions of reduced time (Fig. 12), we note that these are all isomorph invariant to a good
approximation. In contrast, there is a notable variation along the corresponding isotherms for both A and B particles.
Only at short times (in the ballistic regime) do we observe invariance along the isotherms, but this is as mentioned a
consequence of the definition of the reduced units.

Proceeding finally to the RACs, Fig. 13 shows these where the upper two presents the RACs along the isotherms
for the four bond lengths and the lower row corresponding data for the RACs along the isomorphs. With the notable
exception of bond length 0.3, we see a quite good isomorph invariance of the RACs. Despite the already-mentioned
fact that the RAC is not expected to be isomorph invariant because the reduced moment of inertia is not, for all
bond lengths we find that the invariance along isomorphs is better than along the isotherms (and much better in the
bond-length 0.3 case).

VI. SUMMARY

We have presented a numerical study of the liquid and plastic crystalline phases of asymmetric dumbbell models
with different bond lengths with the purpose of testing the isomorph-theory predictions of invariant structure and
dynamics. In the liquid case, the bond lengths 0.05, 0.1, 0.2, and 0.5 were studied, while in the crystalline case the
largest bond length was 0.3. At all state points the virial potential-energy correlation coefficients were above 0.84; in
the vast majority of cases it was above 0.9, and for the plastic crystals it was very close to unity. This implies that the
isomorph theory is expected to apply [9, 10]. Indeed, we found good isomorph invariance of the reduced-unit RDFs,
MSDs, and RACs in the liquid phase and excellent invariance in the plastic crystalline phase. In contrast, these
quantities were generally not invariant along isotherms of the same (20%) density variation. The behavior of the B
particles conform to a picture in which they are “slaves” of the A particles that behave almost like single-component
LJ particles, i.e., are not much affected by the B particles.

The present paper is the first time the isomorph theory has been shown to apply for plastic crystals of simple
two-atom dumbbell molecules. In conjunction with recent papers demonstrating the applicability of isomorph theory
to liquid crystals [26, 27], this serves to emphasize the generality of this theoretical framework derived from the
hidden-scale-invariance condition Eq. (1) and that the theory applies independent of which phase the system is in.
It would be interesting to investigate the transition from the plastic crystal to the ordinary, orientationally ordered
crystal phase and, in particular, whether the phase transition line is close to an isomorph as the liquid-solid transition
line is [28].
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FIG. 11. (a) AA, AB and BB RDFs at the reduced pair distance ρ1/3r where r is the pair distance in non-reduced units. The
RDFs are shown along the isomorph for the bond length 0.05, and for comparison the same RDFs are shown along a reference-
state-point temperature isotherm of the same (20%) density variation. We almost perfect invariance along the isomorph, unlike
along the isotherm. The vertical line in the AB RDF comes from the fixed bond length, which in reduced units varies with
density. (b), (c), and (d) show similar plots for bond lengths 0.1, 0.2, and 0.3, respectively. There is a very good isomorph
invariance of all three RDFs in comparison to their isotherm variation. The first peak of the BB RDF gets lower as the bond
length increases, which reflects an increased spread of the B particle positions relative to each other. At the same time the AB
RDFs become lower.
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FIG. 12. (a) The A and B reduced-unit MSDs along the isomorph and the isotherm for bond length 0.05. There is good
invariance along the isomorph for both the A and B reduced MSDs, but not along the corresponding isotherm. The short-time
invariance in both cases derives simply from the definition of reduced units, but the long-time plateau is far from invariant
along the isotherm. (b), (c), and (d) show similar plots for bond lengths 0.1, 0.2, and 0.3, respectively. Also here is there
invariance along the isomorphs for both MSDs, but not along the corresponding isotherms.
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FIG. 13. (a) The RACs along the isotherms (upper row) and the isomorphs (lower row) for four bond lengths. As the bond
length increases, the decay to zero becomes significantly slower, reflecting the increased moment of inertia. The largest bond
length (0.3) behaves differently from the others by never going below zero.
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[7] D. D. Daub, P.-O. Åstrand, and F. Bresme, “Thermo-molecular orientation effects in fluids of dipolar dumbbells,” Phys.
Chem. Chem. Phys. 16, 22097 (2014).

[8] D. Fragiadakis and C. M. Roland, “Intermolecular distance and density scaling of dynamics in molecular liquids,” J. Chem.
Phys. 150, 204501 (2019).

[9] N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, “Pressure-energy correlations in liquids. IV.
“Isomorphs” in liquid phase diagrams,” J. Chem. Phys. 131, 234504 (2009).

[10] J. C. Dyre, “Hidden scale envariance in condensed matter,” J. Phys. Chem. B 118, 10007–10024 (2014).
[11] U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, “Feasibility of a Single-Parameter Description of

Equilibrium Viscous Liquid Dynamics,” Phys. Rev. E 77, 011201 (2008).
[12] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications (Oxford), 1987).
[13] N. P. Bailey, T. S. Ingebrigtsen, J. S. Hansen, A. A. Veldhorst, L. Bøhling, C. A. Lemarchand, A. E. Olsen, A. K. Bacher,

L. Costigliola, U. R. Pedersen, H. Larsen, J. C. Dyre, and T. B. Schrøder, “RUMD: A general purpose molecular dynamics
package optimized to utilize GPU hardware down to a few thousand particles,” Scipost Phys. 3, 038 (2017).

[14] T. B. Schrøder and J. C. Dyre, “Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system,”
J. Chem. Phys. 141, 204502 (2014).

[15] L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1958).
[16] U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, “Strong pressure-energy correlations in van der Waals

liquids,” Phys. Rev. Lett. 100, 015701 (2008).
[17] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, “Pressure-energy correlations in liquids. I. Results

from computer simulations,” J. Chem. Phys. 129, 184507 (2008).



15

[18] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, “Pressure-energy correlations in liquids. II.
Analysis and consequences,” J. Chem. Phys. 129, 184508 (2008).

[19] E. Attia, J. C. Dyre, and U. R. Pedersen, “Extreme case of density scaling: The Weeks-Chandler-Andersen system at low
temperatures,” Phys. Rev. E 103, 062140 (2021).

[20] J. C. Dyre, “Simple liquids’ quasiuniversality and the hard-sphere paradigm,” J. Phys. Condens. Matter 28, 323001 (2016).
[21] R. Brand, P. Lunkenheimer, and A. Loidl, “Relaxation dynamics in plastic crystals,” J. Chem. Phys. 116, 10386 (2002).
[22] J. M. Pringle, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, “Organic ionic plastic crystals: recent advances,” J.

Mater. Chem. 20, 2056 (2010).
[23] A. Vispa, M. Romanini, M. A. Ramos, L. C. Pardo, F. J. Bermejo, M. Hassaine, A. I. Krivchikov, J. W. Taylor, and

J. Ll. Tamarit, “Thermodynamic and kinetic fragility of Freon 113: The most fragile plastic crystal,” Phys. Rev. Lett.
118, 105701 (2017).

[24] A. Aznar, P. Lloveras, M. Barrio, P. Negrier, A. Planes, L. Mañosa, N. D. Mathur, X. Moya, and J.-L. Tamarit, “Reversible
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ABSTRACT
By combining interface-pinning simulations with numerical integration of the Clausius–Clapeyron equation, we accurately determine the
melting-line coexistence pressure and fluid/crystal densities of the Weeks–Chandler–Andersen system, covering four decades of temperature.
The data are used for comparing the melting-line predictions of the Boltzmann, Andersen–Weeks–Chandler, Barker–Henderson, and Still-
inger hard-sphere approximations. The Andersen–Weeks–Chandler and Barker–Henderson theories give the most accurate predictions, and
they both work excellently in the zero-temperature limit for which analytical expressions are derived here.
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I. INTRODUCTION

While systems of purely repulsive particles are rarely found
in nature, they provide convenient models for both fluids and
solids.1 Examples are the inverse-power law (IPL) systems based
on a homogeneous pair potential that varies with distance r as
(r/σ)−n (in which σ is a length)2–5 and the exponential repul-
sive (EXP) pair potential that varies with distance as exp(−r/σ).6–8

The oldest and most important purely repulsive system is that
of hard spheres (HS),9–12 which despite its simplicity provides
a good zeroth-order model of realistic systems with both repul-
sive and attractive interactions.13–18 A purely repulsive system has
a single fluid phase and no gas–liquid phase transition. In con-
trast, the symmetry-breaking liquid–solid transition is present in all
purely repulsive systems. Because of the absence of a gas phase, the
liquid–solid phase boundary here extends to zero temperature.

This paper studies the noted Weeks, Chandler, and Andersen
(WCA) purely repulsive system,17–44 which is arrived at by cutting
and shifting the Lennard-Jones (LJ) interaction at its minimum.17

In contrast to the IPL and EXP systems, the WCA pair potential
has a finite range beyond which pair forces are zero, such as those
of the HS system. At the cutoff, the WCA pair potential and pair
forces are smooth, and at low temperatures, one expects HS approx-
imations to apply because only insignificant “overlaps” are possible.

Thus, studies of the low-temperature melting line of the WCA sys-
tem provide an excellent testing ground for comparing different
HS approximations, which motivates the present study. Section II
introduces the WCA system and the four HS approximations con-
sidered and gives a few simulation details. Section III details how
we determined the WCA melting line by interface pinning and
Clausius–Clapeyron integration. The predictions of the different HS
approximations with regard to pressure and fluid/solid densities at
melting are compared in Sec. IV. Finally, Sec. V provides a brief
outlook.

II. THE WCA SYSTEM AND HARD-SPHERE
APPROXIMATIONS
A. The WCA system

We consider mono-disperse systems. Let R = (r1, r2, . . . , rN) be
the collective coordinate vector of N particles with mass m confined
to the volume V (with periodic boundaries) and define the (number)
density by ρ ≡ N/V . The potential energy U(R) is assumed to be a
sum of pair contributions,

U(R) =
N

∑
n>m

v(∣rm − rn∣). (1)
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Recall that the LJ pair potential is defined45,46 by

v(r) ≡ 4ε[(r/σ)−12
− (r/σ)−6

] (2)

in which ε has units of energy and σ units of length. The WCA pair
potential (Fig. 1) is defined by cutting and shifting the LJ potential at
its minimum, which leads to17

v(r) = 4ε[(r/σ)−12
− (r/σ)−6

] + 1/4] for r ≤ rc (3)

and zero otherwise, where

rc =
6
√

2σ ≃ 1.1225σ. (4)

The WCA pair potential is purely repulsive since the pair force
−dv/dr is non-negative for all r’s, and it is smooth since both
v(r) and its first derivative are continuous (the second derivative is
discontinuous at rc, though). All quantities obtained by simulations
are below reported in units derived from m, σ, ε, and the Boltzmann
constant kB.

Simulations of the WCA system were conducted using the
RUMD software package version 3.5.47 An initial configuration
is first constructed by setting up 8 × 8 × 20 face-centered cubic
(FCC) unit cells, resulting in a system of N = 5120 particles.
This initial configuration is then scaled uniformly to the desired
density ρ. If a liquid configuration is needed, the crystal is melted
in a high-temperature simulation. The Newtonian equations of
motion are discretized using the leap-frog algorithm48 with the
temperature-dependent time step,

dt = 0.001
σ

√
kBT/m

. (5)

Simulations in the NVT ensemble47–51 are realized using a Langevin
thermostat with relaxation time given by

FIG. 1. (a) The solid line shows the WCA pair potential [Eq. (3)], and the dashed
line shows the harmonic approximation of Eq. (38). (b) The same pair potential on
a logarithmic energy scale, showing a steep slope at low pair energies.

tT = 0.2
σ

√
kBT/m

. (6)

For NpzT Langevin simulations,47,50,51 we used the same thermostat
relaxation time and the barostat relaxation time,

tp = 100
σ

√
kBT/m

. (7)

We have found that introducing this 1/
√

T scaling to the relax-
ation times25 provides a simple way to ensure stability and efficiency
of computations spanning four orders of magnitude in temper-
ature (see Ref. 43 for a different approach). Note that in this
way, the average number of steps needed to travel the distance σ
for a thermal particle is the same at all temperatures. The model
approaches hard spheres at low temperatures, and in effect, the
interaction distance narrows. Thus, we expect that shorter time
steps are needed for temperatures lower than those investigated
here.

B. Hard-sphere approximations to the WCA system
Perturbation theories have proven successful for describing

many fluids near freezing.1,15–25,52–66 The basic assumption is that
the pair interaction can be written as

v(r) = v0(r) + v1(r) (8)

in which v0(r) is the pair potential of some well-known reference
system and v1(r) is a small perturbation. Often, the HS system
is used as the reference. Several suggestions have been made for
choosing the appropriate HS diameter, d. Below, we list the four HS
criteria that in Sec. IV are evaluated with respect to their ability to
locate the solid–liquid coexistence line.

In the zero-temperature limit (T → 0), the WCA pair poten-
tial approaches that of a HS9–12 system with diameter d = rc, i.e., the
system described by

vd(r) =∞ for r < d (9)

and zero otherwise. While this may not be intuitively obvious since
the WCA pair potential goes smoothly to zero at the cutoff, it
becomes clear when the WCA potential is shown in a log-plot
[Fig. 1(b)]. The simplest way of assigning an effective HS diameter
to a WCA particle is to use the truncation distance

d = rc. (10)

This criterion is exact for T → 0. At finite temperatures, however, the
effective HS diameter will be smaller, and here one needs to make
some physical assumptions to improve Eq. (10) and arrive at better
approximations. We next list four well-known HS approximations.

1. Boltzmann’s hard-sphere criterion
In his 1890 Lectures on Gas Theory,67 Boltzmann suggested that

the effective HS diameter d should be identified with the distance of
closest approach when the velocities of two head-on colliding par-
ticles are given by their average kinetic energy at far distances. This
criterion results in

v(d) = kBT, (11)
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which for the WCA system leads to

d =
rc

6
√

1 +
√

kBT/ε
. (12)

Boltzmann’s idea, which provides the simplest HS approximation,
has been used to estimate the effective HS diameter of the WCA
system by a number of authors.19–22,24,25

2. The Andersen–Weeks–Chandler hard-sphere
criterion

A more sophisticated HS criterion was suggested in 1971 by
Andersen, Weeks, and Chandler (AWC).56 Their motivation was to
match as well as possible the Helmholtz free energy of the pair poten-
tial in question to the associated HS system. The AWC criterion may
be summarized as follows: If

e(r) = exp(−v(r)/kBT) (13)

is the pair-potential Boltzmann probability factor, the AWC effective
HS diameter d is identified from

∫

∞

0
r2yd(r)Δe(r)dr = 0 (14)

in which Δe(r) = e(r) − ed(r) is the so-called blip function and
yd(r) is the cavity function of the HS fluid. In the Percus–Yevic (PY)
approximation, the cavity function is given analytically,1,59–62,68,69

which is convenient for applications of Eq. (14). The appearance
of the blip function in Eq. (14) effectively limits the AWC integral
to values near d. Thus, it is sufficient to consider the zeroth and
first shell of yd(r) to evaluate the AWC integral of Eq. (14) with a
high accuracy. We used the following implementation of the cavity
function in the determination of the HS diameter d via Eq. (14).60 If
s ≡ r/d,

yd(s) =
⎧⎪⎪
⎨
⎪⎪⎩

c0 − c1s + c3s3 for s < 1,

H1(s)/s for 1 < s < 2,
(15)

where

H1(s) = a1 exp A(s − 1)r + a2 exp B(s − 1) cos C(s − 1)
+ a3 exp B(s − 1) sin C(s − 1). (16)

The parameters depend on the packing fraction η [see Eqs. (6)
and (15)–(17) in Ref. 60], leading for the coexistence packing
fraction η = 0.4909 (corresponding to the density 0.9375d−3) to
c0 = 58.4514, c1 = 67.9928, c3 = 14.3461, A = 1.584 98,
B = −3.684 94, C = 3.851 60, a1 = 0.567 70, a2 = 4.237 05 and
a3 = −1.411 41. We evaluated the AWC integral numerically using
the Python module SciPy’s70 implementation of QUADPACK.71

The pressure of a hard-sphere fluid is given by the value of yd(s)
at the hard-sphere contact distance, s = 0. The above theory underes-
timates the coexistence pressure by only 8%. The PY approximation
works best at low densities. Other theoretical approaches61,72–78

provide analytical and more accurate expression for the HS radial
distribution functions and, in effect, give a better prediction of the
pressure. We have not investigated whether the improved theories
provide more accurate AWC predictions since they do not provide
the needed cavity function as presented. In addition, we have not
investigated Lado’s refinement58 of the AWC theory.

3. The Barker–Henderson hard-sphere criterion
The Barker and Henderson (BH) theory,55 which predates the

AWC theory, can be viewed as a simplification of the AWC theory.1
Specifically, it is assumed that r-squared times the cavity-function is
a constant, r2yd = const., implying that Eq. (14) can be written as

0 = ∫
∞

0
([1 − e(r)] − [1 − ed(r)])dr. (17)

Since the integral of 1 − ed(r) is d, one arrives at the following HS
criterion:

d = ∫
∞

0
[1 − e(r)]dr. (18)

The r2yd = const. assumption is reasonable since the blip func-
tion limits the integral to values near d where yd does not change
much when the temperature is sufficiently low. As T is lowered, the
blip function narrows; thus, the AWC diameter reduces to the BH
criterion when T → 0. Note that the BH criterion depends on tem-
perature but not on density, while the AWC criterion depends on
both temperature and density. The BH integral of Eq. (18) is eas-
ily evaluated numerically using, e.g., the Python module SciPy’s70

implementation of QUADPACK.71

4. Stillinger’s hard-sphere criterion
At low temperatures, the integrand of the BH criterion Eq. (18)

changes rapidly from nearly unity for r < d to nearly zero for r > d.
This motivated the HS criterion proposed by Stillinger in 1976.40,79,80

He pragmatically identified the HS diameter as the distance at which
the pair-potential Boltzmann factor equals one half, i.e.,

e(d) =
1
2

. (19)

This was introduced in connection with a study of the Gaussian-core
model,79 but the same idea can also be applied to the WCA potential
leading40 to

d =
rc

6
√

1 +
√

kBT ln(2)/ε
. (20)

Note that the functional form of this HS criterion is identical to
that of Boltzmann if T is replaced by T ln(2): The factor 2 comes
from Eq. (19); with e(d) = 1/exp(1), one arrives at Boltzmann’s
criterion.24

III. NUMERICAL DETERMINATION OF THE PHASE
TRANSITION LINE

The interface pinning method81–90 is used to compute the
solid–liquid chemical potential difference Δμ for isothermal state
points at temperatures 0.002ε/kB, 0.02ε/kB, 0.2ε/kB, 2ε/kB, and
20ε/kB. For a given temperature, we first set up a FCC crystal
elongated in the z-direction with the given density and compute
the equilibrium pressure in an NVT simulation. From this, a half-
crystal/half-fluid configuration is constructed by a high-temperature
simulation, where particle positions are only updated for half of the
particles (resulting in melting for these particles). This produces a
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configuration similar to the one shown in the inset of Fig. 2. We then
perform an NpzT simulation by adding a harmonic bias-field to the
potential part of the Hamiltonian,

UIP(R) = U(R) +
κ
2
(Q(R) − a)2, (21)

which forces the system toward configurations with a fluid–crystal
interface. Here, κ and a are parameters of the bias-field, and Q(R)
is an order parameter that measures crystallinity though long-range
order [see Eq. (15) in Ref. 81]. The chemical potential differ-
ence between the two phases, Δμ, is computed from the average
force, κ(⟨Q(R)⟩ − a), which the bias field results in on the sys-
tem [see Eq. (9) in Ref. 81]. This is then repeated for several FCC
densities (and thus pressures) near coexistence. As an example,
Fig. 2 shows the pressures vs the computed chemical potentials
at 2ε/kB, considering 11 pressures slightly above 31.7ε/σ3. The
coexistence state point at Δμ = 0 is determined by linear regres-
sion (compare the solid line in Fig. 2). From this, we find the
coexistence pressure p = 31.8086(66)ε/σ3, where the number in
parentheses gives the statistical error on the last two digits using a
95% confidence interval. Table I reports the thermodynamic coex-
istence data obtained by the interface-pinning (IP) method and
numerical integration of the Clausius–Clapeyron (CC) relation as
detailed below.

While the interface-pinning method is accurate and provides
specific error estimates, it can be computationally expensive because
long simulations are needed to properly represent interface fluctu-
ations, which are usually significantly slower than fluctuations of
the bulk solid and fluid.81 As an alternative, we determine most

FIG. 2. Determination of the coexistence pressure at the temperature T0 = 2ε/kB
(red diamond) by means of the interface-pinning method81–90 [see Eq. (21)]. The
inset shows an interface-pinned configuration where the colors indicate the rota-
tional bond order parameter q̄4 defined in Ref. 91. With this coloring, crystalline
particles are reddish and fluid particles are greenish.

TABLE I. Selected state points on the coexistence line determined by the interface
pinning (IP) method and by numerical integration of the Clausius–Clapeyron (CC)
relation (all data are available in Zenodo at http://doi.org/10.5281/zenodo.6505218).
The numbers in parentheses give the statistical uncertainty of the IP data (95%
confidence interval).

T [ε/k] p [ε/σ3
] ρl [1/σ

3
] ρs [1/σ

3
] Method

20 634.33(14) 1.784 10(10) 1.859 34(10) IP
20 633.309 1.783 28 1.858 50 CC
2 31.808 6(66) 1.084 41(5) 1.151 92(6) IP
2 31.753 2 1.084 13 1.151 63 CC
0.2 2.051 69(33) 0.800 04(3) 0.873 56(4) IP
0.2 2.051 18 0.799 92 0.873 58 CC
0.02 0.174 944(47) 0.706 38(5) 0.778 89(6) IP
0.002 0.016 687(3) 0.677 17(3) 0.747 91(3) IP
0.002 0.016 680 0.677 05 0.747 92 CC

points on the coexistence line by numerical integration of the
Clausius–Clapeyron relation (below s and v are entropy and volume
per particle)

dp
dT
=

Δs
Δv

. (22)

This is an example of the Gibbs–Duhem integration methods
discussed by Kofke,92,93 which do not involve slow fluctuations of
an interface. The volume difference Δv = vl − vs and the entropy
difference Δs = sl − ss = (Δu + pΔv − Δμ)/T can both be evaluated
from standard NpT simulations of the two bulk phases at coexistence
(Δμ = 0).

We use a trapezoidal predictor-corrector method to compute
coexistence pressures at the temperatures Ti = 0.02 × 10(i/24), where
i is an integer (compare the solid black line in Fig. 3). Substituting
t = T and y = p, the first-order differential equation to be solved is
rewritten in the standard form as

y′ = f (t, y), (23)

where f is the slope evaluated as Δs/Δv [Eq. (22)]. Suppose
one knows the point (ti, yi) on the coexistence line, either from
the interface-pinning method or from a previous step of the
Clausius–Clapeyron integration, and wishes to compute the next
point (ti+1, yi+1). If h = ti+1 − ti, the prediction of the simple Euler
algorithm is

y(0)i+1 = yi + h f (ti, yi). (24)

A better estimate is provided by Heun’s method,

y(1)i+1 = yi +
h
2
[ f (ti, yi) + f (ti + h, y0

i+1)]. (25)

The next estimate in an iterative predictor-corrector approach is

y(2)i+1 = yi +
h
2
[ f (ti, yi) + f (ti + h, y1

i+1)] (26)

or, in general,
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FIG. 3. Coexistence pressure as a function of the temperature. (a) The solid black
line shows the reduced coexistence pressure p/kBT as a function of the temper-
ature (this study). The black dashed line is the T → 0 HS limit, p●/kBT , and the
colored dots represent literature coexistence pressures.42–44 The red diamonds
were computed with the interface-pinning method (this study). The blue dashed
line shows that at low temperatures, the pressure scales as T3/2, as expected
from HS theories [inset Eq. (30) into Eq. (46)]. (b) The absolute value of the
coexistence pressure in excess of its T → 0 limit. The red diamonds were
computed with the interface-pinning method (this study).

yk+1
i+1 = yi +

h
2
[ f (ti, yi) + f (ti + h, yk

i+1)]. (27)

In the limit of large k’s, this converges to the trapezoidal rule of inte-
gration, where forward and backward integrations yield the same
result.

Which criterion to use in order to determine when the iter-
ations have converged? To answer this, we note that since the
slopes are evaluated from finite NpT simulations, one expects a
significant statistical error on the f ’s used above. If f̄ (t, y) is the
theoretical slope, f (t, y) = f̄ (t, y) + ef , where e f is drawn from a

normal distribution with standard deviation σf . This error is esti-
mated by dividing NpT simulations into statistically independent
blocks.94 The error on yk+1

i+1 is ey = he f and σy = ∣h∣σf . We terminate
the predictor-corrector iteration when

∣yk+1
i+1 − yk

i+1∣ < σy, (28)

since this indicates that changes of yi+1’s are mainly due to the
statistical uncertainty on the slopes.

In summary, numerical integration of the Clausius–Clapeyron
relation comes with errors from ignoring higher-order terms and

FIG. 4. Fluid density at freezing and solid density at melting as functions of the
temperature. (a) The solid black line shows the density of the fluid at coexistence
(this study). The dashed line is the T → 0 limit [see Eq. (47)], and the colored
dots are literature data.42–44 The red diamonds are densities computed with the
interface-pinning method. (b) The solid black line shows the density of the solid at
coexistence (this study), the dashed line is the T → 0 limit, and the colored dots
represent literature data.42–44 The red diamonds were computed with the interface-
pinning method (this study).
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from the statistical uncertainty of the slopes. To quantify the over-
all error of the integration, one can compare to accurate estimates
from interface pinning at selected state points. As an example, for
T48 = 2ε/kB, from the Clausius–Clapeyron integration we estimate
the coexistence pressure to be 31.7532ε/σ3, which should be com-
pared to 31.8086(66)ε/σ3 for the interface-pinning method (see
Table I). The error of the computed phase-transition line is not vis-
ible in most figures of this paper, with notable exceptions at low
temperatures (error bars are shown in the figures whenever errors
are significant).

Figures 3 and 4 show coexistence pressures and densities,
respectively, from this study and from the literature.42–44 We note
that the low-temperature estimates of Ref. 43 are not accurate,
whereas the high-temperature estimates of Refs. 42–44 are con-
sistent with our results. As a consistency check, we note that the
computed coexistence line reaches the HS limit95 when T → 0 (the
dashed lines in Figs. 3 and 4 show the HS limits).

IV. COMPARING THE PREDICTIONS OF DIFFERENT
HARD-SPHERE THEORIES

Having accurately located the WCA phase transition, we use
this to test the HS theories by comparing their predictions to the
low-temperature WCA melting-line data.

A. Coexistence pressure and densities
Starting with the coexistence pressure, we first need coexistence

information on the HS system. Fernandez et al.96 estimated that the
HS coexistence pressure is given by pd = 11.5727(10)kBT/d3. This
value is consistent with

pd = 11.5712(10) kBT/d3, (29)

computed more recently by Pieprzyk et al.;95 we use the latter value
in this paper. In the zero-temperature limit, the HS diameter of the
WCA interaction is d = rc, which gives the coexistence pressure

p● = 8.1821(7) kBT/σ3. (30)

The bullet subscript “●” refers throughout this paper to the HS limit
of the WCA model that is approached when T → 0, i.e., setting
d = rc.

The solid black line in Fig. 5(a) shows the coexistence pres-
sure divided by the thermal energy, p/kBT, and the black dashed
line shows the d = rc prediction. The predicted pressure is too low
since the effective HS diameter, as mentioned, is smaller than rc
at finite temperatures where particles may overlap. In Fig. 5(a), we
also consider other criteria for d’s [by insertions into Eq. (29)].
At T = 0.02ε/kB, the d = rc criterion underestimates the coexistence
pressure by 7%, while the AWC and BH criteria give only a 1% error.
Thus, the HS theories give a significant improvement of the pre-
dicted coexistence pressure. It is hard to decide from Fig. 5 which
theory is best since this depends on the temperature. We return
below to the low-temperature limit that provides a definite answer.
First, we turn to the HS theories’ predictions of the melting- and
freezing densities.

FIG. 5. Melting-line pressure compared to HS predictions. (a) The solid black
line shows the reduced coexistence pressure, p/kBT . The dashed lines show
predictions of the HS theories [see Eqs. (12), (14), (18), and (20)]. The red dia-
monds show coexistence pressures computed with the interface-pinning method.
(b) αp(T) = 2(p/p● − 1)/

√

kBT/ε [Eq. (43)] along the computed phase tran-
sition line (black solid) and the theoretical predictions also shown in the upper
panel (dashed lines). The blue dashed line [α0 = 0.89(1)] is the T → 0 limit
determined from coexistence densities [see Fig. 6(b)]. AWC and BH give accurate
predictions in the low-temperature limit. The red diamonds are the results of the
interface-pinning method where blue error bars indicate the statistical error. There
is a systematic inaccuracy of the Clausius–Clapeyron integration (solid black) at
the lowest temperatures.

The HS fluid freezing density was computed recently by Moir,
Lue, and Bannerman to the value97

ρ(l)d = 0.938 90(7)/d3 (31)

and the melting density of the solid to

ρ(s)d = 1.037 15(9)/d3. (32)

In the zero-temperature limit of the WCA system (d = rc), we get

ρ(l)● = 0.663 90(5)/σ3 (33)
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and

ρ(s)● = 0.733 37(6)/σ3. (34)

When inserting the d’s of the above HS criteria, we get the
temperature-dependent density predictions shown in Fig. 6(a) as
colored dashed lines.

FIG. 6. Density–temperature phase diagram. (a) The solid black lines are the
coexistence densities (compare Fig. 4). The vertical black dashed lines mark the
T → 0 HS limits, i.e., the quantities ρ(l)

● and ρ(s)
● . The turquoise, green, yellow,

and red dashed curves are predictions of the HS theories, see Eqs. (12),
(14), (18), and (20). The two blue dashed lines are the low-temperature fits
ρl = ρ(l)

● [1 + 0.445
√

kBT/ε] and ρs = ρ(s)
● [1 + 0.445

√

kBT/ε]. (b) The black

+’s show αρ(T) = 2(ρ/ρ● − 1)/
√

kBT/ε, where the densities ρ and ρ
●

refer to
the fluid. The green ×’s is αρ(T) using the solid densities. Red and green dia-
monds are densities computed with the interface-pinning method. The blue error
bars indicate the 95% confidence interval. We find that the zero-temperature limit
gives α0 = limT→0 α(T) = 0.89(1). The turquoise, green, yellow, and red dashed
curves are predictions of the HS theories. The AWC and BH give the correct
low-temperature limit within the statistical accuracy.

B. Analytical treatment of the low-temperature limit
Inspired by the functional form of Stillingers’s and Boltzmann’s

HS criteria [Eqs. (12) and (20)], we write the low-temperature limit
of the effective HS diameter as

dα = rc(1 −
α0

6

√
kBT/ε) for T → 0, (35)

which implies that

d−3
α = r−3

c (1 +
α0

2

√
kBT/ε) for T → 0. (36)

For the Boltzmann criterion, one has α0 = 1 while Stillinger’s
criterion gives α0 =

√
ln(2) ≃ 0.83.

Since d is the same for the AWC and BH criteria in the T → 0
limit (see Sec. II B 3), the α0’s are also identical. To evaluate α0, we
first note that the BH integral defining the HS diameter [Eq. (18)]
can be written as

d = rc − ∫

rc

0
exp(−v(r)/kBT)dr. (37)

Since the WCA pair potential is purely repulsive, it reaches its
minimum at zero when r = rc. Thus, at low temperatures, the above
integral is centered near rc, i.e., near x = 0, where x = rc − r. Keeping
the first non-vanishing term in a Taylor expansion, we get

v(x) =
1
2

k2x2 for T → 0 (38)

and x ≥ 0 (distances shorter than rc) with35

k2 ≡
d2v

dr2 ∣
rc

= 36 3
√

4ε/σ2. (39)

(This approximation is shown as a black dashed line in Fig. 1.)
Finding d from Eq. (37) involves solving a Gaussian integral in x.
Expanding the upper limit of the integral to infinity (which is exact
as T → 0), we find

d = rc −

√
πkBT
2k2

. (40)

By equating d = dα [Eqs. (35) and (40)], we get

α0 =
6
rc

√
πε
2k2

(41)

or α0 =
√

π/2 ≅ 0.886 227. The theoretical α0 values are summarized
in Table II.

TABLE II. α0 values.

From simulations α0 = 0.89(1)

Boltzmann α0 = 1
AWC and BH α0 =

1
2
√

π = 0.886 . . .

Stillinger α0 =
√

ln(2) = 0.833 . . .
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To estimate α0 from the simulations, we insert d−3
α of Eq. (36)

into Eq. (29) for the coexistence pressure, leading to

p = p●[1 +
α0

2

√
kBT/ε] for T → 0. (42)

Thus, a way to determine α0 is to define the function [Fig. 5(b)]

αp(T) =
2

√
kBT/ε

[
p(T)

p●
− 1], (43)

for which we note that α0 = α(T) for T → 0. Similarly, for the
densities ρ = ρl or ρ = ρs, we get

ρ = ρ●[1 +
α0

2

√
kBT/ε] for T → 0 (44)

and define

αρ(T) =
2

√
kBT/ε

[
ρ(T)

ρ●
− 1]. (45)

Figure 6(a) shows the temperature dependence of the fluid and
solid densities at coexistence (solid lines). These densities yield the
αρ(T)’s shown with black +’s and green x’s, respectively, in Fig. 6(b).
From the low-temperature points, we estimate α0 = 0.89(1). The
colored dashed lines show the predictions of the HS theories (the
T → 0 limits agree with the values of Table II). We conclude that
the AWC and BH theories gives excellent agreement as T → 0.
Figure 5(b) shows αp(T) computed using the coexistence pres-
sure. In agreement with the results for the αρ(T)’s, we find that
α0 = 0.89(1) (blue dashed line).

The success of the AWC and BH theories suggests writing the
coexistence pressure and densities as follows [inserting α0 =

√
π/2

into Eqs. (42) and (44)]:

p = p●
⎡
⎢
⎢
⎢
⎢
⎣

1 +

√
πkBT
16ε

⎤
⎥
⎥
⎥
⎥
⎦

(46)

and

ρ = ρ●
⎡
⎢
⎢
⎢
⎢
⎣

1 +

√
πkBT
16ε

⎤
⎥
⎥
⎥
⎥
⎦

, (47)

respectively (see the blue dashed lines of Figs. 3–5). Interestingly,
this low-temperature approximation gives better predictions than
the neat HS theories—even at high temperatures (with the excep-
tion of Boltzmann’s criterion near T ≃ 0.5ε/kB). We do not have an
explanation for this.

Equations (46) and (47) summarize an important result of
this paper, providing an analytical HS approximation for the low-
temperature freezing of the WCA fluid. This can be generalized
to any other purely repulsive pair-potential v(r) that is truncated
smoothly at r = rc by the following steps:

1. Compute k2 using Eq. (39).
2. Derive α0 within the BH theory by inserting k2 into Eq. (41).
3. Low-temperature predictions for the coexistence pressure and

densities are then provided by inserting α0 into Eqs. (42)
and (44), respectively.

FIG. 7. (a) Empirical fit [Eq. (48) (blue dashed line)] to the phase transition pressure
(+). The red diamonds show the phase transition pressure computed with the
interface pinning method. (b) Empirical fit [Eq. (48)] to the reduced pressure, p/T .
The inset shows the residuals in percent. (c) Empirical fit [Eq. (49)] to the freezing
density of the fluid (ρl) and the melting density of the solid (ρs).

C. Empirical fit to the coexistence line
We have provided a theory for low temperatures. To provide a

practical description of the coexistence line that includes high tem-
peratures, we continue the power series in τ =

√
kBT/ε by writing

the coexistence pressure as

J. Chem. Phys. 157, 034502 (2022); doi: 10.1063/5.0097593 157, 034502-8

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

p(T) = p●[1 +
√ π

16
τ + ã2τ2

+ ã3τ3
+ ã4τ4

]. (48)

The parameters ã2 = 0.2619, ã3 = −0.0871, and ã4 = 0.0087 are
determined by non-linear least squares to fit to the reduced pres-
sure, p/T [see Eq. (30) for p●]. The accuracy of the fit is within 1%
for the investigated temperatures [see Figs. 7(a) and 7(b)]. Similar
for the coexistence densities, we define

ρ(T) = ρ●[1 +
√ π

16
τ + ã2τ2

+ ã3τ3
+ ã4τ4

]. (49)

A non-linear least squares fit to the freezing density of the liquid (ρl)

yields ã2 = 0.0240, ã3 = −0.0178, and ã4 = 0.002 06. A fit to the melt-
ing density of the solid (ρs) yields ã2 = −0.033 36, ã3 = 0.004 47, and
ã4 = −0.000 457 [see Eqs. (33) and (34) for ρ● = ρ(l)● and ρ● = ρ(s)● ,
respectively]. The accuracy of the fits is within 0.3% and 0.15% for
the liquid and solid densities, respectively. The fits to the densities
are shown in Fig. 7(c).

V. OUTLOOK
We have shown that HS theories give excellent predictions of

the WCA melting line at low temperatures, in particular, for the
AWC and BH approximations. At higher temperatures, the HS theo-
ries are less accurate. This is not surprising because the WCA model
only resembles a HS system at low temperatures. How to predict the
WCA melting-line pressures and coexistence densities at high tem-
peratures? One possibility is to generalize the low-temperature HS
approximation by considering the lines of constant excess entropy
Sex (the entropy in excess of the ideal gas entropy at the same den-
sity and temperature, a negative quantity that in some textbooks98

is referred to as the residual entropy). For the HS system, these
lines are determined entirely by the density, i.e., they are verti-
cal in the density–temperature phase diagram. In Ref. 35, it was
shown that the WCA system’s structure and dynamics are near-
invariant along the lines of constant excess entropy, which are
referred to as isomorphs.99,100 An isomorph can be computed by

FIG. 8. The solid black line shows the reduced coexistence pressure p/kBT as
a function of the temperature. The red and green dashed lines are isomorphs of
the fluid, i.e., lines along which the excess entropy is constant. By construction,
the isomorphs touch the phase-transition line at T⋆ = 0.02ε/kB and T⋆ = 2ε/kB,
respectively. The turquoise dashed line is the prediction of the AWC theory.

numerical integration in the ln T–ln ρ plane [e.g., using the fourth-
order Runge–Kutta method (RK4)35] for which the required slope is
f = 1/γ, where99,101,102

γ ≡ (
∂ ln T
∂ ln ρ

)

Sex

. (50)

The “density-scaling exponent” γ may be computed from virial
and potential-energy fluctuations in the NVT ensemble via the
statistical-mechanical identity γ = ⟨ΔWΔU⟩/⟨(ΔU)2

⟩.99 Figure 8
shows the reduced pressure p/kBT of two fluid isomorphs that

FIG. 9. (a) The radial distribution function g(r) of the fluid at coexistence. (b) The radial distribution function as a function of the reduced distance r̃ = r 3
√ρ for the fluid at

coexistence. (c) The radial distribution as a function of the reduced distance r̃ = r 3
√ρ for a fluid isomorph that touches the coexistence line at T⋆ = 2ε/kB.
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FIG. 10. The solid lines show the mean-square displacement ⟨∣r(t) − r(0)∣2⟩ for
selected state points along the coexistence line (see Table I). The dashed lines
are long-time fits to ⟨∣r(t) − r(0)∣2⟩ = 6Dt, where D is the diffusion coefficient.
The dots in the inset show the reduced diffusion coefficient D̃ = Dρ1/3T1/2. The
red x’s and green +’s are the reduced diffusion coefficient for state points along
the isomorphs with T⋆ = 2ε/kB and T⋆ = 0.02ε/kB, respectively.

overlap with the coexistence line at T⋆ = 0.02ε/kB and T⋆ = 2ε/kB,
respectively (dashed green and red lines). For comparison, the
turquoise dashed line shows the prediction of the reduced coexis-
tence pressure of the AWC theory. For the entire temperature span,
the isomorphs give predictions with an overall accuracy comparable
to that of the best HS approximation (AWC).

Figures 9 and 10 show the structure and dynamics along the
melting line and the fluid isomorph in reduced units.99 The physics
is more invariant along the coexistence lines than along the iso-
morph, which is in contrast to previous findings for the LJ system
where the opposite applies.103 We note, however, that isomorphs
only follow the coexistence lines to a first approximation. For the
LJ system, accurate predictions for the thermodynamics of freezing
and melting are arrived at within the isomorph-theoretical pertur-
bation framework proposed in Ref. 103—we plan to apply the same
method to the WCA system.
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EXTREME CASE OF DENSITY SCALING:
THE WEEKS-CHANDLER ANDERSEN

SYSTEM AT LOW TEMPERATURE
EMAN A. ATTIA, JEPPE C. DYRE & ULF R. PEDERSEN

1.SUMMARY
1. Tracing out configurational adiabats nu-
merically using two integration methods:
Euler and fourth order Runge Kutta (RK4).

2. Check for isomorphism through checking
the structure and dynamics along the adia-
bats in the light of Rosenfeld excess entropy
scaling.

2. MODELS OF LIQUIDS
Liquid models are often defined via pair
potentials v(r). If rij = |ri − rj | is the distance
between particles i and j, the potential energy
U as a function of all particles coordinates is
given by U =

∑
i<j v(rij) Three model sys-

tems are simulated by Molecular Dynamics in
the canonical (NV T ).

1. The Lennard-Jones potential (LJ):

v(r) = 4ε[(r/σ)−12 − (r/σ)−6]

2. The Weeks Chandler-Andersen potential
(WCA) is same as LJ potential but shifted
upwards by ε and truncated at the LJ pair
potential minimum r = 21/6σ. which makes it
a purely repulsive potential.

3. The Extended Simple Point Charge System
(SPC/E):

U(R) = Uq(R) + UBond(R) + ULJ(R)

It is a standard water model.

REFERENCES

3. CONFIGURATIONAL ADIABATS
1. Configurational adiabats are lines in the phase diagarms with the same excess entropy defined
by Sex(ρ, T ) ≡ S(ρ, T )− Sid(ρ, T ).

2. Euler integration, t1 = t0 + h, y1 = y0 + hf(t0, y0) + O(h2). The RK4 integration, t1 = t0 + h,
y1 = y0 + k1/6 + k2/3 + k3/3 + k4/6 +O(h5).

3. Configurational adiabats are considered "isomorphs" when there is invariance in the structure
and dynamics along the state points of the configurational adiabat.

4. TESTING INTEGRATION METHODS

Consistency check for the two integration
methods.

Figure 1: Configurational adiabat traced out in
WCA phase diagram with hRK = 0.4 and hEuler =
0.1 (a) Euler, lin: ∆T = 0.214 (b) RK4, lin: ∆T =
0.120 (c) Euler, log: ∆T = 0.186 (d) RK4, log:
∆T = 0.002.
Conclusion 1: This shows that RK4 with logarith-
mic expression for the slope gives best accuracy
compared to Euler (lin and log) and RK4 (lin). The
half step mid point is plotted (black dot) to show the
accuracy of the interpolation as well.

Choosing the suitable step size and
simulation time to optimize accuracy.

Figure 2: The difference in temperature from using
full step h = 0.4 and the two half steps h = 0.2 from
ρ = 0.84 till ρ = 1.25 plotted against simulation
time per slope evaluation.
Conclusion 2: RK4 can be as accurate as the adap-
tive double step-size RK method within the cor-
responding simulation time. The desired h can
change and the simulation time changes accord-
ingly.

5. ISOMORPHISM CHECK (STRUCTURE & DYNAMICS)

Figure 3: The Radial distribution functions and the diffusion constants of the configurational adiabats traced
in the three systems.
Conclusion 3: Invariance in the structure and dynamics of LJ system is clearly visible in which configu-
rational adiabats are considered isomorphic. In the lower density region for WCA model, configurational
adiabats become less invariant reaching the hard sphere limit as γ changes rapidly. The SPC/E model shows
variance in the structure and dynamics compared to the rest of the systems. The configurational adiabats
deviate from being isomorphic.
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